4Hybrid Robotic Welding-Synergic Adaptive Evolution

download 4Hybrid Robotic Welding-Synergic Adaptive Evolution

of 32

Transcript of 4Hybrid Robotic Welding-Synergic Adaptive Evolution

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    1/32

    Overcoming Obstacles w ith Hybrid

    Robotic Welding The Evolution ofSynergic and Adaptive Welding

    AWS/ NRAWC&EMilwaukee, WI

    05/ 23-25/ 2011

    Paul DenneySenior Laser Applications Engineer

    [email protected]

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    2/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline Drivers and challenges

    Changes in power supplies and robots Changes in lasers

    Hybrid processing

    - What is it?

    - How is it being used? New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    3/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline

    Drivers and challenges

    Changes in power supplies and robots

    Changes in lasers

    Hybrid processing

    -

    What is it?- How is it being used?

    New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    4/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Dr ive rs :

    Produc t i v i t y

    - Com pe t i ng i n t he w o r l d

    - Low er labo r con ten t

    I m p r o ved q u al i t y Flex ib i l i t y

    G reen

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    5/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Dr i v i n g Fo r ce- Au t o m a t i on and Produ c t i v i t y

    Deve loped Coun t r ies vs Deve lop ing Coun t r ies Labor

    Rates- Manufac tu r ing Labor Rate

    Com pa r i son ; US 100% ; Ch i n a 4 .2 % ; I n d i a 3 .1 %

    - Ch i n a h as g on e f r o m 2 .4 % t o 4 .2 % f r om 2 0 0 5 t o 2 0 0 8

    M ate r i a l s and Equ ipm en t a re Globa l Com m od i t ies

    US im p rovem en ts i n Pr o d u c t i v i t y ( 8 7 - 0 9 )

    For d eve loped coun t r ies t o co m p e t e i n w o r l d m a r k e t

    t h e n t h e am o u n t o f l a b or i n m anu factu red goods has t o be decreased.

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    6/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Chal lenges: High er p r ocess ing

    r a t es W eld seam s

    - F i t -up

    - F ix tu r i ng

    Mater ia l s - Comb ina t i ons

    - Th inner

    - H ig h e r s t r e n g t h

    Advan ced design s

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    7/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline

    Drivers and challenges

    Changes in power supplies and robots

    Changes in lasers

    Hybrid processing

    -

    What is it?- How is it being used?

    New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    8/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Arc We ld ing Pow er Supp l i es

    S ta t i c - Des igned a r ound user

    feedback and con t r o l - Sim p le in design

    - I ssu e s w i t h i n t e g r a t i on i n t o r obo t i c system s

    Dig i t a l pow e r supp l i es - Sta t e based con t ro l

    Mo n i t o r i n g b u i l t i n Se lect ion o f t he w e ld ing

    m ode as w e l l as howchanges shou ld occur

    - Ce n t r a li ze d c on t r o l ; Po w e r su p p ly -Ro b o t con t r o l

    Can con t ro l pow er supp ly ,w i r e f e e d, a n d ro b o t

    ACC-255S

    I400 Power Supply

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    9/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Ear ly Robot s an d Laser s

    Accuracy

    - Po in t - t o -po in t - D y n a m i c

    I n t e g r at i o n t o l ase r t y p e

    - CO2

    Requ i red h a rd op t i cs

    - Fibe r d e l ive ry no t ava i lab le

    - No h igh pow er CW

    Nd:YAGs GMF -100 First Laser Robot Integral CO2 Beam Circa 1988

    Cincinnati Milacron T3

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    10/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Laser W or k Cel ls vs Robo ts

    Spec ial i zed w or k cel l s - Accura te

    - High cost

    - Lim i t ed f l ex i b i l i t y

    A r t i cu l at e d ar m + r o b o t

    - Use o f st anda rd r o b o t

    - Flex ib le

    - A li g n m e n t a n d

    m o v em e n t i ssu e s

    Laser Mech Arm For CO2 laser Coupled to robot

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    11/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline Drivers and challenges

    Changes in power supplies and robots Changes in lasers

    Hybrid processing

    - What is it?

    - How is it being used? New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    12/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Historical Laser Systems

    Low to High Power CO2- Early 80s to present

    - 100 W to 24 kW

    - Hard optics delivery

    - Welding and cutting

    - Slow response time

    - Lower initial cost but lowefficiency (5% to 13%)

    CW Nd:YAG- Mid90s to Mid00s

    - 4 kW max

    - Fiber delivery

    - 3D cutting and welding

    - Slow response time

    - Low efficiency (3%) andhigh maintenance cost

    Early CO214 kW

    UTIL Laser

    Trumpf 4 kWCW Nd:YAG

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    13/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Lat est Laser Sys t em s Di rect D iode

    - La te 90s t o p r esen t

    - 1 0 k W - Hea t t r eat i ng and som e

    c ladd ing - Large f i be r de l i ve r y - Low cost and h igh

    ef f ici en cy ( 5 0 % )

    - Poo r beam qua l i t y Fiber and D isk Lasers

    - Ear ly 00 s - 1 0 s W t o 5 0 k W

    - Diode pum ped

    -

    Lo w t o h i g h p ow er - Good beam q ua l i t y - Low m a in tenance cost - Sm a l le r f oo t p r i n t - H ig h ef f ici en cy ( > 2 5 % )

    Early 4 kW

    Direct DiodeLaser from Nuvonyx

    TrumpfDisk Laser

    Early 5 kWIPG Fiber Laser

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    14/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Diode Pu m ped Disk Laser

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    15/32

    Fib er Laser s

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    16/32

    Laser Remote Welding

    Rem ot e Laser W e l d i n g

    Designed tocompete againstresistance spotwelding

    Use laser beam tomake stapleshaped lap welds

    Continuouslymoving robot withlong stand offoptics

    Can decreasewelding times>50%

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    17/32

    Remote Laser Welding

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    18/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline

    Drivers and challenges

    Changes in power supplies and robots

    Changes in lasers

    Hybrid processing

    - What is it?

    - How is it being used?

    New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    19/32

    Hyb r id Laser Pr ocess ing

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Hybr id Process Addresses disadvantages

    of lasers and othertechnologies

    Requires coordinationbetween power supply,laser, motion system, and

    material feed system* Usually is associated with

    hybrid laser arc welding(HLAW)- Provides filler material

    for gap andmetallurgical

    requirements- Lower heat input than

    arc- Higher processing rates

    Direction of Travel

    Laser BeamGMAW Torch

    Molten MaterialKeyhole

    SolidifiedMaterial

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    20/32

    Laser Hot WireBrazingLaser Ho t W i re B raz ing

    Applications

    - Automotive BIW- Consumer products- Replacement for

    resistance/sealer joints

    Advantages- Very high speed

    Compared toresistance weldedwith sealer

    Elimination of sealer- No flux

    No other consumable- Class A joint

    Can be painted withminimal cleaning

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    2011 Dodge Challenger

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    21/32

    Hot W i re Cladd ing Applications

    - Repair/Refurbish-

    Tailored surfaces- Deposition of material- Digital manufacturing

    Advantages- Vs Arc processes

    Lower heat input Higher deposition

    rates* Lower dilution Lower material cost*

    - Vs Laser powder Lower power laser

    Higher depositionrates* Higher yield Better feed control

    Hot Wire CladdingCourtesy Alabama Lasers

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Direction of Travel

    Laser BeamGMAW Torch

    Molten MaterialSolidifiedMaterial

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    22/32

    Aerospace App l i ca t ion s Address machining vs

    fabrication Laser welding with filler

    being accomplished fornext generation ofaircraft to address-- Weight- Fabrication cost- Maintenance- Material selection

    Example- Airbus 380 hasover 5,000 sq meters ofstiffeners to skin in place

    of riveted Al structure

    Airbus 380

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    23/32

    Sh ip S t ru c tu r es App l i cat i ons Commercial ships

    - Conventional welding results indistortion which increases cost:

    Secondary processes tolevel- Procedural cost- Lifecycle cost for weight increase

    Fit-up of assemblies

    Military ships- Stripping of H beams for T

    1/3 wasted from strippingprocess

    Section is a compromise torolled product

    Adds weight to final shipstructure

    Examples:- Meyer Werft

    Joining of material forbulkheads and decks

    Stiffeners to panels- US Navy

    Fabricated HSLA-65 fabricatedTs for CVN-78

    Higher performance, lower

    cost

    CVN-78Wikipedia

    Hybrid Welding atMeyer Werft

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    24/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline Drivers and challenges

    Changes in power supplies and robots Changes in lasers

    Hybrid processing

    - What is it?

    - How is it being used? New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    25/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Chan ge in t he Mark e t Companies normally associated

    with arc welding are nowinvolved in laser processing

    Hybrid (combination of laserand GMAW) is of interestbecause it addresses the fit upissue for laser but provideshigher processing rates overGMAW

    Applications include:- Shipbuilding- Oil and Gas

    - Automotive- Aerospace- Consumer products

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    26/32

    Lin co ln Elect r ic s E f fo r t s

    Pow er supp l y needs fo r l ase r hy b r i d app l i ca t i ons

    Consumab le mod i f i ca t i ons

    I n t e gr a t i on in t o au t o m at ed sy st em s

    Pr ocess deve lopm ent and eva lua t ion

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    27/32

    Welding Output

    Interconnect/

    Interface

    Laser Controls &

    Command Reference Laser Feedback & Status

    Laser

    Output

    Welding

    Output

    Welding Feedback:Current, Voltage,

    Wire feed speed, etc

    Laser Feedback:Power, temperature

    Laser

    Power

    Supply

    Welding

    Power

    Supply

    Laser Output

    Lincoln Patent Application #12254067filed on 10/20/08

    Pow er Sup p ly Ef fo r t s

    Na t u r a l Ex t e n si o n o f Po w e r Wave Wave fo rm Con t r o l

    Techno logy Sing le Con t ro l l e r f o r t he

    Process

    Syn erg i c Opera t i on o f W e ld ing Cur ren t AND Laser Power

    Seam less Adapt ive Cont ro l A rch i t ec tu re

    Synchr on ized Sta r t i n g and Ending

    Con t r o l To ta l Heat I npu t

    La r g e N u m b e r o f I n v e n t i o n s i n Process w i th I P Team

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    28/32

    Consumab les Hybr id p r ocess

    n o r m al ly m ean s l ow er d i l u t i on ; l eane r m a te r i a ls poss ib le

    Arc st ab i l i zer s

    less o f an issue Use o f so l id , m et a l

    co r e , and f l ux co re

    Trade o f f s

    b et w een h i gh w i r e feed speeds vs l arg e d iam e te r w i r e s

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Hot Wire CladdingCourtesy Alabama Lasers

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    29/32

    Au t om a t i on D iv i si on E f fo r t s

    Build off existingengineered systems

    Establish

    development cell- 10 kW IPG Photonics

    laser

    - HighYAG Hybridwelding head

    - Fanuc robot Workcell at Lincoln Electric;Automation Division

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    30/32

    Process Deve lopm en t and Eva lua t ion

    Com pare hyb r i d p r ocesses aga ins t o t he r j o in ing and a rc processes

    - Produc t i v i t y

    - Economic - Per fo rmance

    D ev e lo p m e n t o f n o v e l p rocesses

    -

    Bui ld o f f Linco ln s t r e n g t h s

    - Address i nd u st r y / cu st o m er needs

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    31/32

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Presentation Outline Drivers and challenges

    Changes in power supplies and robots Changes in lasers

    Hybrid processing

    - What is it?

    - How is it being used? New potential for integrated systems

    Summary and conclusions

  • 8/3/2019 4Hybrid Robotic Welding-Synergic Adaptive Evolution

    32/32

    Su m m a r y an d Conc lus ions

    Advances in technology

    are making robotichybrid processes viable

    Centralized control of allof the subsystems willimprove theperformance

    Further development isneeded in components,software, and

    consumables Economics will drive the

    implementation of hybridrobotic processes

    Overcoming Obstacles w ith Hybrid Robotic WeldingOvercoming Obstacles w ith Hybrid Robotic Welding

    Hot Wire CladdingCourtesy Alabama Lasers