5G#Networks#and#High3Efficiency#Device# …Leppänen,(Huawei (...

4
5G Networks and HighEfficiency Device Posi;oning: Enabling Techniques, Demonstra;on and Ver;cals Network densifica0on and high bandwidth allows accurate UE posi0oning Use the expensive 5G investment to get posi0oning “for free” 12 orders of magnitude beDer dyamic accuracy than GPS, with 12 orders of magnitude lower power consump0on in the UE Advantages Proac0ve mobility management and RRM in 5G radio network (, UE tracking and movement predic3on) Selfdriving cars, robots benefit from accurate posi0on info Indoor posi0oning Augmented reality IoT device posi0oning,logis0cs.. Implementa0on based on TDD MUMIMO system Data fusion over mul0ple measurement points ToA/TDoA & DoA measurements based on UL beacons (~SRS) Clock model + UN movement model Time-of-arrival (ToA) estimates Direction-of-arrival (DoA) estimates Extended Kalman filter (EKF) UN position estimates UN clock offset estimates Joint User Node Posi3oning and Clock Offset Es3ma3on in 5G Ultra Dense Networks: hDp://www.tut.fi/5G/posi0oning/media.html CUDN Frame structrue CUDN concept Kari Leppänen, Huawei [email protected] Riku Jän], Aalto University riku.jan]@aalto.fi Mikko Valkama, Tampere University of Technology mikko.e.valkama@tut.fi

Transcript of 5G#Networks#and#High3Efficiency#Device# …Leppänen,(Huawei (...

5G  Networks  and  High-­‐Efficiency  Device  Posi;oning:  Enabling  Techniques,  Demonstra;on  and  Ver;cals

•  Network  densifica0on  and  high  bandwidth  allows  accurate  UE  posi0oning  

•  Use  the  expensive  5G  investment  to  get  posi0oning  “for  free”  

•  1-­‐2  orders  of  magnitude  beDer  dyamic  accuracy  than  GPS,  with  1-­‐2  orders  of  magnitude  lower  power  consump0on  in  the  UE  

•  Advantages  •  Proac0ve  mobility  management  and  RRM  in  5G  radio  network  (,  UE  

tracking  and  movement  predic3on)  •  Self-­‐driving  cars,  robots  benefit  from  accurate  posi0on  info  •  Indoor  posi0oning  •  Augmented  reality  •  IoT  device  posi0oning,logis0cs..  

•  Implementa0on  based  on  •  TDD  MU-­‐MIMO  system  •  Data  fusion  over  mul0ple  measurement  points  •  ToA/TDoA  &  DoA  measurements  based  on  UL  beacons  (~SRS)    

 

Clock model+

UN movement model

Time-of-arrival (ToA) estimates

Direction-of-arrival (DoA) estimates

Extended Kalman filter (EKF)

UN position estimates

UN clock offset estimates

Joint  User  Node  Posi3oning  and  Clock  Offset  Es3ma3on  in  5G  Ultra-­‐Dense  Networks:    hDp://www.tut.fi/5G/posi0oning/media.html    

C-­‐UDN  Frame  structrue    

C-­‐UDN  concept  

Kari  Leppänen,  Huawei      [email protected]  Riku  Jän],  Aalto  University    riku.jan]@aalto.fi  Mikko  Valkama,  Tampere  University  of  Technology  [email protected]    

5G  Networks  and  High-­‐Efficiency  Device  Posi;oning:  Enabling  Techniques,  Demonstra;on  and  Ver;cals •  C-­‐UDN  test-­‐bed  l  4 Access Node (AN) sites l  4 – 8 antennas per AN

-  Linux server operates as BS

l  1 antenna in mobile l  Constructed of USRP + PC

-  Comm. stack in C++ -  TDD implemented by using USRP switch

between Tx - Rx chains (not circulator) l  Transmission

-  Frequency license 3.41 – 3.43 GHz -  Sampling rate 15.36 MHz -  5 micro sec OFDM symbol length

l  easy to test also for different values  

UN

AN1

AN2

AN3

AN4

8  antenna  array  

AN  &  UN  C-­‐UDN  test-­‐bed  architecture  

5G  Networks  and  High-­‐Efficiency  Device  Posi;oning:  Enabling  Techniques,  Demonstra;on  and  Ver;cals •  Tes0ng  environment  for  ver0cals  

•  Otaniemi  –  sub-­‐urban  area  •  Ruoholah0  –  urban  area  

•  Ver0cals  •  TA7:  5G  for  Future  MTC  solu0ons:  

•  Device  localiza0on,  energy  efficiency  through  UE  beacon  based  signaling  

•  TA20:    Open  Porgolio  Target  Ac0on  •  Ver0cals  benefi]ng  from  accurate  localiza0on    

and  low  latency  •  V2X,  Factories  of  the  future,  e-­‐health,…  

   

Otaniemi  test-­‐site  (sub-­‐urban  /    industrial)  

Ruoholah3  test-­‐site  (urban)  

V2X  

Facories  of  the  future:  Aalto  Industrial  Internet  Campus    hDp://aiic.aalto.fi/en/  

Example  ver0cals   Test  sites  

• Mul0disciplinary  and  open  research  plagorm  for  inves0ga0on  and  experimental  evalua0on  of  innova0ve  ideas  in  networking  and  services  of  5G.    

•  A  common  shared  testbed  for  tes0ng  and  valida0on  of  5G  network  func0ons:  

•  Network  virtualiza0on  and  cloud  technologies  •  Virtualized  EPC  with  network  slicing  

•  Novel  RAN    solu0ons  &  virtualiza0on  •  Con$nuous  Ultra  Dense  Network  (C-­‐UDN)  •  Cloud-­‐RAN  (LTE)  •  NB-­‐IOT  

•  Services  that  require  network  responsiveness  and  end  user  experience.    

•  Cybersecurity,  end  to  end  security  and  trust  in  5G    

Take-­‐5  testbed  in  Espoo,  Finland  –  part  of  5GTNF

User Equipment

(UE)

Mobility Management Entity (MME)

Home Subscriber Server (HSS)

SDN Control

S/P-GW Control

Policy Control and Charging Rules

Function (PCRF)

Data Plane

Control Plane

))))))))

S1-MME

SDN

SDN capable Backhaul

Virtualized EPC including S/P-GW control

User Equipment

(UE)))))))))

SDN

Station (eNodeB)

Base

WiFI SDN AP

INTERNETIP RouterNAT

Nokia

VTT

Coriant

EXFO

Monitoring

AALTO

AALTO

Nokia

hDp://5gtnf.fi/  hDp://take-­‐5g.org/