6. Electrolytes

6

description

Electrolytes

Transcript of 6. Electrolytes

  • CLINICAL CHEMISTRY 2

    aaronjanpalmares_02.08.15 Page 1

    I. Introduction

    Ions capable of carrying an electric charge Two types of Ions:

    Functions of Electrolytes 1. Volume and osmotic regulation (Na

    +, Cl

    -, K

    +) 5. Regulation of ATPase ion pumps (Mg

    2+)

    2. Myocardial rhythm and contractility (K+, Mg

    2+, Ca

    2+) 6. Acid-base balance (HCO3

    -, K

    +, Cl

    -)

    3. Neuromuscular Excitability (K+

    ,Mg2+

    , Ca2+

    ) 7. Production and use of ATP from glucose (Mg2+

    , PO4-)

    4. Cofactors in enzyme activation (Mg2+

    , Ca2+

    , Zn2+

    )

    II. Water

    A. Introduction

    40-75% of body weight Function Transport nutrients to the cells and Removes waste products Location: ICF: 2/3 E CF: 1/3 Intravascular (25%) and interstitial fluid (75%)

    B. Osmolality:

    Concentration of ions is maintained by:

    1. Passive Transport

    Passive movement of ions across a membrane 2. Active Transport

    Requires energy to move ions across a membrane ATPase-dependent ion pumps

    i. Definition: Conc. of solutes per Kg of solvent (millimoles/kg) ii. Regulation

    a. Thirst Sensation Response to consume more fluids Prevents water deficit

    b. Arginine vasopressin hormone (AVP) Antidiuretic Hormone (ADH) reasorptio of ater i kides Suppressed in excess H2O load Activated in water deficit

    c. Renin-angiotensin-aldosterone

    system

    Na+ retention, aldosterone release, vessel constriction d. Atrial natriuretic Peptide (ANP) Na+ excretion in the kidney e. Glomerular Filtration Rate (GFR) / ol. epasio ad / ol. depletio

    iii. Determination

    Any substance dissolve in a solvent will:

    freezing point by 1.858C freezing point by 1.858C boiling point by 0.52C boiling point by 0.52C Main contributors are Na, Cl, Urea and Glucose

    Distribution of Body Water in Adult

    Compartment (%) of Body Weight (%) of Total Body H2O

    Extracellular

    Plasma 5 8

    Interstitial 15 25

    Intracellular 40 67

    Total Body Water 60 100

    A. Anions

    Carry (-) charge and move toward the anode E.g. Cl-, HCO3-, PO4-

    B. Cations

    Carry (+) charge and move toward the cathode E.g. Na+, K+, Mg2+, Ca2

    Electrolytes

  • CLINICAL CHEMISTRY 2

    aaronjanpalmares_02.08.15 Page 2

    II. Electolytes

    A. Sodium (Na+)

    i. Description and Regulation

    The most abundant cation Plasma concentration depends in renal regulation in the ECF a. Intake of water Thirst

    Major Extracellular cation b. Excretion of water AVP H2O reabsorption) Na+, K+ -ATPase ion pump c. The blood volume status Agiotesi II aldosteroe

    moves 3 Na+

    ions out of the Aldosteroe Na+ reabsorption in kidney) cell in exchange for 2 K

    + ions ANP Uriar Na + Excretion )

    ii. Clinical Applications

    Causes of Hypoatreia ( Na+) Causes of Hyperatreia ( Na+) . Sodiu (Na+) Loss . Water Retetio 1. Excess Water Loss 2. Decreased Water Intake a. Hypoaldosteronism a. Renal failure a. Diabetes insipidus a. Old/Infant/Mentally Impaired

    b. K+ Deficiency b. SIADH b. Profuse sweating 3. Increased Intake or Retention

    c. Diuretic Use c. Nephrotic syndrome c. Severe burns a. Cushing Syndrome

    d. Salt-losing nephropathy d. Chronic heart failure b. Hyperaldosteronism

    e. Severe Burns e. Hepatic cirrhosis c. Hypertonic Salt Solution

    iii. Determination of Sodium

    Specimen Methods

    a. Serum, Plasma (heparin and oxalate) a. FES

    b. False ith arked heolsis b. AAS c. ISE (Glass ion-exchange membrane)

    B. Potassium (K+)

    i. Description and Regulation

    Major Intracellular cation 1. Aldosterone Regulation of neuromuscular K+ excretion in urine)

    excitability, contraction of 2. Na+, K+ -ATPase pump

    heart, ICF volume, H+ conc. ( futio ellular etr) K+, ell eitaility ( futio ellular etr)

    (muscle weakness) 3. ith eerise, diaetes K+ , ell eitailit mellitus and cell breakdown

    (arrhythmia/paralysis)

    ii. Clinical Applications

    Causes of Hypokalemia (K+) Causes of Hyperkalemia (K+) 1. GI Loss 3. Renal Loss 1. Decreased Renal Excretion 3. Cellular Shift

    a. Vomiting a. Diuretics a. Renal Failure a. Acidosis

    b. Diarrhea b. Renal Tubular Acidosis b. Hypoaldesteronism b. Muscle/cellular injury

    c. Gastric suction c. Cushigs sdroe . Addisos Disease c. Chemotherapy / Leukemia d. Laxatives d. Hyperaldosteronism 2. Increased Intake 4. Artifactual

    2. Cellular Shift - e. Hepatic cirrhosis a. Oral/IV K+ replacement a. Hemolysis, Thrombocytosis K+ uptake 4. Decreased Intake b. Prolonged tourniquet a. Alkalosis

    b. Insulin Overdose

    iii. Determination of Potassium

    Specimen a. Serum, Plasma (heparin)

    b. False ith heolsis c. 24 hour urine

    Methods a. FES

    b. AAS

    c. ISE (valinomycin membrane)

  • CLINICAL CHEMISTRY 2

    aaronjanpalmares_02.08.15 Page 3

    C. Potassium (K+)

    i. Description and Regulation

    Major Extracellular anion 1. Aldosterone Involve in maintaining K+ excretion in urine)

    Osmolality,blood volume 2. Na+, K+ -ATPase pump

    and electric neutrality ( futio ellular etr) (Chloride shift) ( futio ellular etr) Rate limiting component 3. ith eerise, diaetes in Na

    + reabsorption mellitus and cell breakdown

    D. Bicarbonate (HCO3-)

    i. Description and Regulation

    2nd Most Abundant anion in 1. Aldosterone the ECF K+ excretion in urine)

    Accounts for more than 2. Na+, K+ -ATPase pump 80% of total CO2 ( futio ellular etr)

    (Chloride shift) ( futio ellular etr) Major buffering system 3. ith eerise, diaetes of the blood mellitus and cell breakdown

    E. Magnesium (Mg)

    i. Physiology and Regulation

    2nd Major Intracellular cation 1. Parathyroid Hormone (PTH) - Mg2+ Neuromuscular conduction Promotes Ca + renal reabsorption

    Enzyme cofactor and 2. Aldosterone and thyroxine - Mg2+ ATPase ion pump Promotes Na + renal reabsorption

    53% (Bone), 46% (muscle, soft tissues), Ag Cl

    2

    c. Scales and Schales

    Titration with mercuric nitrate

    ii. Clinical Applications

    Causes of Hyperchloreia (Cl-) Cause of Hypochloreia (Cl-) 1. Excess Loss of HCO3

    - 2. Excess Loss of Cl

    -

    a. GI Losses a. Prolonged Vomiting

    b. Metabolic acidosis b. Aldosterone Deficiency

    c. Salt-losing pyelonephritis

    iii. Determination of Bicarbonate

    Specimen a. Serum, Plasma (heparin)

    b. False if left uncapped 6ol/L per hr Methods a. Enzyme method

    ii. Clinical Applications

    Metabolic Alkalosis HCO3- Metabolic acidosis HCO3- a. Severe vomiting a. Hyperventilation

    b. Hypoventilation

    c. Excessive alkali intake

  • CLINICAL CHEMISTRY 2

    aaronjanpalmares_02.08.15 Page 4

    ii. Clinical Applications

    Causes of Hypomagnesemia (Mg+) Cause of Hypoageseia ( Mg+) - Excretion 1. Reduced Intake 2. Absorption 4. Renal 5. Endocrine a. Poor diet/starvation a. Malabsorption synd. a. Tubular disorders, a. Hyperparathyroidism

    b. Prolonged Mg+- deficient IV b. Diarrhea Pyelonephritis b. Hyperaldosteronism

    3. Others c. Vomiting b. Glomerulonephritis c. Hyperthyroidism

    a. Excess lactation d. Laxative 6. Drug Induced d. Hypercalcemia

    b. Pregnancy a. Furosemide, Thiazide e. Diabetic ketoacidosis

    b. Gentamicin, Cyclosporin

    c. Digitales and Digoxin

    Causes of Hyperageseia ( Mg 2+ ) iii. Determination of Magnesium a. Eretio, Real failure Specimen b. Hypoparathyroidism a. Serum, Plasma (lithium heparin), 24 hr urine

    c. Hypoaldosteronism b. Heolsis ause False e. Bone carcinoma and bone metastases Method a. Calmagite Mtd. Mg

    2+ + CalmagiteReddish-violet (532nm)

    b. Formazen Dye Mtd. Mg2+

    + DyeColored complex (660 nm) c. Methylthymol blue Mtd. Mg

    2+ + ChromogenColored complex

    d. Titan Yellow Serum TCA filtrate+titan yellowRed cmpd.

    F. Calcium (Ca+2

    )

    i. Physiology and Regulation

    For muscle contraction and blood coagulation Factors affecting Ca+2 level in blood: 99% in bone and teeth and 1% in blood and ECF 1. Bone resorption Cause Ca+2 in blood Calcium in the blood is distributed as PTH mobilizes Ca+2 from the bone 1. Ionized Unbound/ free, physiologically active 2. Bone deposition

    Cause Ca+2 in blood

    45% of Total Calcium Calcitonin inhibits PTH and Vit.D

    2.Protein bound Bound to protein (E.g. albumin)/40% 3. Intestinal absorption

    Vitamin D Ca+2 in the intestine 3. Complex Ca

    +2 Bound to anions

    (E.g. HCO3-, PO4

    - & lactate)/15%

    Causes of Hypocalcemia

    ( Ca+) Cause of Hypercalcemia

    ( Ca+) a. Hypoparathyroidism

    a. Hyperparathyroidism

    b. Hypo/hypermagnesemia b. Maliga PTHrP c. Hypoalbuminemia c. Vitai D d. Acute pancreatitis d. Thiazide diuretics

    e. Vitamin D deficiency e. Prolonged immobilization

    e. Rhabdomyolysis

    iii. Determination of Calcium

    Specimen a. Serum, Plasma (Dry lithium heparin), 24 hr urine b. Hemolysis cause False Method

    a. AAS, ISE d. Clark and Collip (Redox Titration method)

    b. Ortho-cresolphthalein complexone (CPC) e. Ferro and Ham (Precipitation with Chloranilic acid)

    c. Alizarin, Arsenzo III dye, Methyl phenol blue

  • CLINICAL CHEMISTRY 2

    aaronjanpalmares_02.08.15 Page 5

    F. Phosphate

    i. Physiology and Regulation

    Major Intracellular anion Component of phospholipids, nucleic acids, creatine phosphate and ATP 80% - bone, 20% - soft tissues, 1% - serum/plasma GH real eretio of phosphate

    ii. Clinical Applications

    Causes of Hypophosphateia ( PO4-) Cause of Hyperphosphateia ( PO4-) a. Hyperparathyroidism a. Itake

    b. Vitamin D Deficiency b. release of cellular phosphate c. breakdown of cells

    iii. Determination of Sodium

    Specimen Methods

    Serum, Plasma (lithium heparin), 24 hour urine Ammonium phosphomolybdate comp.(340nm)

    Heolsis ause False Fiske-Subbarow Method (Final product: Molybdenum blue)

    G. Lactate

    i. Description and Regulation

    Indicator of severity of O2 deprivation (hypoxia) Lier oerts latate ak to gluose Gluoeogeesis

    ii. Clinical Applications

    Lactate Acidosis

    Hypoxic Conditions (Type A) Metabolic Origin (Type B)

    a. Lactate Acidosis a. Diabetes Mellitus, Liver disease

    b. Shock, MI, Severe CHF b. Toxins (ethanol, methanol or salicylate poisoning)

    c. Pulmonary edema, severe blood loss

    IV. Anaion Gap

    Mathematical approximation of difference between the concentration of unmeasured cations & unmeasured anions (Na+) (Cl- + HCO3-) 7-16 mEq/L

    Aio gap ueasured aios

    Uremia Ketoacidosis Lactic acidosis i easured atios

    Hypernatremia Aio gap

    ueasured aios Hypoalbuminemia i ueasured atios:

    Hypermagnesemia Hypercalcemia