5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral...

7
The funny looking "S" is called the integral sign. The "S" stands for (represents) "sum" because an integral is a limit of sums. The function () is called the integrand. The values and are the (upper and lower) limits of integration. does not have any meaning by it self, but it is a necessary piece of the notation; an integral without a does not make sense. For now, you can think of it as the "period" at the end of the sentence; it tells you what the variable is that you are integrating with respect to. ( J )∆ M JNO is called a "Riemann sum" after the German mathematician Bernhard Riemann. 5.2: The Definite Integral

Transcript of 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral...

Page 1: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral

Page 2: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral

Page 3: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral

Page 4: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral

Page 5: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral

Page 6: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral

Page 7: 5.2: The Definite Integral - WordPress.com · 2017. 9. 5. · Properties of the Definite Integral Like the Limit Laws in Calculus 1, there are some properties of integrals that can

Thefunnylooking"S"∫⬚�� iscalledtheintegralsign.The"S"standsfor(represents)"sum"becauseanintegralisalimit ofsums.

Thefunction𝑓(𝑥) iscalledtheintegrand.•

Thevalues𝑎 and𝑏 arethe(upperandlower)limitsofintegration.•

𝑑𝑥 doesnothaveanymeaningbyitself,butit isanecessarypieceofthenotation;anintegralwithout a𝑑𝑥 doesnotmakesense.Fornow,youcanthinkofitasthe"period"attheendofthesentence;it tellsyouwhatthevariableisthatyouareintegratingwithrespectto.

∑ 𝑓(𝑥J∗)∆𝑥MJNO iscalleda"Riemannsum"aftertheGermanmathematician

BernhardRiemann.

∫ 𝑓(𝑥)𝑑𝑥ST istheresultoftakingthelimit of∑ 𝑓(𝑥J∗)∆𝑥M

JNO as𝑛 → ∞.

Theareaunderthecurvebetween𝑎 and𝑏 istheareaunderthecurvebetween0 and𝑏 minustheareafrom0 to𝑎.Ifwethinkofintegralsstrictlyasareas,wecanwritethefollowing:

[ 𝑓(𝑥)𝑑𝑥

S

T

= 𝐴O −𝐴_

Withsomefunctions,partoftheareacreatedbythecurvecomesfromfindingnegative𝑦-values.Butanareaisstillapositivevalue,sowhenthishappens,wecompensatebyusingtheoppositeofthevaluefoundwhencalculatingthispartofthearea.

TheareaintheyellowregionwouldneedtobecalculatedusingaRiemannsumwithvalueof𝑓(𝑥) thatarenegative.

Inotherwords,ifafunctioniscontinuous,thenitispossibletotakeitsintegral(theintegralexists);ifafunctionisintegrable,thentheintegralisdefinedbybeingthelimit oftheRiemannsum.

Thisstatementisimportantbecausenotallfunctionsareintegrable!

Example:Evaluatetheintegralbyinterpretingit intermsofareas:

[(𝑥 − 1)𝑑𝑥

f

g

Thegraphof𝑦 = 𝑥 − 1 showsusthatpartofthefunctionisnegativeandpartispositive.

Toevaluatethisintegralasthesumofareas,weneedtofindthetwoareasandsubtract𝐴_ from𝐴O.Fortunately,botharetriangles,andtheirareaseasytocompute:

𝐴O =2 ⋅ 22⎯⎯⎯⎯

= 2𝐴_ =1 ⋅ 12⎯⎯⎯⎯

=12⎯⎯

𝐴O − 𝐴_ = 2−12⎯⎯=32⎯⎯

Thearea"under"thecurveisf_⎯.

PropertiesoftheDefiniteIntegral

LiketheLimitLawsinCalculus1,therearesomepropertiesofintegralsthatcanbeuseful.

[ 𝑐𝑑𝑥

S

T

= 𝑐(𝑏 − 𝑎)

where𝑐 isanyconstant

[[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥

S

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

± [𝑔(𝑥)𝑑𝑥

S

T

[ 𝑐 ⋅ 𝑓(𝑥)𝑑𝑥

S

T

= 𝑐 ⋅ [ 𝑓(𝑥)𝑑𝑥

S

Twhere𝑐 isanyconstant

[ 𝑓(𝑥)𝑑𝑥

T

T

= 0

[ 𝑓(𝑥)𝑑𝑥

S

T

= −[𝑓(𝑥)𝑑𝑥

T

S

[ 𝑓(𝑥)𝑑𝑥

s

T

= [ 𝑓(𝑥)𝑑𝑥

S

T

+[𝑔(𝑥)𝑑𝑥

s

S

Example:

[ 𝑓(𝑥)𝑑𝑥

Og

g

= 17,[𝑓(𝑥)𝑑𝑥

v

g

= 12

Find

[ 𝑓(𝑥)𝑑𝑥

Og

v

A:Since

[ 𝑓(𝑥)𝑑𝑥

Og

v

= [ 𝑓(𝑥)𝑑𝑥

Og

g

−[ 𝑓(𝑥)𝑑𝑥

v

g

[ 𝑓(𝑥)𝑑𝑥

Og

v

= 17− 12 = 5

Example:Showthat∫ (𝑥_ − 4𝑥 + 4)𝑑𝑥z

g ≥ 0 without integrating.

A:Sincethefunction𝑓(𝑥) = 𝑥_ − 4𝑥 + 4 isgreaterthanorequalto0between𝑥 = 0 and𝑥 = 4,byComparisonProperty6,∫ f(x)𝑑𝑥z

g ≥ 0

Homework:p382:#3,9,11,17,19,21,23,25

5.2:TheDefiniteIntegral