5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter...

15
Nano & Flexible Device Materials Lab. 7 5.4 Overall Transformation Kinetics TTT Diagram TTT Diagram : the fraction of Transformation (f) as a function of Time and Temperature Phase Transformation In Materials

Transcript of 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter...

Page 1: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.77

5.4 Overall Transformation Kinetics – TTT Diagram

TTT Diagram :

the fraction of Transformation (f) as a function of Time and Temperature

Phase Transformation In Materials

Page 2: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.88

5.4 Overall Transformation Kinetics – TTT Diagram

Johnson-Mehl-Avrami Kolmogorov Equation

specimenofVol

phasenewofVolf

.

.

Assumption :

Reaction produces by nucleation and growth

Nucleation occurs randomly throughout specimen

Reaction product grows radially until impingement

Define volume fraction transformed

f

t

tdτ

τ τ+dτ

specimenofvolume

dduringformed

nucleiofnumber

ttimeatmeasureddduring

nucleatedparticleoneofvol

df

.

Phase Transformation In Materials

𝛼 → 𝛽

Page 3: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.99

5.4 Johnson-Mehl-Avrami Kolmogorov Equation

0

0

3 )()]([3

4

V

dNVtv

df

v : growth rate (assumed const. )

N : nucleation rate (const. )

33

33

)(3

4

)(3

4

3

4

tvV

vtrV

43

0

33

0

3

3

4

tvNf

d)t(vNf̂df

e

tx

e

volume :

→ do not consider impingement & repeated nucleation

→ only true for f ≪ 1

Phase Transformation In Materials

fe : extended volume fraction

Page 4: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1010

Johnson-Mehl-Avrami Kolmogorov Equation

edffdf )1( edf

dff 1

43

31 tNvexpf

)tkexp(f n 1 t

1

∝t4

f

····· J-M-A Eq.

k : sensitive to temp. ( N. v )

n : 1 ~ 4

7.05.0 ntk

nkt

/15.0

7.0

4/34/15.0

9.0

vNt

For the case of 50% transform, t0.5

exp (-0.7) = 0.5

i.e.

Example above.

Phase Transformation In Materials

Page 5: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1111

)pt(expII o

pI)pt(exppIdt

dI)t(N o

pt)ptexp(

p

vIexpf o 1

81

3

3

pt

6

33tp

33

31 tvNexpf o

Other example:

1. Fixed nucleation site and active at the beginning.

2. Nucleation site depends on the time

p: rate at which the individual sites are lost.

limiting cases : small → same as J-M eq.

large → I quickly goes to zero.

Phase Transformation In Materials

Johnson-Mehl-Avrami Kolmogorov Equation

(Io : number of active nucleation site / unit volume)

pt

Page 6: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1212

5.5 Precipitation in Age-Hardening Alloys

5.5.1 Precipitation in Aluminum-Copper Alloys

Transition phases

Phase Transformation In Materials

43210 '"zonesGP

Page 7: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1313

5.5 Precipitation in Age-Hardening Alloys

Phase Transformation In Materials

Page 8: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1414

5.5 Precipitation in Age-Hardening Alloys

Growth of 𝜽′

in the expense of 𝜽"

Phase Transformation In Materials

Page 9: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1515

5.5.3 Quenched in Vacancies

Phase Transformation In Materials

Precipitation Free Zone: PFZ

Page 10: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1616

5.5.4 Age Hardening

Phase Transformation In Materials

Page 11: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1717

5.5.5 Spinodal Decomposition

No barrier for nucleation

Phase diagram with a miscibility gap

𝑑2𝐺

𝑑𝑋2< 0, chemical spinodal

Phase Transformation In Materials

Ω > 0

Page 12: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1818

The Effect of ∆Hmix and T on ∆Gmix

Phase Transformation in Materials

From Ch1

Ω < 0

Ω > 0

Page 13: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.1919

5.5.5 Spinodal Decomposition

Composition profiles in an alloy

quenched into the spinodal region

Composition profiles in an alloy

outside the spinodal points

Phase Transformation In Materials

Page 14: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.2020

Spinodal decomposion

Phase Transformation In Materials

Page 15: 5.4 Overall Transformation Kinetics TTT Diagramocw.snu.ac.kr/sites/default/files/NOTE/Wk8_2Chapter 5. Part 4.pdf5.4 Overall Transformation Kinetics –TTT Diagram Johnson-Mehl-Avrami

Nano & Flexible

Device Materials Lab.2121

5.5.5 Spinodal Decomposition

The Rate of Transformation

Rate controlled by interdiffusion coefficient D~

D22 4/

D~

)exp(

t Within the spinodal < 0 , composition fluctuation

transf. rate ↑ as λ ↓

- : characteristic time constant

- λ : wavelength of the composition modulation (1-D assumed)

There is a minimum value of below which spinodal decomposion cannot occur

To calculate λ, it is need to take care of 1) interfacial energy 2) coherency strain energy

Phase Transformation In Materials