5-й Международный симпозиум по теоретической и...

391
СОДЕРЖАНИЕ Е.И. Карпенко, Ю.Е. Карпенко, В.Е. Мессерле, А.Б. Устименко ИСПОЛЬЗОВАНИЕ ПЛАЗМЕННО-ТОПЛИВНЫХ СИСТЕМ НА ТЭС РОССИИ, КАЗАХСТАНА, КИТАЯ И ТУРЦИИ ................................................................................................................ 13 М.Р. Предтеченский, О.М. Тухто, И.Ю. Коваль ПЛАЗМОТРОН С РАПЛАВЛЯЕМЫМИ ЭЛЕКТРОДАМИ: ОТ ИССЛЕДОВАНИЙ К НОВЫМ ТЕХНОЛОГИЯМ ................................................................................................................................................. 20 A. Pushkarev, Ai-Min Zhu, Xiao-Song Li, R. Sazonov PLASMA CHEMICAL CONVERSION OF METHANE: ACHIEVEMENTS AND FUTURE PROSPECTIVES ................................................................................................................................................... 23 Ю.В. Цветков, А.В. Самохин ФИЗИКОХИМИЯ И ТЕХНОЛОГИЯ ПЛАЗМЕННОЙ НАНОПОРОШКОВОЙ МЕТАЛЛУРГИИ.................................................................................................................................................. 30 В.Н. Василец, А.Ф. Гуцол, А.Б. Шехтер, А.А. Фридман ПЛАЗМЕННАЯ МЕДИЦИНА............................................................................................................................ 34 Л.И. Кравец, А.Б. Гильман МОДИФИКАЦИЯ СВОЙСТВ ПОЛИМЕРНЫХ МЕМБРАН ПОД ВОЗДЕЙСТВИЕМ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ ............................................................................................................. 38 О.В. Поляков, А.М. Бадалян, Л.Ф. Бахтурова ПЛАЗМЕННЫЙ ЭЛЕКТРОРАДИОЛИЗ ВОДНЫХ РАСТВОРОВ ................................................................ 42 С.Ф. Садова, Е.В. Панкратова МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ ИЗ ПРИРОДНЫХ ВОЛОКОН ВОЗДЕЙСТВИЕМ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ И ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ................................................................................................................ 46 D. Shamiryan, V. Paraschiv, A. Milenin, W. Boullart and M. R. Baklanov PLASMA ETCHING: FROM MICRO- TO NANOSCALE DEVICE MANUFACTURING.............................. 51 К.В. Руденко ДИАГНОСТИКА ПЛАЗМЕННЫХ ПРОЦЕССОВ В МИКРО- И НАНОЭЛЕКТРОНИКЕ .......................... 55 Д.И. Словецкий ВОЗБУЖДЕННЫЕ АТОМЫ И МОЛЕКУЛЫ В ФИЗИКО - ХИМИЧЕСКИХ ПРОЦЕССАХ И ДИАГНОСТИКЕ НЕРАВНОВЕСНОЙ ПЛАЗМЫ ........................................................................................... 58 В.И. Гриневич, А.Г. Бубнов ПЛАЗМОХИМИЧЕСКИЕ ПРОЦЕССЫ В ЗАЩИТЕ ОКРУЖАЮЩЕЙ СРЕДЫ ........................................ 63 А.И. Максимов, А.В. Хлюстова ФИЗИЧЕСКАЯ ХИМИЯ ПЛАЗМЕННО-РАСТВОРНЫХ СИСТЕМ ............................................................. 67 А.М. Ефремов, В.И. Светцов ПЛАЗМА В ГАЛОГЕНВОДОРОДАХ: СВОЙСТВА И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ В ТЕХНОЛОГИИ МИКРО- И НАНОЭЛЕКТРОНИКИ ...................................................................................... 71 В.А. Титов, В.В. Рыбкин, С.А. Смирнов ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ В СИСТЕМЕ НЕРАВНОВЕСНАЯ ПЛАЗМА ПОЛИМЕР ............................................................................................................................................................ 74 КИНЕТИКА, ТЕРМОДИНАМИКА И МЕХАНИЗМЫ ПЛАЗМОХИМИЧЕСКИХ РЕАКЦИЙ.......................................................................................................................................................... 78 Л.Ф. Бахтурова, О.В. Поляков, А.М. Бадалян ЗАКОНОМЕРНОСТИ ОБРАЗОВАНИЯ ПЕРОКСИДА ВОДОРОДА ПРИ ЭЛЕКТРОРАДИОЛИЗЕ ВОДНЫХ РАСТВОРОВ ........................................................................................... 79 А.Г. Бубнов ОЧИСТКА ВОЗДУХА ОТ ФОРМАЛЬДЕГИДА В СОВМЕЩЁННОМ ПЛАЗМЕННО- КАТАЛИТИЧЕСКОМ ПРОЦЕССЕ ................................................................................................................... 83 С.А. Гарелина, И.И. Климовский КОНСТАНТЫ СКОРОСТЕЙ ТЕРМИЧЕСКОЙ ДИССОЦИАЦИИ И ТРЕХЧАСТИЧНОЙ АССОЦИАЦИИ И КОНСТАНТА РАВНОВЕСИЯ ДЛЯ ДВУХАТОМНЫХ МОЛЕКУЛ И РАДИКАЛОВ ....................................................................................................................................................... 87 I

Transcript of 5-й Международный симпозиум по теоретической и...

  • .. , .. , .. , ..

    - , , ................................................................................................................13

    .. , .. , .. : .................................................................................................................................................20

    A. Pushkarev, Ai-Min Zhu, Xiao-Song Li, R. Sazonov PLASMA CHEMICAL CONVERSION OF METHANE: ACHIEVEMENTS AND FUTURE PROSPECTIVES...................................................................................................................................................23

    .. , .. ..................................................................................................................................................30

    .. , .. , .. , .. ............................................................................................................................34

    .. , .. .............................................................................................................38

    .. , .. , .. ................................................................42

    .. , .. ................................................................................................................46

    D. Shamiryan, V. Paraschiv, A. Milenin, W. Boullart and M. R. Baklanov PLASMA ETCHING: FROM MICRO- TO NANOSCALE DEVICE MANUFACTURING..............................51

    .. - ..........................55

    .. - ...........................................................................................58

    .. , .. ........................................63

    .. , .. - .............................................................67

    .. , .. : - ......................................................................................71

    .. , .. , .. - ............................................................................................................................................................74 , ..........................................................................................................................................................78

    .. , .. , .. ...........................................................................................79

    .. - ...................................................................................................................83

    .. , .. .......................................................................................................................................................87

    I

  • .. , .. 2 ....................................91

    .. , .. - . ...................................................................................................................................................95

    .. , . . , .. , .. , .. TaN ........................................................................................................................99

    .. , .. , .. , .. Cl2/O2/N2 .........................103

    .. , .. , .. .........................................................107

    .. , .. , .. , .. , ..

    . .............................................110

    .. , .. ...........................................................................................................................................113

    .. , .. ...........................................117

    .. , .. .............................................................121

    .. - N2(A3+U,V) ..................................................................................................125 .. , .. , ..

    .............................130

    .. - : ...................................................................................................134

    G. Cicala1 , E.De Tommaso1, A.C. Rain2, A. Boggia2, Yu.A. Lebedev3, V.A. Shakhatov3 STUDY OF N2 DC DISCHARGE AT LOW PRESSURE BY OPTICAL EMISSION SPECTROSCOPY AND NUMERICAL SIMULATION ...................................................................................138

    .. , .. ...................................................142

    .. , .. , . - ......................................146

    .. , .. , .. 2 2+Ar............................................................................................................150

    .. , .. , .. , .. ...................................................................................................................152

    II

  • .. .....................................155

    .. , .. , .. .............................................................................................................159

    .. , .. , ..............................163

    .. , .. , .. .....................................................................................................166

    .. , . , .. , .. , .. ............................................................................................................................................................169

    .. , .. , .. , .. .........................................................................................................................................................172

    .. , .. , .. - .................................................................................................175

    .. , .. , .. ...............179

    .. , .. , .. .......................................................................................................183

    .. , .. , .. .................................187

    .. , .. , .. - ......................................................................................................................191

    .. , . . , . . ..........................................................................................................193

    .. , .. , .. .........................................................................................................................197

    .. , .. * ..............................................................201

    .. , .. , .. ......................................................................................................................................................204

    .. , .. ...........................................................................................................................................208

    .. , .. - ....................................................................212

    .. , .. , .. , .. 2+Ar..............................................................................................................................216

    III

  • .. , .. , .. , .. 2+Ar .................................................220

    .. , .. , .. ..........................223

    .. , .. O2Ar......................................................................................................226

    .. , C.-. , .-. , .. , K.-. --- ..............................................................229

    .. , .. , .. , .. , .. .....................................................................................................................234

    .. , .. , .. , .. ..........................................................................................238

    .. , .. , .. - ........................................................................................................................................................242 . .....................................245

    .. , .. 0.95Ne/0.05Xe .....................................................................................................................................................246

    .. , .. , .. , .. , .. , ..

    - ......................................................250

    .. , .. ...............................................................254

    .. , .. , .. .............................................................................................................258

    .. , .. , .. , .. ....................................................................................................................262

    .. O2(A1G) H2 : O2 ...........................................................................................................266

    .. , . ..........................................................................................................................270

    .. , .. , .. ................................................................................273

    .. , .. , .. , .. , .. .................................277

    .. , .. , .. , .. ....................................................281

    IV

  • .. , .. , .. , .................................................285

    , , ,

    : , ,

    .. , .. , .. ................................................................................................................................290

    .. , .. * ................................................................................................................................294

    .. , .. , .. ....................................................................................................................................298

    .. , .. , .. ....................................................................301

    .. , .. , .. Al-, Ti-, Zr- Cr- , , .......................................................................................................................305

    T.. , A.M. , .. , .. SiCN ...................................................................................................308

    .. , . . , . . , ....................................312

    .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , ..

    - ............................................................................315

    .. .......................................................................................................................319

    A. Choukourov*, O. Polonskyi*, A. Grinevich*, D. Slavinska*, H. Biederman* R. F. MAGNETRON SPUTTERING OF POLYETHYLENE OXIDE ..............................................................322

    .. , .. , .. , .. , .. , ..

    , .........................................326

    .. , .., .. , . , .. ...............................................330

    .. , .. , .. , .. SIOX, ............................................................................................................................................................333

    .. , .. , .. , .. , .. , .. ....................................................................................................................................337

    V

  • VI

    .. , .. , .. , .. , .. , .. , .. , ..

    ..................................340

    .. , .. , .. , .. ............................................343

    .., .., .., .., .. BaO - SiO2 - Al2O3 - ..................................................................................................................347

    .. , .. , .. - Si - ..................................................................................................................................................350

    .. , .. , .. .......................................................................354

  • 1

  • 2

  • - . ..

    . ..

    V

    XII

    3 8 2008 ., ,

    1

    2008

  • 533.9 + 541.1

    Proceedings of the V International Symposium on Theoretical and Applied Plasma Chemistry (September 3-8, 2008. Ivanovo, Russia). Published by Ivanovo State University of Chemistry and Technology, Ivanovo, Russia, 2008. Volume 1.

    ISBN-978-5-9616-0277-7

    V . (3 8 2008 ., , ): / . -. . , 2008. . 1. 631 .

    ISBN-978-5-9616-0277-7

    , , V XII : , . ,

    , , : , ,

    , , , .

    : .., .., ..

    ISBN-978-5-9616-0277-7 - , 2008

    2

  • V

    : - . ..

    , ..-.

    ()

    , ...

    ()

    , ...

    ()

    , ...

    ()

    : , ...,

    ()

    , ...

    ()

    -

    ()

    ,

    , ..-..,

    ()

    , ..-..

    ( )

    , ...

    ()

    , ...

    ( )

    , ...

    - ()

    , ..-..

    ()

    3

  • ,

    )

    , ...

    ()

    , ...

    ()

    , ..-..

    ()

    , ...

    ()

    ,

    ()

    ,

    ()

    : . . , ... ()

    . . , ... ()

    . . , ... ()

    . . , ... ()

    . . , ... ()

    . . , ... ()

    . . , ... ()

    . . , ... ()

    . . , ... ()

    . . ()

    4

  • 100-

    15 2008 . 100 -, , , , , - , (15.06.1908 - 16.04.2002 .).

    , , , . , , .

    , . , , , , , .

    , -, . 15 1908 . . ()

    , , 1912 . (1929 .) (1933.). ( ..) 1932 . 1929 . , 1931-1936 . . 1932-1933 . .. .

    5

  • . , . , . , . , . , . , . .

    1935 . .. - . .. .. . 1936 . .

    9 1937 . .. , . 1937 . - , 1949 . .. . - , . . .

    1946 . .. , , . , . .. , .

    1948 . , , . 1950 1955 . .

    .. 1955 . , - (1996 .) (1992-1993 .).

    1957 . .. - , .

    1957 . .. , 1988 . 2002 . - .

    , , .

    , , , . , , . , .

    , , , , , .

    200- . , , , - (, 1775 .). XX , . .

    6

  • - , , . , , .

    XX , "". "", " " " " " " . .. (.: , 1965). , , , , , , . , , .

    .. , . .. , .. . .. , . , - , , 30 . . .

    1965 . .. , . 1972 . 1- , . 1991 . . . 30 .. . , , .. . , 90-.

    . , , ( , , , ).

    .. , , .

    ,

    7

  • , , .. .

    , .. , , , , , , .

    , .. .

    .. - . , . , , .

    .. , , , .

    60 . 600 20 , .

    1970 . .. , 1985 . .

    , . , , , , .

    , .. , . . .. , . .. . , .. , VIII-1 XI-1 , . .. .

    , .. , .. . , .. , , .

    8

  • 15 1908 - (. , ) 1929 . 1933 . 1931-1936 . ( .

    ) 1932-1933 .

    1932 . ( .. ) 1935 . - -

    . .. .. .

    1936 . ( )

    9 1937 - -

    1946 . , .

    1948 . (, , )

    1949 . 1950 1955 . -

    . 1955 . 1957 . - -

    , .

    1957 1988 . (. )

    1965 . , .

    1965 . . . .., .:

    1970 . - 1972 . - 1- , 1985 . (

    ). 1988 2002 . - (

    ) 1992-1993 .

    1996 . 16 2002

    9

  • , ..

    1. ( - ). . ..

    , .. . . - , 1962, 208 . 2. .

    . .., .: , 1965, 254. 3. .

    . .. , .: , 1969, 278. 4. .. . .: , 1979,

    248. 5. . . ... .: , 1971, 433. 6. -

    . . ... .: , 1973, 272 . 7. .., .., .., ..

    . .: , 1975, 304 c. 8. . . .. . .: , 1977,

    316 . 9. .., .., .., ..

    . .: , 1978 . 10. .., .., .. .

    . : , 1979, 256 . 11. .., .., ..

    . .: , 1981 ., 142 . 12. .., .. -

    , ., . 1983, 283 . 13. .. .., ..

    . . , 1984, 279 . 14. .. , .. , .. , .. , .. , .. ,

    .. , .. , .. . . , , 1988, 223.

    15. .., .., .. , .: , 1988, 365 .

    16. .,, .., .., .. . .: , 1990, 200 .

    17. , .3. , . .. .. , , , 1991, 328 .

    18. Bugaenko L.T., Kuzmin M.G., Polak L.S. High Energy Chemistry. Ellis Horwood and Prentice Hall. N.Y., Toronto, Sydney, Tokyo, Singapore, 1993, 403 p.

    19. Plasma Chemistry, Ed. L.S.Polak and Yu.A.Lebedev, Cambridge Interscience Publ., London, 1998.

    10

  • 1. .. .. //

    . .-.: . , 1936 VIII+272 . 2. . 1858-1958. .. . .

    .. ... .: . , 1958, 276 . ( ..: . . (1900-1913), .143-220).

    3. . . . .. ... .: . , 1959, 512 . ( , .323-389, ..).

    4. . . ., . ... .: , 1959, 932 .

    5. .. , . . . .. ... . .: . , 1959, 386 .

    6. .. , . .: , 1960, 600 .

    7. .. . . . .. .. . .: . , 1962, 402 .

    8. . . . . ... .: , 1963, 449 .

    9. .. . ... .: , 1965, 408 .

    10. ... . . ... . .: , 1966, 463 .

    11. . . . . .., . . . ... .1, 452 .; . 2, 364 . .: , 1967.

    12. ... // .: XVIII . . .. ... .: , 1971 (.8, . 191-223).

    13. .. . . . - ... . .: , 1975, 788.

    14. . . . . . - ... . .: , 1976, 424 .

    15. .. . . . - ... . .: , 1984, 590 .

    16. ... . 1844-1906. - . .: , 1987, 208 .

    17. ... . . . - ... . .: , 1988, 430 .

    18. .. . . ... . ... .: , 1989, 690 .

    19. ... . 1805-1865. - . .: , 1993, 272 .

    20. ... . . . - ... . .: , 1994, 560 .

    21. ... . . . 1996, 158 . 22. .. . . . ..

    ... .: , 2000, 176 .

    11

  • PLENARY SESSION

    12

  • - , ,

    .. *, .. *, .. **, .. *** * -

    671160, , 33 **- ,

    670047, -, . 6 *** , 050012, -, , . 96, [email protected]

    APPLICATION OF PLASMA-FUEL SYSTEMS AT THERMAL POWER

    PLANTS OF RUSSIA, KAZAKHSTAN, CHINA AND TURKEY

    E.I. Karpenko*, Yu.E. Karpenko*, V.E. Messerle**, A.B. Ustimenko*** *Branch Centre of Plasma- Energy Technologies of the RJSC EES of Russia

    33 Pushkina str., Gusinoozersk, 671160 **Ulan-Ude Branch of the Institute of Thermophysics of SB RAS,

    6 Sakhianova str., Ulan-Ude, 670047 ***Research Institute of Experimental and Theoretical Physics of Kazakhstan National

    University, 96 Tolebi str., Almaty, 050012, [email protected]

    This paper presents short review of solid fuels ignition plasma technology development, technical and economical characteristics of plasma-fuel systems, schemes of their mounting on different pulverized coal boilers and some results of their application at pulverized coal firing thermal power plants.

    , () , , [1-5].

    1980 .008 . , . 1986 - 00.00.01. . .

    - () 1989 - () (), 1995 () 1996 -3 (). 1995. (.), - . 1998 2006 (Grant Copernicus, INCO : International Scientific Cooperation Projects (1998-2002), IC-CT-98-0516 Plasma Gasification of the Power Coals; Grant Copernicus,

    13

  • INCO 2: International Scientific Cooperation Projects 2 (2001-2004), ICA2-CT-2001-10006, Improvement of Coal Combustion Efficiency and Decrease of Harmful Emission under the Influence of Plasma ICEDHE; ISTC -746, (2002-2006) Plasma Technologies of Solid Fuels Processing for Power Engineering and Metallurgy).

    . . -200 . Yantai Longyuan Electric Power Technology Co., Ltd (), , 400 160 . [6].

    (1996-2001) . . () 2000-2001 .. 8 . 2007 BG-75/39-M (Gold Mounting) . () . . 80 300 [7].

    - 2005 9 - - 9-29 19.08.2005 - 9 () ()

    , . .. Plasma Applied Technologies 2007 c , , . 2007 Plasma Applied Technologies , .

    ( ) () 500-600 1 . 50 . . ) ( 3-12 ) ( 25 ), . " " ( 1).

    , , . . ( + )

    14

  • . ( + ). ( ), .

    1. . , / 1 ,

    5 0 - 7 5 3 - 6 1 6 0 - 2 0 0 1 0 - 2 5 2 2 0 - 4 2 0 3 0 - 8 0 6 4 0 - 6 7 0 8 0 - 1 0 0 9 5 0 1 0 0 - 1 4 0 1 6 5 0 1 5 0 - 2 5 0 2 6 5 0 2 5 0 - 3 5 0

    .1 2

    , . , (

  • . 4 -39-II 300 83 / . 12 , 6 . 7 /. 6 6 , .

    BG-75/39-M .5. 8 , . (. 3). 18,75 /, 2,35 /. 2 . 50 . 5-10 850-900 0. 160 (I=400 A, U=400 B). 2 / 0,5-0,6 /. 20 1300 0 . , , ( , ) .

    . 6 -75, - , . 35,1% 3,2 /. 2 . 2 .

    2 3 . . 70 %. , , , , (NOx, SOx, V2O5).

    2. ( )

    ( - )

    1. 5.1 . /

    ( 2.5. . ) 0

    2.

    16

  • ~1 . / ( 500. . )

    0

    3. : 100% - : 3-5%

    4. 100% 28-30%

    5. : 3-5% : 0.5-1.0%

    - , ,

    , , , 29 75 670 /, ( ) (, ). (, , ) 4 50%, 15 56% 1600 6200 / ( 3). 4.

    . 3. RFK-210 C (): 1 , 2 , 3 .

    . 4. -39-II (): 1 , 2 , 3 , 4 .

    17

  • . 5. BG-75/39-M (): 1 , 2 , 3 .

    . 6. -75 (): 1 , 2 .

    3. Ww Ad Vdaf w

    lQ (/) 40-50 75-80 48-50 1600-2000 32-40 28-35 23-27 1900-2100 25-35 15-20 35-50 3000-3800 5-12 20-56 15-40 4000-5000 5-8 25-35 4-10 4300-6200 10.4 48.5 38.2 3150 : Ww - ; Ad - ; Vdaf - ; - . wlQ

    4. , 50-350 , 250-400 , 200-900 , 25-35 , 450 , 250 (); 500 () (), / 20-80 , 3000-6000

    18

  • 19

    1. R.A. Kalinenko, A.A. Levitski, V.E. Messerle, L.S. Polak and A.B. Ustimenko. Pulverized Coal Plasma Gasification // Plasma Chemistry and Plasma Processing. 1993. V. 13. N 1. P. 141-167

    2. .. , .. , .. , .. . // . . 1993. 2. . 27-31.

    3. M.A. Gorokhovski, Z. Jankoski, F.C. Lockwood, E.I. Karpenko, V.E. Messerle, A.B. Ustimenko. Enhancement of Pulverized Coal Combustion by Plasma Technology // Combustion Science and Technology. 2007. V. 179. N 10. P.20652090.

    4. M. Gorokhovski, E.I. Karpenko, F.C. Lockwood, V.E. Messerle, B.G. Trusov and A.B. Ustimenko. Plasma Technologies for Solid Fuels: Experiment and Theory. // Journal of the Energy Institute. 2005. V. 78. N 4. P. 157-171.

    5. A.S. Askarova, E.I. Karpenko, Y.I. Lavrishcheva, V.E. Messerle, A.B. Ustimenko. Plasma-Supported Coal Combustion in Boiler Furnace. // IEEE Transaction on Plasma Science. Dec.2007. V. 35. N 6. P.16071616.

    6. . // . 2008. 2.

    7. E.I.Karpenko, V.E. Messerle, A.B.Ustimenko. Plasma-Aided Solid Fuel Combustion // Proceedings of the Combustion Institute. 2007. V.31. Part II. P.3353-3360.

  • :

    .. , .. , .. , 630393, , . 7, [email protected]

    , 630090, , 1

    PLASMA TORCH WITH MOLTEN ELECTRODES: DEVELOPMENT OF

    NEW TECNOLOGIES

    M.R. Predtechensky, O.M. Tukhto, I.Yu. Koval International Scientific Center on Thermophysics and Energetic,

    Russia,630393, Novosibirsk, st. Kutateladze 7, [email protected] Institute of Thermophysics SB RAS,

    Russia, 630090, Novosibirsk, prospekt Lavrentev 1

    The plasma chemical reactor based on plasma torch with molten electrodes is described. Analysis of applications is presented.

    [1]. , . , . . , : , , .

    -500 (. 1,2). : , , , , , , , , , .

    [2] . 40% . , , ( , CO HCl). , HCl. () , 0,05 /3 ( EPA 0.1 /3).

    . - . - 54%. , 2/ 2,

    20

  • - , , , .

    , : 1) , , ; 2) , , , , , - , [3]. . . , [4]. . . , , , . . , , .

    . 1. .

    21

  • . 2. -500 500 .

    . ( ) . .

    , , . . . , .

    1. . . , . . // . 2006. . 40. 2. .

    2. M. Predtechensky, O. Tukhto, I. Kuropyatnik, E. Chasovskikh. Plasma double transferred arc torch (DTAT). Proceedings of 16th ISPC, Taormina, Italy, June 22-27, 2003.

    3. . ., . . // . 2001. 1

    4. . . , . . , . . . . 1. 5, 2003, . 7-9.

    22

  • PLASMA CHEMICAL CONVERSION OF METHANE: ACHIEVEMENTS AND FUTURE PROSPECTIVES

    A. Pushkarev, Ai-Min Zhu*, Xiao-Song Li*, R. Sazonov

    High Voltage Research Institute, Tomsk, Russia, [email protected] * State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams,

    Department of Physics, Dalian University of Technology, Dalian 116024, China

    In the report the materials on methane conversion in various types of discharges (arc discharge, pulsed discharge of atmosphere pressure, streamer and dielectric barrier discharges and so on) as well as under the action of continuous and pulsed electron beam are presented. The influence of non-equilibrium conditions realized in the pulsed discharges on the energy input, synthesis selectivity and product content has been realized. The works on the methane thermal decomposition in plasma, plasma chemical partial methane oxidation, and steam and carbon-dioxide methane conversion under gas discharge conditions have been considered. It is shown that only the use of chain processes allows significantly decreasing the energy input of electrical physical setup for methane conversion. In this case the energy consumptions of discharge for methane decomposition do not exceed 1 eV/molecule CH4.

    The processing of natural and accompanying hydrocarbon gas is an important task of modern chemistry of gases. The recent geological studies showed that the dominant role in the formation of existing stock of natural gas does not belong only to the biogenic processes of methane formation but to the going degasification of our planet as well. As the result up to 2 trillion cubic meters of gas (and this is the level of methane extraction at the present) annually goes to the earth's crust, and then partially looses in atmosphere. This allows considering natural gas as at least partially renewable resource. And this fact changes its position as a source of energy. Besides, together with the increase of explored world reserves of traditional natural gas which are about 150 trillion cubic meters (potential reserves are approximately five times higher) there are huge untraditional resources of natural gas. The stock of shaft methane is estimated approximately as the same value as traditional reserves while its annual extraction in the United States reached 35 billion cubic meters. But the main potential stock is the reserves of natural gas in the form of solid gas hydrates. By preliminary estimation their stock is twice higher than the stock of traditional gas. That is why the natural gas becomes one of the main resources of humanity for a rather long period of time. One of the relevant problems which have to be solved while developing modern technologies in the large-scale chemical industry and other branches is the increase of equipment productivity simultaneously with the energy input decrease. In chemical production the increase of equipment productivity is usually reached due to the increase of technological process temperature because chemical process in the context of classic kinetics exponentially accelerates according to the Arrhenius law. The combination of reaction zone and the plasma-formation zone allows significantly increasing the temperature in the zone of reaction. This provides a local heating of reagents up to high temperatures without the reactor wall heating. This also allows performing selective excitation of electron and/or oscillation level of gas-reagent molecules. These conditions can be realized while exciting the reagent gas mixture by electron beam, in arc or barrier discharge, in high-frequency and microwave frequency plasmatron. At the present moment a lot of experimental and theoretical studies on methane conversion in various types of discharge and under the action of continuous and pulsed electron beam have

    23

  • been performed. This allows pointing out the peculiarity of methane decomposition reaction going in the low-temperature discharge plasma. The oxygen-free conversion of methane is of great scientific importance and industrial benefit for the effective utilization of natural gas and biogas to provide bulky COx-free hydrogen production for fuel cells and alternative petrochemical feed stocks. As reported in paper [1], methane conversion to acetylene or ethane and co-produced hydrogen has been investigated in a needle-to-plate reactor by pulsed streamer and pulsed spark discharges and in a wire-to-cylinder dielectric barrier discharge (DBD) reactor by pulsed DC DBD and AC DBD at atmospheric pressure and ambient temperature. In the former two electric discharge processes, acetylene is the dominating C2 products. Pulsed spark discharges gives the highest acetylene yield (54%) and H2 yield (51%) with 69% of methane conversion in a pure methane system and at 10 cm3/min of flow rate and 12 W of discharge power. In the two DBD processes, ethane is the major C2 products and pulsed DC DBD provides the highest ethane yield. Of the four electric discharge techniques, ethylene yield is less than 2%. Energy costs for methane conversion, acetylene or ethane (for DBD processes) formation, and H2 formation increase with methane conversion percentage, and were found to be: in pulsed spark discharges (methane conversion 18 - 69%), 14 - 25 eV/molecule, 35 - 65 eV/molecule and 10 17 eV/molecule; in pulsed streamer discharges (methane conversion 19 41%), 17 - 21 eV/molecule, 38- 59 eV/molecule, and 12 19 eV/molecule; in pulsed DBD (methane conversion 6 13%), 38 - 57 eV/molecule, 137- 227 eV/molecule and 47 75 eV/molecule; in AC DBD (methane conversion 5 8%), 116 - 175 eV/molecule, 446- 637 eV/molecule, and 151 205 eV/mole, respectively (Fig. 1).

    Fig. 1. Energy cost for methane conversion and for C2H2, C2H6 and H2 formation as a function of methane conversion percentage [1]. A process for a high yield of aromatics and co-produced hydrogen from the oxygen-free conversion of methane using a two-stage plasma-followed-by-catalyst (PFC) reactor at atmospheric pressure and low temperature was reported [2]. Pure methane and a CH4 +H2 mixture as the feed gas for the two-stage PFC process were investigated, respectively. Using the methane and hydrogen mixture as the feed gas into the two-stage PFC reactor, Ni/HZSM-5 catalysts keep stable catalytic activity for a much longer on-stream time than that using pure methane as the feed gas. The maximum aromatic yield may be achieved using low Ni-loading Ni/HZSM-5 catalysts and at a suitable catalyst temperature. BTX molecules are the major aromatic products. For the PFC reactor using the Ni(1 wt%)/HZSM-5 catalyst, on average during 5 h of on-stream time, 33% of aromatics yield, 41% of hydrogen yield with 72% of

    24

  • methane conversion have been achieved at 1400 kJ/mol of energy density and a 673 K catalyst temperature (Fig.2).

    0 100 200 300 4000

    20

    40

    60

    80

    100 CH4 Arom. H2

    Con

    vers

    ion

    or s

    elec

    tivity

    (%)

    0 100 200 300 400

    0

    10

    20

    30

    40

    Time on stream (min) Time on stream (min)

    Time on stream (min)

    C2H4 C2H2 C2H6

    C2 s

    elec

    tivity

    (%)

    0 100 200 300 4000

    10

    20 C3 C4 C5

    C3-C

    5 sel

    ectiv

    ity (%

    )Time on stream (min)

    0 100 200 300 4000

    10

    20 C6H6 C7H8 C8 C9-C10

    Aro

    mat

    ics

    sele

    ctiv

    ity (%

    )

    Fig. 2. Variation in methane conversion and product selectivity vs. on-stream time in the PFC reactor using Ni (1 wt%)/HZSM-5 catalysts at 673 K (methane and hydrogen mixture as the feed gas). Total flow rate: 8.4 cm3/min, 50 % CH4 + 50 % H2, W/F = 2.6 sgml-1, discharge power: 9.6 W [2]. As reported in paper [3], pulsed spark discharge was employed and followed by Ag-Pd/SiO2 catalysts for achieving ethylene as a target product in the PFC reactor. Using the PFC reactor, the steady single-pass ethylene yield of 57 % was obtained at 74% of methane conversion. Especially, no acetylene was detected in the product gas from the PFC reactor, which means this process can directly provide polymer-grade ethylene for polyethylene production. Thereby, this process has advantages over the conventional naphtha cracking process for ethylene production which needs the purification of ethylene stream, being a crucial step in industrial polymerization processes, to remove acetylene impurity which poisons the ethylene polymerization catalysts.

    Energy cost for methane conversion (, eV/molecule CH4) and conversion level (, %) in various types of discharges are present in Table. Numerous investigations of decomposition of hydrocarbons under heating demonstrated that the process occurs as a chain reaction (thermal cracking). This reaction of thermal cracking of normal alkanes generally occurs at high temperatures, for instance, for methane at 2500-3000 K. According to the chain theory this process consists of three stages: initiation, prolongation of chain and breakage. The initiation stage includes formation of radicals when the molecule decays from the starting product. It requires a lot of activation energy (3.6 eV/molecule for hydrocarbons), in other words the reaction can go at a noticeable speed only when the temperature is high. The stage of chain prolongation consists of interaction of free radicals to the initial molecules with the formation of stable reaction product and new radical. It requires significantly lower activation energy (about 0.87 eV/molecule for hydrocarbons) that is why for its performance a lower temperature is enough. It is important that the main part of chemical transformations takes place at the stage of chain prolongation. One active radical formed at the chain initiation can start 103 105 reactions at the stage of chain process development.

    25

  • Table CH4 CH4+O2 CH4+CO2 CH4+H2O Types of discharges

    arc discharge DC 3-5 95 [4, 5] arc discharge + H* 11-15 14 [6]

    3.8 29 spark discharge 6.1 60 5.3 55 [7, 8]

    pulsed discharge, 240 Hz 29 [5] pulsed discharge, 8 8.5 15.5 [5] pulsed discharge, 10 3.8 23 [9] pulsed discharge +Ni- catalyst 0.6 30 [10] sliding discharge 0.9 50 [11]

    5.2 33 RF discharge, CH4+Ar 11.6 75

    [12]

    continuous electron beam 400 keV 3.2- 10 [13]

    15 5 continuous electron beam 14 keV 19 4 20 6,6

    24 1.6 [14]

    38 10 dielectric barrier discharge 52 12-33 20 5-7 27 100 65 14 8 [7, 15,

    16] dielectric barrier discharge, CH4+He 156 12 [17] corona discharge 52 20 85 [7] pulsed corona discharge 24-66 [5]

    2.8 70 microwave discharge 1.5 90 3 100 2.1 [18]

    RF discharge CH4+N2 2700 90 [19] non-self-maintained discharge 4-6 7.2 15 [11]

    glow discharge 18 [5] pulsed glow discharge 9.1 [5] pulsed electron beam 100 0.1 100 [20] At low temperatures when the thermal initiation of reaction does not occur the active centers (free radicals, ions or excited molecules) appear under the plasma action. These centers can start the chain reaction. Such chain reaction would go with the same speed at the temperature which is 150-200 degrees lower than the temperature of usual thermal process because the influence of plasma simplifies the most energy consuming stage thermal initiation of reaction. When the length of chain is long enough the electrical physical setup provides insignificant part of total energy input for chemical process. The main source of energy in this case is the thermal energy of reaction gas or energy of exothermal elementary chemical reactions of chain process (for example, reaction of oxidation and polymerization). This allows significantly decreasing energy input of electrical physical setup for chemical process. Moreover, the conduction of chemical process at the temperature which is lower than equilibrium one allows synthesizing new compounds unstable at higher temperatures or the synthesis selectivity of which is low at high temperatures. The enumerated peculiarities of chain process going in the conditions of plasma action show the perspective of their application in the large-scale chemical industry. The initiation and development of chain processes in the conditions of external action became the object of intensive study only during last decade. The development of chain processes

    26

  • such as hydrogen oxidation, cracking of hydrocarbon gases, partial oxidation of methane and others in equilibrium conditions is very well studies. The alteration of chain process development conditions is interesting with relation to synthesis of new products or removal of their disadvantages mainly of its explosiveness. In [21], the experimental data on plasma pyrolysis of methane are presented. Preheated to 700-1100 K, methane was treated by a pulsed microwave discharge (frequency 9 GHz, power per pulse up to 100 kW, pulse duration 1 s, and pulse repetition rate 1 kHz), which gave rise to a sharp increase in its conversion level. It was shown that this effect could not be interpreted by the thermal action of the discharge, and that the role of plasma consisted in generation of active particles accelerating conversion. The energy consumed by the microwave discharge was 0.9 eV/molecule, which is lower than the CH bonding energy (4.2 eV). It is worthy of mention that the products of plasma pyrolysis (2 and nanosized graphite particles) were essentially different from those of the CH4 pyrolysis under equilibrium conditions (acetylene, ethylene, and ethane). In [6], the authors addressed a method to accelerate the methane pyrolysis process by introducing atomic hydrogen into the reacting medium from an arc-plasma source - (voltage 30-70 V, current 50-150 A, power deposited into carrier gas 1.8-2 kW). The reactor pressure was 9.3 kPa. It was shown that at the temperature 2300 K in the discharge region, the chain mechanism accounts for 20 % of the target product. At the temperature corresponding to the discharge periphery (1730 K), the chain mechanisms are also critical. Upon introduction of atomic hydrogen, the total energy consumption for decomposition of methane (for 2Hn hydrocarbons and nanosized graphite particles) decreased (with respect to conversion) from 15 to 11 eV/molecule. During pyrolysis, the energy consumption in the region of high temperatures was 15 eV/molecule in both cases. In [22], the results of methane pyrolysis under a pulsed electron beam (TEA-500) at 300 K are discussed. The major pyrolysis products were ethylene and acetylene. Given that the total electron beam energy is consumed by the decomposition of methane and by the conversion products acetylene and ethylene - the electron beam energy consumed by the former was 1205 eV/molecule. It was, however, experimentally found out that the beam energy absorbed by the gas was as low as 15 %, the energy consumed by the e-beam was, therefore, 182 eV/molecule of methane. The investigations of methane pyrolysis in plasma demonstrated that in order to initiate a chain process of plasma pyrolysis of methane, a certain optimum gas temperature is required, which would ensure an effective chain evolution. Oxidation of hydrocarbons is also a chain degenerate-branched process. An examination of hydrocarbon oxidation at low pressure demonstrated that facilitation of initiation by an external action allows oxidation to occur at low temperatures, down to room temperature [23]. The main product of this low-temperature oxidation is the alkylhydroperoxide. A small length of the chain under these conditions, however, makes this low-temperature oxidation of hydrocarbons less efficient as concerns the yields of the resulting products and the conversion level. In [18] partial oxidation of CH4 in a pulsed microwave discharge (streamer, pseudo-corona discharge: = 3 cm, pulse power 300 kW, average power up to 300 W, pulse duration 1 s, and pulse repetition rate 1 kHz) and in a continuous microwave discharge (coaxial flare discharge: frequency 2.45 GHz, and power 1-5 kW). The initial reaction agents were heated to 800-1200 K and fed to a discharge chamber integrated with the zone of CH4 combustion. The authors noted that the microwave discharge used exerts a two-fold action on the system. On the one hand, it effectively facilitates the input of thermal energy even into highly heated reaction agents, due to high temperature of the plasma. On the other hand, plasma generates active particles favoring oxidation of CH4 in chain reactions and acts as an initiator of combustion. For the reaction of partial oxidation of CH4, the energy input from the microwave discharge was 0.25 eV/molecule with the conversion level 70 %, they increased to up to 0.5 eV/molecule when the conversion level tended to 100 %.

    27

  • In [20], the results of experimental investigation of CH4 oxidation under a pulsed electron beam (TEA-500) are presented. With electron beam acting on a mixture of CH4, O2 and H2 (cumulative pressure 50-70 kPa, temperature 300 K), a chain regime of partial CH4 oxidation was initiated. The process of partial oxidation of methane was effectively maintained at a high oxygen concentration (over 30 %) in the initial mixture. The electron beam energy consumption for CH4 conversion did not exceed 0.05 eV/molecule. Decomposition of CH4 by an electron beam was totally completed within one pulse. In [24], the results of investigation of methane decomposition in a mixture with water in the gliding discharge plasma are reported. The experiments were performed at the mixture temperature 450 K and atmospheric pressure. The discharge power was 1 kW, frequency 50 Hz, gas mixture feed rate 30 l/m. For the ratio CH4/H2O = 0.67, the conversion level reached was 50 %. The main conversion products were 2 (55 %) and CO (10 %), with the relative energy consumption for decomposition of CH4 being 0.92 eV/molecule. The energy consumption for vapor conversion of methane in the gliding discharge plasma as low as that are indicative of the chain character of the process.

    All kinds of discharges on energy cost for methane conversion, degree of conversion of methane and selectivity of products can be divided into 2 groups: non-uniform discharges (the arc discharge, the spark discharge and the sliding discharge) and volume discharges (the barrier discharge and the corona discharge). In non-uniform discharges efficiency of conversion of methane is above. Energy cost for methane conversion it is less 10 eV/molec., conversion degree in arc discharge exceeds 90 %, selectivity of synthesis of separate products exceeds 90 % (acetylene at plasma pyrolysis, hydrogen and CO at steam conversion).

    In volume discharges high degree of conversion (more than 50 %) are reached only at high power inputs of the discharge on methane decomposition (above 40-50 eV/molec.). The wide spectrum of products with low selectivity is synthesized. Methane conversion in a mix with oxygen in volume discharges allows to lower power inputs on methane decomposition, but their size considerably exceeds expenses of energy of non-uniform discharges for conversion. Degree of conversion of methane in a mix with oxygen is low, a spectrum of products of decomposition wide with low selectivity of separate products. Essential decrease in energy of the discharge on methane decomposition is realized at the chain process of conversion. In this case energy cost for decomposition of methane do not exceed 1 eV/molec. A perspective direction of plasma chemical conversion is methane conversion in a mix with water. Thus power inputs of the sliding discharge on decomposition of methane below CH bonding energy and energy of steam conversion of methane in equilibrium conditions. The hydrogen exit considerably exceeds equilibrium values, and relation H2/CO makes 5-10 at selectivity of synthesis of hydrogen above 90 %. Acknowledgments. This work was supported by the Russian Foundation for Basic Research (grant No. 06-08-00147), National Natural Science Foundation of China (Grant No. 10775028, 20106003), Program for New Century Excellent Talents in University (NCET-06-0282) and FokYing Tung Education Foundation (Grant No. 94015).

    REFERENCES 1. Li X S, Zhu A M, Wang K J, Yong X and Song Z M. Catalysis Today, 2004, vol. 98, p. 617. 2. Li X S, Shi C, Xu Y, Wang K J and Zhu A M. Green Chemistry, 2007, vol. 9, p. 647. 3. Wang K J, Li X S, Wang H, Shi C, Xu Y, and Zhu A M. Plasma Science and Technology, 2008, vol. 10 (in press). 4. Fincke J. R., Anderson R. P., Hyde T. et al. Plasma Chemistry and Plasma Processing. 2002, vol. 22, no. 1, p. 107.

    28

  • 29

    5. Ghorbanzadeh A. M. and Matin N. S. Plasma Chemistry and Plasma Processing, 2005, vol. 25, no. 1. p. 19. 6. Baranov I. E., Demkin S. A., et al. High Energy Chemistry, 2004, vol. 38, no. 3, p. 191. 7. Kado S., Sekine Y., Muto N., et al. Proc. 16th Intern. Symp. on Plasma Chemistry. Taormina, Italy. 2003. 8. Sekine Y., Urasaki K., Kado S. et al. Proc. 16th Intern. Symp. on Plasma Chemistry. Taormina, Italy. 2003. 9. Yao Sh., Suzuki E. and Nakayama A. Proc. ACS 220th National Meeting Catalysis and Plasma Technology. Washington. 2000. 10. Zhdanok S.A., Krauklis A.V., Bouyakov I.F. et al. Proc. IV Internet School-Seminar Modern Problems of Combustion and its Application, Minsk. Belarus. 2001. p. 66. 11. Kuznetsov D.L., Kolman E.V. et al. Technical Physics Letters, 2007, vol. 33, No. 7, p. 604. 12. Hsieh L.T., Lee W.J., Chen C.Y. et al. Plasma Chemistry and Plasma Processing. 1998. vol. 18, no. 2, p. 215. 13. Makarov I. E., Ponomarev A. V. and B. G. Ershov. High Energy Chemistry, 2007, vol. 41, no. 2, , p. 55. 14. Kappes T., Hammer T., Ulrich A. Proc. 16th Intern. Symp. on Plasma Chemistry. Taormina, Italy. 2003. 15. Lopatin V.V., Shubin B.G., Shubin M. B. Proc. 13th Intern. Symp. on High Current Electronics, Tomsk. 2004. P. 444446. 16. Lee H., Choi J.-W., Song H. K. et al. Proc. 4th Intern. Symp. on pulsed power and plasma applications, Nagaoka, Japan. 2003. p. 146150. 17. Stephanie L.B., Shimojo T., Suib S.L. et al. Research on Chemical Intermediates. 2002. vol.28, no1. p. 13. 18. Rusanov V.D., Babaritskiy A.I., Gerasimov A.I. et al. Proceedings of Academy of Science, 2003. vol. 389, no. 3, p. 324. 19. Savinov S.Y., Lee H., Song H.K. et al. Plasma Chemistry and Plasma Processing. 2003. vol. 23, no. 1. p. 159173. 20. Remnev G.E., Pushkarev A.I. Proc. of 13th Intern. Symp. on High Current Electronics. Tomsk, 2004, p. 399. 21. Babaritskii A.I., Baranov I. E., et al. High Energy Chemistry, 1999, vol. 33, no. 6, p.404. 22. Pushkarev A.I., Remnev G. E.: Proceedings of III International Symposium Combustion and Plasmochemistry, Almaty, 2005, p. 157. 23. Shtern V.J. Mechanism of Hydrocarbon Oxidation in the Gas Phase. Moscow: Published by AN USSR, 1960, 496 p. 24. Ouni F., Rusu I., Khacef A., et al. Proc. of 15th Intern. Conf. on Gas Discharges and their Applications, France, 2004, p. 521.

  • .. , .. ... ,

    119991,, 49,[email protected]

    ( ), - , , .

    - , - . , . .

    - , , - .

    , , , - - .

    , .

    , , .

    , , ..

    , -, , . , - .

    30

  • - , . , , . , , . - , - , , , , . - . , , . .

    , . . - . ( , ..). , . , , 130 , . . , , . , .

    , , , ,

    31

  • , , , , . , , , , , , . . . , - , - . , , , - . . , , ( , , ) , . , . ( ) , . .

    , , - , , , .

    , . , , . , , , . . :

    32

  • 33

    10-30%, 1,5-2 , 25-40.%. , , , .

    - . , - , , . - . ( ) - . , . , : , , - .

    , . 07-08-00239- , 07-08-00452- , 07-08-12098-

    .

    1. .., ... . ., , 1980. 360 . 2. .. , ... . ., , 1988. 193 . 3. .., .., ... . , , 1992. 265 . 4. Yu.V.Tsvetkov. Plasma processes in metallurgy. Thermal plasma and new materials technology. Cambridge. Interscience Publishing. Vol. 2, 1995. Cambridge, England, pp.291-322. 5. Yu.V.Tsvetkov. //. Pure and Applied Chemistry. Vol.71, No.10. 1999. pp.1853-1862. 6. .. . ( ..) . X1-5 4 1 . 199-222. .- 2006 7. .. //. , 2006, 2, .4-9 8. .., .., .. // , 2006, .40, 2 , .120-126

  • .. *, .. **, .. ***, .. **** *

    142432, . -. 1/10 ** Chevron Energy Company, 100 Chevron Way, Richmond, CA 94801,

    *** . .. 119991, , . , . 8, . 2

    **** Mechanical Engineering and Mechanics Department, Drexel University, 19104, Philadelphia, PA USA

    PLASMA MEDICINE

    V.N. Vasilets*, A.F. Gutsol**, A.B. Shehter***, A. Fridman**** *Institute for Energy Problems of Chemical Physics (Branch) Russian Academy of Sciences

    142432, Chernogolovka, prospect Academika Semenova 1/10 ** Chevron Energy Company, 100 Chevron Way, Richmond, CA 94801,

    *** Sechenov Moscow Medical Academy 119991, Moscow, Trubetskaya. 8, bld.. 2

    **** Mechanical Engineering and Mechanics Department, Drexel University, 19104, Philadelphia, PA USA

    An emerging field of plasma medicine is discussed, where non-equilibrium plasmas are shown to be able to initiate, promote, control, and catalyze various complex behaviors and responses in biological systems. More importantly, it will be shown that plasma can be tuned to achieve the desired medical effect, especially in medical sterilization and treatment of different kind of skin diseases. Wound healing and tissue regeneration can be achieved following various types of plasma treatment in a multitude of wound pathologies. Non-equilibrium plasmas will be shown to be non-destructive to tissue, safe, and effective in inactivation of various parasites and foreign organisms.

    1.

    . , () [1-3]. , , , , (apoptosis) . , , - , .

    2. , , , . , , , , , . 1 , ().

    34

  • . 1.

    . 3-6

    ( 0.5 - 1 /2 ), 2-3 25 30 . .

    3. . in vitro [11]. , , , .. . , , . . , 5- 10 ( 103 -104 ) . . 2 .

    . 2.

    . ,

    . 15 . 1 (. . 3).

    4. . , , , , (poptosis),

    35

  • , , .

    . 3. , 15 (); ,

    (). ( ATCC A2058)

    ~1.5106 . (0.5 /2) 5, 10, 15, 20 30 3 0.5 . - TUNEL assay . . 4 24 5 , , . , 22.5 % 24 2.2% . 72 72.8%, 3.2%.

    . 4. ,

    5 (), (). ( ) , (

    ) . , ,

    , , .

    5. NO . NO, : , , , .. , NO, ,

    36

  • NO . , . .. . .. , , . . 318 . NO 300 -500 ppm 10-30 . , 0,7% , , NO, 1,7% . , NO- 2,5 . 2,5-4 (. . 5)

    . 5. NO .

    6. . , , , . . . , , , - , .

    1. Gregory Fridman, Victor N. Vasilets, Alexander Gutsol, Gary Friedman, Anatoly

    B. Shekhter, Alexander Fridman // Plasma Processes and Polymers. 2008. V. 5, DOI: 10.1002/ppap.200700154

    2. Gregory Fridman, Alexey Shereshevsky, Monika M. Jost, Ari D. Brooks, Alexander Fridman Alexander Gutsol, Victor Vasilets// Plasma Chemistry and Plasma Processes. 2007. V. 27, P. 163176.

    3. Sameer U. Kalghatgi, Gregory Fridman, Moogega Cooper, Gayathri Nagaraj, Marie Peddinghaus, Manjula Balasubramanian, Victor N. Vasilets// IEEE TRANSACTIONS ON PLASMA SCIENCE. V. 35, . 5. P. 1559-1556.

    37

  • .. 1, .. 2 1 ,

    . .. , 141980, ., . , . -, 6 [email protected]

    2 . .. , 117393, , . , 70

    MODIFICATION OF POLYMER MEMBRANES PROPERTIES BY LOW

    TEMPERATURE PLASMA

    L.I. Kravets1, A.B. Gilman2 1Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions,

    141980, Moscow Region, Dubna, Joliot-Curie Str., 6 [email protected]

    2Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences, 117393, Moscow, Profsoyuznaya Str., 70

    The present paper discuses the features of low-temperature plasma effect on porous polymer membranes. It has been shown that the method of plasma-chemical treatment is quite efficient both for improvement of some properties of existing membranes and for production of new composite membranes with unique properties.

    , , , , , .. , , . , , , . . , [1], , . . , , , - .

    , .

    - , . , , . . , [2], ,

    38

  • [3, 4]. , . , [2-4], , [4]. [5] , .

    , , [3-5]. , , [4]. .

    . , , , , [3, 4], . , . . . (N2, NH3) - [5, 6]. (, ) [7].

    . , . , -, [4]. , . , , . . , [8] , , . , . , , [4, 9], . ,

    39

  • , . . , . , , , . , , .

    smart , .. , , , , , , .. , , , . , [10] , . , , , . , (), , . , , (), . . , [11], , . . , , .. .

    [12]. . , , , . , p-n , , . diode-like , .. .

    , .

    40

  • 41

    , . . , , [10] 2--5- [13] , , . -2--5-, 7.2 %, = 3 , . , 7.4 %, = 8 : 8 , pH . . .

    , , .

    1. Garbassi F., Morra M., Ochiello E. Polymer surface from physics to technology. New

    York, USA, 1994. 594 p. 2. Tran T.D., Mori S., Suzuki M. // Thin Solid Films. 2007. V. 515. 9. P. 4148. 3. Bryjak M., Pozniak G., Gancarz I., Tylus W. // Desalination. 2004. V. 163. P. 231. 4. Kravets L.I., Dmitriev S.N., Sleptsov V.V., Elinson V.M. // Surf. Coat. Technol. 2003.

    V. 174-175. P. 821. 5. Lazea A., Kravets L.I., Bujor A., Ghica C., Dinescu G. // Surf. Coat. Technol. 2005.

    V. 200. P. 529. 6. Kull K.R., Steen M.L., Fisher E.R. // J. Membr. Sci. 2005. V. 246. 2. P. 203. 7. Favia P., Lopez L.C., Sardella E. et al. // Desalination. 2006. V. 199. P. 268. 8. Tu Ch.-Yu., Wang Y.-Ch., Li Ch.-L. et al. // Europ. Polym. J. 2005. V. 41. 10. P. 2343. 9. Kim H.I., Kim S.S. // J. Membr. Sci. 2006. V. 286. 1-2. P. 193. 10. Kravets L.I., Dmitriev S.N., Drachev A.I., Gilman A.B., Lazea A., Dinescu G. // J. Phys.:

    Confer. Ser. 2007. V. 63. 012031. 11. .., .., .. // . 2005. . 39. 2.

    . 143. 12. Kravets L.I., Dmitriev S.N., Drachev A.I., Gilman A.B., Demidova E.N. // Moldavian J.

    Phys. Sci. 2007. V. 6. 1. P. 110. 13. Dmitriev S.N., Kravets L.I., Sleptsov V.V., Elinson V.M. // Polym. Degrad. & Stabil. 2005.

    V. 90. 2. P. 374.

  • .. , .. , .. . .. ,

    630090, , . ., 3. E-mail: [email protected]

    DISCHARGE ELECTRORADIOLYSIS OF AQUEOUS SOLUTIONS

    O.V. Polyakov, A.M. Badalian, L.F. Bakhturova Nikolaev Institute of Inorganic Chemistry, SB RAS.

    3, Ak. Lavrentev Ave., Novosibirsk, 630090, Russia. E-mail: [email protected]

    The process of electroradiolysis due to glow discharge impact on an aqueous cathode is considered. The results of long-term studies of electrolytic cathode gas discharges by many scientists are reviewed and generalized. The complex of phenomena at the discharge plasma - solution interface as a whole is presented from the position of radiation chemistry, non-equilibrium plasma chemistry, emission electronics and gas discharge physics. The scope of a novel research field, the electroradiation chemistry of water and aqueous solutions, is tentatively outlined.

    - , -. , "" , , [1]. , , , , , , .

    . , , , . , . [2] 30- , , -, , , , , . , . - ,

    42

  • , .

    , , [3], 2+ , . , - N . : G = 100dN/dE ( / 100 ), 100 "" E, . "" y = i-1(dN/dt) = dN/dn (i=dn/dt n ). 22 , , [1], . , [4] , , . ( 400 ) , , . , 106 /. , , , , , , , -, . .

    H2O+, , , , [1]. - - , H2O+, . , , . , , , , , , , . "" , , , 1,3 1,7 , . , , "".

    [5]

    43

  • , , . , 20% . , , , .

    [1] 22 . . S, 22 [S], , eaq. , . , 30% 20% y-2. , . - : 4, 10-2 ; b0 2 . , . loc 2*1026 2*1027 /2, , , , , (eaq ). 4 12 b0. , - .

    , , , ( ) (). , , . , , - . S , . , () 0,1 .

    44

  • , , , , , - .

    -, , , :

    . , -, , .

    , , - , , , .

    1. .., .., ... // . 2003. . 37.

    5. . 367. 2. . , . , , , -, 1938.

    3. A. Hickling. // Modern aspects of electrochemistry. Butterworth. London.1971. 6. P. 329. 4. Z. Sternberg // Gas discharges: Intern.Conf.1970. London: Inst. Elec. Eng., 1970. P. 68. 5. . . , . . , . . ., - 90, , , 1990, . 1, . 8.

    45

  • .. , .. . ..

    119071, ,-1, . , 1,[email protected]

    THE MODIFICATION OF NATURAL TEXTILE MATERIALS SURFACE BY LOW TEMPERATURE PLASMA AND PERSPECTIVE

    TECHNOLOGIES

    S.F. Sadova, E.V. Pankratova A.N.Kosygin Moscow state textile university

    119071, Moscow, GSP-1, Malaya Kalujskaya, 1, [email protected]

    The effect of the glow discharge plasma on natural fibers - flax, wool, silk, differing by the chemical nature, structure and histological structure has been considered. Under the influence of plasma active particles on flax and wool surface layers destruction and modification not only of the basic fibre forming polymers, but also of natural accompanying substances take place. Free radical character of the processes has been established. The modified materials acquire high capillarity, wettability, higher physicomechanical properties, greater ability to dye sorbtion. Perspective processes with the use of plasma treatment of the specified materials have been proved.

    () , , . , - . .

    , , . , - . , , , .

    . -180 100 .

    , . ( 01 170 30 ) ( 1,5-2 ),

    46

  • 4,7%. ., , .

    [1], WA-34 0,0001 .

    3-5 ( 10 ). , [2,3].

    . (~ 1 ) , , , . (t > 1 ) , , -- [4].

    . - 2, , 2, 2 , . 2, 2, 2 2 , 2 , .

    , , , , . , [2,5]. [6] , , , - 60 .

    - , , [3], : 1 ( , max ~ 2,3 ) 4 ( 1:2:1, a ~ 3 ). . 51017 -1 , - 51015 -1 . . , | -, | [7]. 2 . : + R = 2 + R. (1)

    47

  • 2 () [3,8], 2, () 2 (), 2.

    2 1, - . 2 2 . - 2 2 . , , - 2, (), () 2 . - 2, [3,8].

    2 , . , : , R C=O.

    , - 2 .

    ,

    [8]. , - 4 5 5 III (3) [3]. III [9, . 217], , () :

    (3)

    - .

    ,

    48

  • , , , - , - . ( 25%) [10].

    () . - , , 4% . ( ), . , , , 20-23% , , ().

    , . , . [2]. , , ( %- ) .

    . . 550 , /100

    , .

    ., .

    0,1368 0,1848 0,369 0,2716 0,1413 0,2002 0,0405 0,026 0,3906 0,2065 0,016 0,0052

    . 0,0234 0,0329 0,025 0,03 . 0,0135 0,0182 0,043 0,066

    0,0954 0,0126 - - 0,0387 0,0294 0,0055 - 0,0567 0,014 - -

    . , . , . (50% ) , . .

    49

  • 50

    . , .

    1. .., .., .., .. // . 1990. .24. 5. .471-474.

    2. .. // . 2006. .40. 2. .83-95. 3. ., .., .., .. // .. 1996. .349. 1. .60-63.

    4. .., .., .., ..// . 2008. 9 ( ).

    5. .., .., ..// . . 1992. .35. 2. . 101-103.

    6. Wakida T., Takeda K., Tanaka I., Takagishi T. // Textile Res. J. 1989. V.59. N 1. P. 49-53. 7. Simionescu C.I., Denes F., Macoveanu M.M., Negulescu I. // Makromol. Chem. Suppl.

    1984. V. 8. P. 17-36.8. 8. ..// . . 1995. . 14. 10. . 113-125. 9. .., .., .., . .: ,

    1980. 264. 10. .., .., .., .., .. .// . 1995. 3. .24-26.

  • PLASMA ETCHING: FROM MICRO- TO NANOSCALE DEVICE MANUFACTURING

    D. Shamiryan, V. Paraschiv, A. Milenin, W. Boullart and M. R. Baklanov *IMEC,

    Kapeldreef 75, Leuven, 3001, Belgium

    Continuous miniaturization is a major driving force behind the progress in microelectronics. The miniaturization follows so-called Moors law that states that the number of transistors that can be inexpensively placed on an integrated circuit is increasing exponentially, doubling approximately every two years [1].

    Number of transistors doubling every 18 months

    Number of transistors doubling every 24 months

    Itanium 2 (9Mb cache)

    Itanium

    486

    Pentium 4

    Pentium II Pentium III

    Pentium

    Itanium 2

    386

    286

    8086

    8080 8008 4004

    Fig. 1 Evolution of number of transistors on an integrated circuit One of the critical steps in integrated circuit manufacturing is pattern transfer using plasma etching. In contrast to wet etching, plasma etching allows highly anisotropic patterning of deep submicron features. For years, miniaturization of integrated circuits demanded just reduction of the feature sizes. The main challenges were associated with lithography that had to produce the required feature size. As soon as the desired pattern in photoresist was created, its transfer to the substrate by plasma etching was rather straightforward. The number of materials that had to be etched was quite limited. The main component of a transistor a gate was made from Si, the gate dielectric was SiO2. Transistors were interconnected by Al metallization with SiO2 as intermetal dielectric. In general, plasma etching was limited to Si, SiO2, Si3N4 and Al. However, as downscaling progressed, it turned out that the conventional materials start to reach their limits and must be replaced by novel materials. That poses an enormous challenge for plasma etching as almost all plasma etch steps in semiconductor manufacturing must be redeveloped. Very often the existing knowledge on plasma etching becomes obsolete and extensive research must be carried out. The most prominent examples of material changes are shown below. As gate dielectric was thinned down to several nanometers, increased gate leakage made transistor operation impossible. In order to overcome the high leakage the gate dielectric thickness must be increased, but it contradicts the downscaling requirements. To solve the problem SiO2 was replaced by dielectrics with higher dielectric constant k, so-called high-k

    51

  • dielectrics [2]. Having k several times higher than that of SiO2 (4.2), high-k dielectrics provide the same electrical performance at higher thickness, thus eliminating high gate leakage problem. The range of materials that could be used as high-k dielectrics is quite wide. One can find reports on using HfO2, ZrO2, Al2O3, Dy2O3, La2O3, Sc2O3, Y2O3, Ta2O5, TiO2, Gd2O3 and their combinations as gate dielectrics. Plasma etching of those material poses a significant challenge, especially taking into account the fact that many of those elements do not from volatile compounds. It should be noted though, that the most promising candidate for high-k dielectric is hafnium dioxide or hafnium silicate. Si gates, in turn, cannot be scaled down further due to gate depletion problem. As the carrier density in Si is limited, a depleted zone is formed at the interface between the gate and the dielectric. This depleted zone increases effective dielectric and cannot be tolerated. In order to alleviate gate depletion, Si is being replaced by metals or metallic compounds like nitrides or carbides. Many materials (Ru, Mo, TiN, TaN, TaC etc.) are screened as potential candidates for gate material, but the final choice has not been made yet. Additional complication of the metal gate approach is the fact that an integrated circuit should contains gate materials with two different work functions aligned to the conductance and the valence bands of Si. When Si gates are used, this is achieved by different doping of the gate. Changing work function of a metal gate is not that straightforward and often two different metals should be used on the same circuit. That makes plasma etching extremely challenging as two different materials must be etched simultaneously with similar etch rates. An example of a poly-Si/TaN metal gate is shown in Fig. 2.

    Fig. 2 Transmission electrom microscopy image of poly-Si/TaN metal

    gate after full processing.

    In the metallization part of an integrated circuit both metal and intermetal dielectric must be replaced. An electric signal propagating through a circuit experiences delay that is a product of resistance and capacitance, known as RC delay. As resistance is inversely proportional to a wire cross-section and capacitance is inversely proportional to the distance between wires, they both increase as the dimensions of the circuit decrease. At some point the RC delay becomes higher than the switching time of transistors rendering the high-speed devices useless. In order to decrease the RC delay, both resistance and capacitance must be decreased. Since the geometry of the circuit cannot be changed, the change is made in the materials. Al is replaced by Cu that has lower resistivity, while SiO2 is replaced by materials with low dielectric constant, so-called low-k dielectrics [3] usually porous materials of SiOCH composition. Not only materials, but the whole metallization scheme must be changed. Unlike Al, Cu is very difficult to etch by plasma since it doesnt form volatile etch products. As a results, a so-called damascene scheme is used where low-k dielectric is etched first and then the trenches are filled with Cu. The excess of Cu is removed by chemical-mechanical polishing. One of the major issues in the low-k patterning is plasma damage. Low-k materials are intentionally hydrophobic since water with dielectric constant of 80 easily get adsorbed inside

    52

  • the porous structure that ruins all advantages of those materials. However, as the low-k film is exposed to etching and stripping plasma, the hydrophobic groups (usually Si-CH3) could be removed making the film hydrophilic and totally unsuitable as a low-k dielectric (as illustrated in Fig. 3. The demand of low plasma damage significantly restricts the range of plasmas that could be used for low-k dielectrics patterning. The miniaturization bring not only changes in the materials used. In order to cope with the growing demand on device performance new approaches and device architectures must be used. The most obvious challenge is decrease of the resist thickness. As the critical dimensions (CD) of the devices shrink, the resist thickness must also be reduced, otherwise the aspect ration of the resist lines becomes too high and the lines collapse. For example, extreme ultraviolet lithography (with wavelength of 13 nm) is able to pattern 40 nm lines, but it requires resist thickness no ore than 100 nm. Patterning devices with such low thickness of the photoresist mask requires very high selectivity of the etch process over the mask which is very often impossible. In order to overcome this problem, a so-called hard mask (HM) is used. Hard mask is inserted between the photoresist and the substrate that has to be patterned. The material for the HM is selected based on the highest selectivity that can be achieved. For example, SiO2 HM might be used for patterning of metal gates while TiN HM can be used for patterning of low-k dielectrics. In the HM approach, the HM is etched first using the photoresist as a mask. Then the photoresist might be stripped and the etching of the underlying layers continues using HM only. This approach requires adaptation of the etch recipes, as presence or absence of photoresist changes the etch mechanisms (namely release of hydrocarbon from the photoresist has a great influence on the sidewall passivation of the structures that are being etched).

    C

    Low-k

    Cu Cu

    SiC

    SiC

    C

    Low-k

    Cu Cu

    CC

    Low-k

    Cu Cu

    SiC

    SiC

    Fig. 3 Energy-filtered transmission electron microscopy image of

    carbon content in a low-k dielectric after processing. The intensity of signal is proportional to C concentration black color means no C, white pure C. The C depleation appears as darker gray color at the

    top of the low-k structure indicated by an arrow. Another challenge for plasma etching is 3D device manufacturing. For years, integrated circuits were planar with all the devices manufactured in the plane of a semiconductor wafer. Now, however, the third dimension is started to be used, on the device level as well as on the integration level. On the device level, 3D architecture is used to improve device performance. In the classical MOSFET, the gate is applied to the channel from only one side wafer surface. As a result, the channel cannot be completely shut off that deteriorates the device performance. To solve this issue a so-called finFET is used where the channel is located perpendicular to the wafers surface while a gate is applied on the both sides. If the width of the fin is around 20 nm, the electric field applied from two sides can completely shut off the channel significantly improving device performance. The greatest challenge of finFET for plasma etching is its high topography. As fin height is usually in the range of 50 nm 100

    53

  • nm, the gates that are running over the fins are extremely difficult to pattern. As the gate etch is highly anisotropic, the amount of material to be etched right next to the fin can be several times higher as compared to large flat areas. To make things more complicated, finFETs are often combined with high-k dielectrics and metal gates.

    Gate

    Source

    DrainGate

    Gate

    Source

    DrainGate

    (a) (b)

    Fig. 4. A schematic view (a) and a scanning electron microscope image (b) of a finFET

    On the integration level, 3D architecture is used to increase integration density. Usually, several planar circuits are made, then the substrates are thinned down, contacts are made through the substrates and the substrates are stacked to obtain a 3D integrated circuit. From plasma etching this approach demands manufacturing of the contact holes that runs through the wafer. Even though the substrate is thinned, contact hole up to 100 m deep are required. At the same time, the diameter of the contact holes should not exceed several micrometers that results in etching the holes with aspect ratio up to 1:100. As microelectronics enters the nano-era, there are many challenges that lie ahead. Carbon nanotubes, semiconductor nanowires, graphene (a sheet of graphite of one atomic layer thickness) etc. all these structures might require plasma processing tomorrow. In conclusion, in the recent years, as CD of the devices went down from microns to tens of nanometers, plasma etching was transformed from a well-established technological step in semiconductor manufacturing flow to one of the most critical steps that requires extensive research and enables the progress of microelectronics into the nano-era. The present work will review the recent challenges including etch of modern gate stacks comprising high-k dielectrics and metal gates, intermetal low-k dielectrics with focus on the plasma damage. A short overview of modern plasma etch reactors and plasma diagnostic techniques will be given as well.

    REFERENCES

    1. G. E. Moor // Electronics. 1965. V. 38. 8. P. 114. 2. G. D. Wilk, R. M. Wallace, and J. M. Anthony // J. Appl. Phys. 2001. V. 89. P. 5243 3. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. Brongersma and Z. S.

    Yanovitskaya // J. Appl. Phys. 2003. V. 93 P. 8793

    54

  • -

    .. - (),

    117218, , -, 36, . 1 [email protected]

    DIAGNOSTICS OF PLASMA PROCESSING FOR MICRO- AND

    NANOELECTRONICS

    K.V. Rudenko Institute of Physics & Technology (FTIAN), Russian Academy of Sciences

    Nakhimovsky av. 36/1, 117218 Moscow, Russia [email protected]

    The breakthrough over the 100-nm design rules in ICs microelectronics leads to conversion the microelectronics into nanoelectronics. Some critical dimensions in integrated devices, the thickness of structured layers are comparable to lattice constants for materials used for ULSI fabrications. It makes tougher significantly the demands to plasma based microtechnologies for device structures manufacturing and requires the continuous control of its parameters. Real time plasma diagnostics is convenient non-intrusive technique for monitoring of plasma processing in ICs micro- and nano- scale fabrication. The original results of investigations in these directions based on Langmuir probe diagnostics and optical emission spectroscopy including optical emission tomography are reviewed.

    ,

    - (), - 6-10 [1]. 1999 100 . , . , 50% , . / / . . : - ,

    ; - , ;

    - (, ); - () ;

    - , ;

    55

  • - - (3)

    p-n -100 ;

    , . (high density plasma, HDP), . p = 0.1 50 , - - , - , .

    , , , in situ . -100 , , . . , , . , , [2].

    , . , , ( ) , , . in situ .

    (process design). , , , , (

    e)

    ( ), - . , .

    , 300 , , . , , 15% , . ( ), 2D- .

    56

  • 57

    , , in situ - . HDP- [3]. : , , HDP- ;

    , (process design) ;

    ;

    , , 2D- .

    ; end-point ; , . - .

    1. .. . . // . . . 2006. 5. . 35 - 44.

    2. .. , .. , .. . in situ . V, . 1, . , / . .. , .. , .. . // ., . -, 2006, . XII-5, . 381436.

    3. .. , .. , .. . ICP- . // . 2006. .40. 3. . 220 232.

  • -

    .. . .. ,

    119991, , , 29. e-mail: [email protected]

    Report is devoted to analysis of metastable particles participation in physical and chemical processes in non and quasi equilibrium atomic and molecular plasmas: radiating atomic and molecular levels excitation, ionization, ion-electron recombination, ions conversion, dissociation and chemical reactions mechanism. The metastable particles role is necessary to take into consideration before spectral methods using for plasmas diagnostic especially under high pressure conditions.

    -

    , - . () : - , , , , [1-2]. - , , [1,3-6].

    - (30,1,2) , , , - . . : (1,2) (8-10) (3,4). (5,6). (5) (11-13), (14,15). , [1,2], , 1

    58

  • .1. . nA = [A(n)]/ [A(n)]0 , , , Ei , [A(n)] , [A(n)]0 . - (1) , (2), , 11-14 (3), = =8200, =4300 , ne= 1.5.1015 3 (4). . ... 1. >> ye< 10-4.

    ki, 3-1 ,/ Ar (1S0) + e Ar (3P0,1,2) + e Ar (3P0,1,2) + e Ar (1S0) + e Ar (3P0,1,2) + e Ar (1P1) + e Ar (3P0,1,2) + e Ar (n>2) + e Ar (3P0,1,2) + e Ar+ + 2e Ar (3P0,1,2) + Ar (1S0) 2Ar (1S0) Ar (3P0,1,2) wall Ar (1S0) Ar (1P1) Ar (1S0) + h Ar (n2) Ar (1S0) + h Ar (n3) Ar (n1) + h 2Ar (3P0,1,,2) Ar2+ + e 2Ar (3P0,1,,2) Ar+ + Ar + e Ar+ + 2Ar Ar2+ + Ar Ar2+ + e 2Ar (n) r++ e + e Ar(n1) Ar+ + e + Ar (n) + M

    3.10-13- 10-8 (2-5)10-10 (5-7)10-7 (3-5)10-7 < (3-5)10-8 3.10-15 [360/pR2] (T./300) ~108c-1 ~106-108c-1 ~106-108c-1 > 3.10-12 < 7.10-12 3.10-31 c6 c-1 7.10-7 10-29 c6 c-1 10-30c6 c-1

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    . , , , 2 , N2, , .. [1.2,7-10].

    59

  • 2. >> ye< 10-4.

    ki, 3-1 ,/ Ar (3P0,1,2) + AB Ar (1S0) + AB* Ar (3P0,1,2) + AB Ar (1S0) + AB++ Ar (3P0,1,2) + AB Ar (1S0) + A+B Ar+ + B Ar + B+ Ar + + AB Ar (1S0) + AB++ E Ar (1S0) + B(n5) Ar (1S0) + Ar(i) +B(n=1) AB+ + e (4S0, 2D, 2P) + B(2D, 2P)

    (0,02-7)10-10 ~10-10(, Ar*) 10-10- 10-10 10-12 (A=B=N(4S) 5.10-17(TAr+)1.5 10-9 2.10-7 (Te/300)-0.39

    17 18 19 20 21 22 23

    , (17) (19). , (18) (20). , , . , ( , , , COS, . [2].

    , , , , . .

    (3-5%) ( ) , , [1,2,7-10]. (.. ) , - , (.2) , , , , , ,

    .. [7-10]

    .2. (i), Ar 750.3 (1), 725.6 (2), l2 510 (3), 258 Cl2 258 (4), Cl 278 (5) CCl4[10].

    CCl4, .

    , (17-21), , .

    60

  • ( . . . , (0,010,1%) = 1 , i = 1 /2 /N0 30% 30100% . /N0, . . . n, , 106 108-1. ( ) [8].

    (2, 2, NH3, CH4, 26, 24, , 4+ , ) (ki>>10-10 3/), , [2].

    (N2, H2, O2, CO, NO) . (e-V) (e-V,V-V V-T ) (v = 3,5- 11 ).

    (H2;N2;O2;CO;CO2; H2O;CH4; 2+, 1+ ) (.3, 1) - [1,2, 11-12]. (.3, 2).[13] . - (.4) , [1,2,14].

    61

  • .3. k N2 (E/N). .4.

    , . .

    . 1. .. . . . ... :.. ., VIII,I.,11,1.5,-1.7,1.111.2000.

    2. .. . . .:,1980.310 .

    3. V.Guerra, P.A. Sa, J.Loureiro. // Eur. Phys.J.Appl.Phys. 2004. V.28.P.125. 4. .. , .. . //. 2008. . 42.4. 5. A.Descoeudres, Ch.Hollenstein, G.Walder, R.Demellayer, R.Perez. Proc.28th ICPIG, July

    15-20.2007. Prague.Chech Republic.P.43 6. I.Prysiazhnevich, VYuchymenko,V.Chernyak,V.Naumov, J.Scalny, S.Matejcik. Ibid.

    P.938. 7..., .., .. . .:. 1978. .5..242.

    8. ... . .:. 1981..8..189. 9. .. . .:. 1983. . 10. .108. 10..., . ., . . //. , 1989.. 23. 5..

    444. 11. ... C. , .:.1976. .1. .156. 12. . , .. // , 1992..11. 8. .1064. 13. ... ..3. , - . .1991..121.

    14. .., .., ... C. . .:,1977,c.81.

    62

  • .. , .. - , 153000,

    . , . ., 7 ,[email protected]

    PLASMA-CHEMICAL PROCESSES IN ENVIRONMENTAL PROTECTION

    V.I. Grenevch, A.G. Bubnov Ivanovo State University of Chemistry and Technology,

    F. Engels ave., 7, Ivanovo, 153000, Russia, [email protected]

    Review of a modern state and prospects of researches in the field of application of plasma for purification air and water from pollutants. It is shown, that the greatest prospects for these purposes possess combined plasma-catalyst processes.

    , , , , . , , , . , () .

    , , :

    ) , , ;

    ) , , , ;

    ) , - , , ;

    ) ( ).

    , ( , , , ), ( , ) ( , , , ). ( 95 99 %), , .

    63

  • - . - , , . . , , (, , , ), , .

    I.

    1992 . () , . 1990 . -, . , . , CO, SO2, NO, . , , . () , , , .

    , NO SO2 c 200 1200 3/, , "ENEL" NO SO2 ( NH3). 1000 3/. 60 1000 3/ , , NOx, . "ENEL" 200 1200 3/ NOx , . ( 1 . %) . MSE Technology Applications Inc., USA, ( 0,015 /3/-1, 80-90 %) .

    , 1995 (. , ), , 1200 -1, 10 /3 . (4 , 7 ) , CCl3F CO2, CO, H2O, HCl, HF, CCl4, CF4 65 95 % - ( H2O 97 % ).

    64

  • 99 % , , , , , 25 /3, , .

    , ( 95 %) , , , , . - (). ( ), , , 3 NOx .

    II.

    : 1) ; 2) , ; 3) , , , . , .

    ( , ) (), . :

    - , , ( - );

    - ( ).

    , . 10 , 80 90 %, ( 2) - 40 60 %. , , , .

    . (, , , , , ). , . Ni, Ti, Ag .. , . ,

    65

  • 66

    , (, ), (2).

    , , :

    - (, , ..);

    - , , , .

    , , , ( , ) , , 90 %.

    , , .

  • -

    .. , ..

    153045, , . , 1, [email protected]

    THE PHYSICAL CHEMISTRY OF PLASMA-SOLUTION SYSTEMS

    A.I. Maximov, A.V. Khlyustova Institute of Solution Chemistry of RAS

    Academicheskaja str., 1, Ivanovo, 153045, Russia, [email protected]

    The important feature of plasma-s