43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

16
Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer Julson, A., and van Andel, T.H. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138 43. BENTHIC FORAMINIFERAL STABLE ISOTOPE STRATIGRAPHY OF SITE 846: 0 1.8 MA 1 A.C. Mix, 2 J. Le, 3 and NJ. Shackleton 4 ABSTRACT A stable isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high resolution record of deep sea δ 18 θ and δ 13 C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the δ 18 θ and δ 13 C records is concentrated in the well known orbital periods of 100, 41, and 23 k.y. In the 100 k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of δ 18 θ and especially of δ I3 C decreases in the 41 k.y. band as it grows in the 100 k.y. band, consistent with a transfer of energy into an orbitally paced internal oscillation. A weak 30 k.y. rhythm, present in both δ 18 θ and δ 13 C, may reflect nonlinear interaction between the 41 k.y. and 100 k.y. bands in the evolving climate system. In the 23 k.y. and 19 k.y. bands associated with orbital precession, δ 18 θ and δ 13 C are not coherent with each other on long time scales, and do not evolve like the 100 k.y. and 41 k.y. bands. This suggests that the source of the growing 100 k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100 k.y. cycle. Unlike the isotope records, the amplitude of 100 k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co vary with orbital eccentricity, rather than with global climate as reflected by δ 18 θ or δ 13 C. A source of this 100 k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100 k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100 k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon driven variation in sedimen tation rate at Site 846. INTRODUCTION Here, we document and tabulate stable isotope data from benthic foraminifera in the upper 60 m of ODP Site 846 from the tropical Pacific Ocean (3°06'S, 90°49'W, 3307 m water depth, Fig. 1). This site provides a high resolution record of δ 18 θ and δ 13 C at an open ocean site in the Peru Basin. Bottom waters in this basin presently are a mixture of Pacific Deep Water, which spills eastward over the East Pacific Rise at depths of 2500 3000 m, with water from the Antarctic Circumpolar Deep Water, which spreads northward along the South American margin (Lonsdale, 1976). At present, waters near 3300 m in the Peru Basin are warmer by ~0.2°C, lower in oxygen by 13 µmol/kg (Lonsdale, 1976), higher in phosphate by 0.1 µmol/kg (Levitus et al., 1993), and lower in δ 13 C of ΣCO 2 by about O.l‰ (Kroopnick, 1974) than sites west of the East Pacific Rise. These differences are small, but considered together are significant and are detected here in foraminiferal δ 13 C data. RESULTS Isotopic Data Of the benthic foraminiferal stable isotope data presented here, all of the 716 analyses of Cibicides wuellerstorfi and nine analyses of Uvigerina peregrina were determined at the College of Oceanic and Atmospheric Sciences Stable Isotope Laboratory of Oregon State University. The remaining 84 analyses of Uvigerina peregrina pre sented here were made at the Godwin Laboratory, University of Cambridge. All benthic foraminifers were hand picked from the > 150 Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer Julson, A., and van Andel, T.H. (Eds.), 1995. Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program). 2 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331 5503, U.S.A. 3 Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A. 4 Godwin Laboratory for Quaternary Research, University of Cambridge, Free School Lane, Cambridge, United Kingdom. µm size fraction. Typical measurements included 5 to 10 benthic foraminifers in a single analysis, but some samples were as small as two specimens. The instrument at Oregon State University is a Finnigan/MAT 251 gas source mass spectrometer, equipped with an Autoprep Systems automated carbonate device. Prior to isotopic analysis at OSU, for aminifers were cleaned ultrasonically in alcohol, dried, and then roasted for 1 hr at 400°C under high vacuum. Reactions of carbonates occurred on line with the mass spectrometer, under vacuum, in 100% orthophosphoric acid at 90°C. Precision of isotopic analyses of the OSU local carbonate standard (Wiley marble), measured in the same size range as the foraminiferal analyses, was ±0.06‰ for δ 18 θ and ±0.03‰ for δ 13 C (±1 σ, n = 578). Primary calibration to the PDB standard was through NBS 20, supplied by the U.S. National Institute for Standards and Technology, assuming NBS 20 δ 18 θ = 4A4‰ and δ 13 C = 1.06‰. Precision of isotopic analyses of this standard at OSU over the same period as the foraminiferal analyses was ±0.10%e for δ 18 θ and ±0.05‰ for δ 13 C (n = 31). Replicate analyses of C. wueller storfi were made in 18 samples, yielding a precision estimate within a species of ±O.IO‰ for δ 18 θ and ±0.08‰ for δ 13 C. We consider this a reasonable estimate of analytical precision for typical small volume foraminiferal samples. Mass spectrometry at the University of Cambridge was done on a VG/Isotech Prism instrument. Foraminiferal specimens were cleaned using 10% hydrogen peroxide in an ultrasonic bath and then reacted on line under vacuum in 100% orthophosphoric acid at 90°C using a VG Isocarb common acid bath system. Long term precision for δ 18 θ and δ 13 C of carbonate standards at University of Cambridge is about ±0.06‰ The calibration of carbonate isotopic values at Oregon State Uni versity and University of Cambridge is highly compatible. Isotopic analyses of the same sample depths from Site 846 at the two labora tories {Uvigerina peregrina at Cambridge, and Cibicides wueller storfi at OSU) yield results identical to paired analyses of these genera within each laboratory. This is consistent with earlier comparison of the laboratories by Zahn and Mix (1991), which found no significant offsets between samples of similar age from nearby cores. 839

Transcript of 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

Page 1: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), 1995Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138

43. BENTHIC FORAMINIFERAL STABLE ISOTOPE STRATIGRAPHY OF SITE 846: 0-1.8 MA1

A.C. Mix,2 J. Le,3 and NJ. Shackleton4

ABSTRACT

A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthicforaminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea δ 1 8 θ and δ13C over thepast 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the δ 1 8 θ and δ13C records is concentrated in the well-knownorbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of δ 1 8 θ and especially of δI3C decreases in the 41-k.y.band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y.rhythm, present in both δ 1 8 θ and δ13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolvingclimate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, δ 1 8 θ and δ13C are not coherent with each otheron long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y.oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at thissite also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rateis relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary withorbital eccentricity, rather than with global climate as reflected by δ 1 8 θ or δ13C. A source of this 100-k.y. cycle of sedimentationrate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energybalance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, highsedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that whenthe amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimen-tation rate at Site 846.

INTRODUCTION

Here, we document and tabulate stable isotope data from benthicforaminifera in the upper 60 m of ODP Site 846 from the tropicalPacific Ocean (3°06'S, 90°49'W, 3307 m water depth, Fig. 1). Thissite provides a high-resolution record of δ 1 8 θ and δ13C at an open-ocean site in the Peru Basin. Bottom waters in this basin presently area mixture of Pacific Deep Water, which spills eastward over the EastPacific Rise at depths of 2500-3000 m, with water from the AntarcticCircumpolar Deep Water, which spreads northward along the SouthAmerican margin (Lonsdale, 1976). At present, waters near 3300 min the Peru Basin are warmer by ~0.2°C, lower in oxygen by -13µmol/kg (Lonsdale, 1976), higher in phosphate by -0.1 µmol/kg(Levitus et al., 1993), and lower in δ13C of Σ C O 2 by about O.l‰(Kroopnick, 1974) than sites west of the East Pacific Rise. Thesedifferences are small, but considered together are significant and aredetected here in foraminiferal δ13C data.

RESULTS

Isotopic Data

Of the benthic foraminiferal stable isotope data presented here, allof the 716 analyses of Cibicides wuellerstorfi and nine analyses ofUvigerina peregrina were determined at the College of Oceanic andAtmospheric Sciences Stable Isotope Laboratory of Oregon StateUniversity. The remaining 84 analyses of Uvigerina peregrina pre-sented here were made at the Godwin Laboratory, University ofCambridge. All benthic foraminifers were hand-picked from the > 150

Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H.(Eds.), 1995. Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program).

2 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,OR 97331-5503, U.S.A.

3 Department of Geological Sciences, University of South Carolina, Columbia, SC29208, U.S.A.

4 Godwin Laboratory for Quaternary Research, University of Cambridge, Free SchoolLane, Cambridge, United Kingdom.

µm size fraction. Typical measurements included 5 to 10 benthicforaminifers in a single analysis, but some samples were as small astwo specimens.

The instrument at Oregon State University is a Finnigan/MAT 251gas-source mass spectrometer, equipped with an Autoprep Systemsautomated carbonate device. Prior to isotopic analysis at OSU, for-aminifers were cleaned ultrasonically in alcohol, dried, and thenroasted for 1 hr at 400°C under high vacuum. Reactions of carbonatesoccurred on line with the mass spectrometer, under vacuum, in -100%orthophosphoric acid at 90°C. Precision of isotopic analyses of theOSU local carbonate standard (Wiley marble), measured in the samesize range as the foraminiferal analyses, was ±0.06‰ for δ 1 8 θ and±0.03‰ for δ13C (±1 σ, n = 578). Primary calibration to the PDBstandard was through NBS-20, supplied by the U.S. National Institutefor Standards and Technology, assuming NBS-20 δ 1 8θ = -4A4‰ andδ13C = -1.06‰. Precision of isotopic analyses of this standard at OSUover the same period as the foraminiferal analyses was ±0.10%e forδ 1 8 θ and ±0.05‰ for δ13C (n = 31). Replicate analyses of C. wueller-storfi were made in 18 samples, yielding a precision estimate withina species of ±O.IO‰ for δ 1 8 θ and ±0.08‰ for δ13C. We consider thisa reasonable estimate of analytical precision for typical small-volumeforaminiferal samples.

Mass spectrometry at the University of Cambridge was done on aVG/Isotech Prism instrument. Foraminiferal specimens were cleanedusing 10% hydrogen peroxide in an ultrasonic bath and then reactedon-line under vacuum in 100% orthophosphoric acid at 90°C usinga VG Isocarb common acid bath system. Long-term precision forδ 1 8θ and δ13C of carbonate standards at University of Cambridge isabout ±0.06‰

The calibration of carbonate isotopic values at Oregon State Uni-versity and University of Cambridge is highly compatible. Isotopicanalyses of the same sample depths from Site 846 at the two labora-tories {Uvigerina peregrina at Cambridge, and Cibicides wueller-storfi at OSU) yield results identical to paired analyses of these generawithin each laboratory. This is consistent with earlier comparison ofthe laboratories by Zahn and Mix (1991), which found no significantoffsets between samples of similar age from nearby cores.

839

Page 2: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, NJ. SHACKLETON

o -

20 S -

80 W

Figure 1. Site 846 monitors deep waters at a depth of 3300 m in the Peru Basin,east of the East Pacific Rise. Here, deep waters reflect mixing of AntarcticCircumpolar Deep Water spreading northward along the eastern boundary withPacific Deep Water entering from the west, at 2500 to 3000 m across the EastPacific Rise. Map of deep-water flow vectors, and potential temperatures at3800 m, follows Lonsdale (1976). For comparison the location of Site 849 isshown, west of the East Pacific Rise.

To combine the isotopic data from Cibicides with those from Uvig-erina, we evaluate the isotopic offsets between these taxa in 75 of thesame samples (Fig. 2). Uvigerina yields δ 1 8 θ values 0.58 ± 0.18‰higher (Fig. 2A), and δ13C values 0.93 ± 0.18‰ lower (Fig. 2B) thanCibicides in the same samples from Site 846. These are statisti-cally identical to conventional values of +0.64 for the δ 1 8 θ offset(Shackleton, 1974) and -0.90 for the 513C offset (Duplessy et al., 1984)of Uvigerina-Cibicides. The standard deviations of the isotopic offsetsbetween species measured here are not significantly different fromexpected random analytical error on isotopic differences of pairedanalyses of foraminiferal samples. Thus, we use the previously pub-lished values of Shackleton (1974) and Duplessy et al. (1984) (1) tocorrect δ'8O of Cibicides to simulate that of Uvigerina and (2) tocorrect δ'3C of Uvigerina to simulate that of Cibicides. These correc-tions are identical to those used for Site 849 by Mix et al. (this volume).

We find no evidence for systematic variation of either δ'8O orδ13C offsets between species through time or with climate state at Site846. For example, there is no significant correlation between thespecies offsets for δ 1 8 θ and δ13C (r = 0.01, n = 75, Fig. 2C). A singleanomalous sample exists in which δ 1 8 θ of Uvigerina is lower thanthat of Cibicides, but this sample lies on a major isotopic transitionfrom glacial to interglacial conditions. It probably reflects bioturba-tional mixing of younger (mostly interglacial) Uvigerina into sedi-ments containing older (mostly glacial) Cibicides. As far as we cantell, this is an isolated occurrence within this data set and has nosignificant bearing on the major results. In Figures 2D and 2E, weillustrate the oxygen and carbon isotopic offsets between species as afunction of glacial state (as recorded by δ 1 8 θ in Cibicides), and inFigures 2F and 2G, the same offsets are shown as a function of δ13Cin Cibicides. Lack of strong correlation in all of these cases suggeststhat isotopic offsets between species are not a function of the state ofclimate. We conclude that variations in the isotopic offsets are essen-tially random around their mean values at this site, and combine thedata sets from the two species into a single depth series, after makingconstant offset corrections noted above. Where replicate analyses of

the same species, or paired analyses of two species, were made in thesame sample, the species-corrected isotope values were averagedprior to time-series analysis. All data are tabulated in Appendix A.

Depth Model

Because ODP cores are taken in discrete intervals of -9.5 m, a depthmodel is required to form a long stratigraphic section. In Figure 3, weillustrate δ 1 8 θ data from Holes 846B, 846C, and 846D, for three depthmodels. The simplest model is based on advances of the pipe stringmeasured by eye from the drilling floor. This is referred to as metersbelow seafloor (mbsf). With this model (Fig. 3A), the oxygen isotopedata appear to conflict among holes. This confirms that gaps or over-laps must exist between sequential cores.

A second depth scale (referred to as meters composite depth, ormcd) was determined at sea by linearly translating cores up or down,with no stretching or squeezing of depths within each core, to bestmatch variations in GRAPE density, reflectance, and magnetic suscep-tibility in the three holes (Hagelberg et al., 1992). With this depth scale,the composite δ'8O record is more nearly continuous, and the matchbetween holes is good (Fig. 3B).

Slight improvements in this record (Fig. 3C) come from a thirddepth scale, called revised meters composite depth (rmcd). This scaleallows for squeezing and/or stretching of core intervals to best matchshipboard GRAPE density and reflectance data at all overlapping inter-vals in the three holes relative to a single spliced reference record. Theadjustments to the mcd scale, which create the rmcd scale, are foundby correlating continuously measured data from each hole to a corre-sponding interval of a composite section developed at sea, using a con-tinuous Fourier mapping function (Martinson et al., 1982). The rmcddepth models and correlation methods are documented by Hagelberget al. (this volume). The stable isotope data, which were not used todefine the mcd or rmcd depth models, clearly confirm the necessity ofusing a composite depth scale to assemble a complete stratigraphicsection. For the remainder of this study, we use the rmcd depth scale.

Age Model

To transform the stable isotope records from Site 846 into an ageframework, we correlate the Site 846 δ 1 8 θ data on the rmcd scale to areference δ 1 8 θ curve on an existing age scale. The reference curve forthe interval 0 to 0.6 Ma is the SPECMAP planktonic isotope com-posite record (Imbrie et al., 1984). For the interval 0.6 to 1.8 Ma, itis the composite benthic foraminiferal δ 1 8 θ record from Site 677(Shackleton et al., 1990). We chose the SPECMAP record for the up-per portion of the reference curve because the details of the youngerinterval were not the primary focus at Site 677. For the late Quater-nary interval, the SPECMAP record is more complete, better tested,and more widely used as a reference age model (e.g., Pisias et al.,1990; Imbrie et al., 1992,1993).

We constructed the reference δ I 80 record by transforming theSPECMAP planktonic δ 1 8 θ stack from 0 to 0.6 Ma (which wasreported by Imbrie et al., 1984, in standard deviation units, rather thanδ 1 8θ per mil units) to match the mean and standard deviation of theSite 677 benthic δ 1 8 θ data over the same interval. We then spliced thetransformed SPECMAP δ l 8 0 and untransformed Site 677 δ 1 8θrecords together at 0.6 Ma, where a perfect match of δ 1 8 θ valuesoccurred. Prior to using this composite as a reference curve, wesmoothed it with an 18-k.y. Gaussian filter to remove essentially allvariations at periods <9 k.y., to avoid unrealistic correlation of ana-lytical noise. This filter width was the narrowest that would yield areasonably gap-free record over the 0- to 1.8-Ma interval studiedhere. We then used the technique of Martinson et al. (1982) to corre-late the composite δ 1 8 θ record from Site 846 to this reference recordcontinuously, with ages defined at 10-cm intervals. The δ 1 8 θ datafrom Site 846 are shown on this age model, along with the smoothedreference δ 1 8θ record, which constrains the ages, in Figure 4.

840

Page 3: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

: JIIL

0.0 0.4 0.8

δ 1 8O Uvigerina - Cibicides

-1.2 -0.8 -0.4

S 13C Uvigerina - Cibicides

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

• *- "*----I

• * x "A .

i T i

3.0 4.0 5.0

δ 1 8 θ (Cibicides+ 0.64)

-0,2

-0.4

0.6

-0.8

-1.0

-1.2

-1.4

-1.6

-

-

• -

• ****.-0.0 0.4 0.8

Δ δ 1 8 O Uvigerina - Cibicides

3.0 4.0 5.0

δ 1 8 θ (Cibicides+ 0.64)

1.0

0.8

0.6

0.4

0.2

0 0

-0.2

0.4

-

-

-

-

.V

i * i i i

-0.8 -0.4 0.0

δ 1 3 C (Cibicides)

Cib

)

;

5o

CO

-0.6

-0.8

-1.0

-1.2

-1.4

* N* .

_I I I

* >•. . *

T i

-0.4 0.0

δ 1 3 C (Cibicides)

Figure 2. Isotopic offsets between species in the same samples. A. Histogram of δ 1 8 θ offsetsbetween Uvigerina peregrina and Cibicides wuellerstoΦ (Δδ18O, mean = 0.58 ± 0.18, n = 75).B. Histogram of δ13C offsets between Uvigerina peregrina and Cibicides wuellerstoΦ (Δδ13C,mean = -0.93 ± 0.18, n = 75). C. Comparison of δ 1 8 θ and δ13C species offsets reveals nocorrelation between the isotopic offsets. The sample with Δδ18O <O appears to be an artifact ofbioturbation, mixing together two species from different times. D. Δδ 1 8O f f / v,_α è j as a functionof δ'8O, demonstrates no significant variation of species offsets in oxygen isotopes related toglacial state. E. δnC(Uvi_Cib) as a function of δ 1 8θ, demonstrates no significant variation ofspecies offsets in carbon isotopes related to glacial state. F. Δδ 1 8O f [ / v,_α èJ as a function of δ13C,demonstrates no significant variation of species offsets in oxygen isotopes related to carbonreservoir changes. G. ΔδnC(Uvi_Cib) as a function of δ13C, demonstrates no significant variationof species offsets in oxygen isotopes related to carbon reservoir changes. These tests indicatethat both δ 1 8 θ and δ13C offsets between Uvigerina peregrina and Cibicides wuellerstoΦ appearrandom at Site 846, not significantly different from analytical noise. These results support theuse of constant isotopic corrections between species.

To demonstrate consistency with other benthic isotope records inthe region, in Figure 5 the benthic δ 1 8 θ and δ13C isotope records inSite 846 are compared to those of Site 849, just west of the EastPacific Rise at 0° 1 l'N, 110°3 l'W, 3851 m water depth (Mix et al., thisvolume). The two sites yield extremely similar variations in both518O and δ13C. This confirms that both sites have essentially complete

stratigraphic records over the past 1.8 Ma and are well correlated toeach other through the reference δ 1 8 θ record of SPECMAP and Site677. One exception to the excellent correlation among sites is δ 1 8θstage 17, near 0.7 Ma, which appears to be poorly represented in Site846 compared to Site 849 (Fig. 5 A). This interval measured in Section138-846D-3H-1 contains a large vertical burrow visible in the core

841

Page 4: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, NJ. SHACKLETON

Figure 3. δ 1 8 θ from Site 846, plotted on three depth scales, documents the need for a compositedepth scale. In all cases, data from Hole 846B are a dashed line, from Hole 846C, a dottedline, and from Hole 846D, a solid line. Small closed symbols are δ 1 8 θ data from Cibicideswuellerstorfi + 0.64. Larger open symbols are δ 1 8 θ data from Uvigerina peregrina. The threedepth scales are (A) meters below seafloor (mbsf, depths assigned by drillers), (B) meterscomposite depth (mcd, defined by Hagelberg et al, 1992), (C) revised meters composite depth(rmcd, defined by Hagelberg et al., this volume). The rmcd scale is used here.

3.01 j

I35 J u l !i<4ÅhàJ\o J t (1 fU•• I f 1" 4•5 I/J lir " V tfl<° If- f • f IP5.0 p •-: ^ »

— i 1 i i i i i

Age (Ma)

Figure 4. Composite δ'8O record of Site 846 plotted vs. age (solid line withsymbols, replicate analyses averaged) superimposed on the δ 1 8 θ referencerecord (dashed line, composed of the SPECMAP and Site 677 δ 1 8 θ records,smoothed with an 18-k.y. Gaussian filter).

photograph (Mayer, Pisias, Janecek, et al., 1992). This burrow mayhave obliterated part of stage 17, and thus the range of isotopic valuesin this stage are misrepresented in this data set. For purposes of cal-culating spectra and bandpass-filtered isotope records, we replace thisshort data gap in Site 846 with the δ'sO and δ'3C values from Site 849documented by Mix et al. (this volume).

Over the past 1.8 Ma, the mean δ I 80 values at Site 846 are identicalto those at Site 849. In contrast, 613C values at Site 846 are almostalways slightly lower than those at Site 849 (Fig. 5B). This difference,on average 0. l‰, is consistent with modern water mass distributions(Kroopnick, 1974; Lonsdale, 1976). Lower δ13C of the deep watermasses in the Peru Basin may result from both higher nutrient concen-trations and lower δ13C values of deep waters spilling over the EastPacific at a depth of 2500 to 3000 m, relative to deep waters west ofthe East Pacific Rise at 3850 m, and oxidation of low-δ'3C organic mat-ter sinking from the highly productive surface waters along the easternboundary and South Equatorial Current (Mix et al., this volume).

The continuous age-depth relationship developed here for theinterval 0 to 1.8 Ma of the Site 846, based on the stable isotope record,is compared in Figure 6 with the age model generated from correlat-ing GRAPE density variations to orbital variations at discrete points

00 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Age (Ma)

Figure 5. Comparison of (A) δ 1 8 θ and (B) δ°C records from Site 846 (solidline with symbols) and Site 849 (dashed line, data and age model reported byMix et al., this volume) vs. age. The δ 1 8 θ records are similar and have the samemean. The δ'3C values at Site 846 are generally lower than those at Site 849by about 0. l‰, reflecting small difference in the δ13C value of deep watermasses east and west of the East Pacific Rise.

(Shackleton et al., this volume). In most cases, the two age models arenearly identical. Over the interval 1.3 to 1.7 Ma, however, the isotopicage model developed here is about 41 k.y. younger at equivalentdepths than the GRAPE age model. In this interval, the stable isotoperecords are dominated by the 41-k.y. cycle of orbital obliquity; thus,the difference in the two age models implies a jump of one fullobliquity cycle between the two age models. The continuous agemodel generated here (and tabulated in Appendix B) produces a bet-ter match of Site 846 with the δ 1 8 θ and δ13C records of Site 677

842

Page 5: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

0-1.8 Ma

30 40 50

DEPTH (rmcd)

Figure 6. Age vs. depth for Site 846, based on correlation of δ 1 8 θ records here(solid line), and tuning of GRAPE density variations to orbital variations(discrete points, from Shackleton et al., this volume). Throughout most of therecord, the age models are essentially identical. An exception is the intervalfrom -1.3 to -1.7 Ma, in which the isotopic age model developed here is onaverage 41-k.y. younger than the GRAPE age model at equivalent depths.

(Shackleton et al., 1990), and Site 849 (Mix et al., this volume) asillustrated in Figures 4 and 5.

DISCUSSION

Earth's orbital rhythms in δ 1 8θ and δI3C

We compare the time series of δ 1 8 θ and δ13C from Site 846, to seewhether variations in these parameters are coherent with each other,and whether their variance is concentrated in the orbital bands as theyare elsewhere (Shackleton et al., 1990; Imbrie et al., 1992; Mix et al.,this volume). Power spectra of the two time series (Fig. 7A) revealthat both contain significant concentrations of variance at the periodsof orbital eccentricity (100 k.y.) and obliquity (41 k.y.). In thesebands, coherence between δ 1 8 θ and δ13C (Fig. 7B) is high. Power issignificantly concentrated at the periods of orbital precession (23 k.y.and 19 k.y.) in the δ'8O record. Variations in δ13C are apparent in the23-k.y. band, but the coherence with δ 1 8θ is weak. At the 19-k.y.period, there is no significant concentration of power in δ13C, and nocoherence with δ 1 8 θ. This pattern was also detected at Site 849 (Mixet al., this volume).

A weak concentration of coherent power in δ'8O and δ13C is appar-ent in Figures 7 A and 7B at a frequency of 0.033 k.y."1 (period of 30k.y.). This matches variations that would result from a nonlinear inter-action between the 100- and 41-k.y. periods (i.e., 1/30 = 1/100 + 1/41).If this feature is real, it may be evidence for a nonlinear response ofboth glaciation and the carbon cycle to orbital forcing (Hagelberg etal., 1991).

At the 100-k.y. period, a phase of-8° ± 10° indicates that increasesin oceanic δ'3C are either in phase with, or lead interglacial events(-δ18θ) by a few thousand years (and similarly decreases in δ13C are inphase with or lead glacial events) (Fig. 7C). At shorter periods δ13C lags-δ 1 8 θ significantly, with a phase of 12° ± 9° at the 41-k.y. period anda phase of 41 ° ± 22° at the 23-k.y. period. Although these are relativelysmall variations in phase, they are significant, and essentially identicalto those found at Site 849 (Mix et al., this volume). Over time intervalsshorter than a few hundred thousand years (the steady-state residencetime of carbon in the oceans), the mean oceanic δ13C value reflects thesize of the global organic carbon reservoir relative to inorganic carbonin the oceans (Shackleton, 1977). Under the assumptions that changesin deep Pacific δ'3C reflect the mean oceanic budget and that the size

100ky

41ky

H bw

δ O 846 (dashed)

6 1 3 C 846 (solid)

Frequency (ky"^)

Figure 7. A. Power spectra of δ 1 8 θ (dashed line) and δ13C (solid line) indicatesignificant concentrations of variance at periods of 100 k.y. (similar to orbitaleccentricity) and 41 k.y. (similar to orbital obliquity) in both isotopes over theinterval 0 to 1.8 Ma. In addition, both isotopes contain concentrations of powerin the 23-k.y. band (similar to orbital precession), and perhaps at a period of30 k.y. (a possible combination tone of the 100- and 41-k.y. bands). Onlyδ l 8 0 concentrates power at the 19-k.y. band. B. Coherency spectrum. The twoisotope records are strongly coherent with each other (at 80% confidence)where power is concentrated only in the 100-, 41-, and 30-k.y. bands. Coher-ence is weak in the 23-k.y. band and absent in the 19-k.y. band. C. Phasespectrum. In the 100-k.y. band, δ13C leads - δ 1 8 θ , with phase = -8° ± 10° (i.e.,highest oceanic δ13C occurs at or just prior to interglacial extremes), while atshorter periods δ13C lags - δ 1 8 θ (phase = 12° ± 9° at the 41-k.y. period, and 41°± 22° at the 23-k.y. period).

of the organic carbon reservoir responds to glacial-to-interglacial cli-mate changes, Mix et al. (this volume) argue that the changing phaseof δ13C relative to -δ 1 8 θ, from low to high frequencies, results from a1- to 2-k.y. exponential response time for transfer of carbon betweenthe organic and inorganic pools. This time constant is long enoughthat changes in the budget of soil and/or shallow sedimentary carbon,rather than living biomass (Shackleton, 1977), are the most likelysource of mean oceanic δ13C change. To confirm this inference, theassumption that the deep Pacific δ13C records simulate the globalaverage oceanic record will require long detailed time series of benthicforaminiferal stable isotopes from all major water masses in theglobal oceans.

Evolution of Climate Variability

To examine long-term evolution of the isotopic signals in the pri-mary orbital bands, we plot band-pass filtered versions of the δ l 8 0 andδ13C time series (Fig. 8). In Figure 8, the sign of δ 1 8 θ is reversed sothat high δ 1 8 θ plots with low δ13C, and δ13C is multiplied by 2 to make

843

Page 6: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, N.J. SHACKLETON

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

00.10

0.00

-0.10

-

0.2

liJJIW

0.4

j j . j j 11 j

0.6 0.8 1.0 1.2

vv 1 | p

1.4 1.6 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

AGE (Ma)

Figure 8. The δ'8O (solid line, sign reversed) and δ°C (dashed line, multiplied by 2 for scaling)records from Site 846 are filtered in the dominant orbital periods, to assess time-evolution of thesesignals. A. In the 100-k.y. band, δ'8O and δ13C amplitude increases in the younger record. The twoisotopic indices are coherent in this band younger than 1.2 Ma. B. In the 41-k.y. band, the amplitudeof δ 1 8 θ and δ'3C decreases in the younger record. C. In the 21.2-k.y. band, which encompasses thedominant precessional periods of 23 and 19 k.y., amplitude modulation of δ 1 8 θ and δ13C is not closelylinked, and neither evolves similar to the longer periods.

average amplitudes appear equal in the two isotopes. This is a con-venience for visualization only. In the 100-k.y. band (Fig. 8A, centerfrequency = 0.010 k.y.-1, bandwidth = 0.010 k.y.-1), - δ 1 8 θ and δ13Chave relatively high amplitudes and co-vary in the interval 0 to 1.2Ma, with especially strong variations younger than 0.7 Ma. Prior to1.2 Ma, both isotope systems had lower amplitude variations andwere weakly coupled. This evolution of isotopic amplitudes in the100-k.y. band confirms earlier studies of other sites (e.g., Pisias andMoore, 1981; Ruddiman et al., 1986; Shackleton et al., 1990; Raymoet al., 1990).

In the 41-k.y. band (Fig. 8B, center frequency = 0.0244 k.y."1,bandwidth = 0.0100 k.y.~1), the amplitude of δ'8O variations decreasesby a factor of two, from high values prior to 1.2 Ma. The amplitude ofδ13C variations in this band decreases by a factor of four, with a similarpattern. This apparent trade-off of variance from the 41 -k.y. band to the100-k.y. band indicates a transfer of energy in the Pleistocene climatesystem starting around 1.2 Ma. Imbrie et al. (1993) summarized arange of possibilities to explain this based on simple paleoclimatemodels, and postulated one cause as a nonlinear positive feedback oflarge ice sheets. Because of the great inertia of large ice sheets, thisfeedback may channel energy from shorter periods into an orbitallypaced internal oscillation near the 100-k.y. period. This process maybegin when variations at other periods, such as the 41-k.y. obliquityband, become large enough to trigger the oscillation.

Amplitude modulation in the 23-19 k.y. precession band (Fig. 8C,center frequency = 0.0494 k.y."1, bandwidth = 0.0190 k.y.-1) is differ-ent in the δ 1 8 θ and δ13C time series. This is consistent with therelatively low coherency between isotope systems in this band (Fig.7). Although the amplitudes of both isotope systems vary greatly inthis band, there is no obvious long-term drift in the amplitudes similarto that in the 100-k.y. band. Lack of coupling between the evolving100-k.y. cycle and the amplitude of the 23- to 19-k.y. climate rhythmsover long time intervals conflicts with the predictions of some simpleclimate models, which create a 100-k.y. cycle by a nonlinear responseto precession (Imbrie and Imbrie, 1980).

Summarizing, the apparent interplay of the 41- and 100-k.y. cyclesin the evolving climate system point toward feedback involving high-latitude processes, where orbital obliquity dominates insolation

change relative to smaller effects of orbital precession (Berger, 1978).The co-variance of δ 1 8 θ and δ13C in these bands suggests that relation-ships between the organic carbon pool and ice sheets are key pro-cesses in this transition. The relatively rapid initiation of the 100-k.y.oscillation after 1.2 Ma need not indicate equally rapid changes inboundary conditions, such as rapid uplift of Tibet at this time. Instead,the transition may have been a chance occurrence that could havebegun at a number of times, as long as slowly changing boundaryconditions were favorable. This view may be consistent with tectonicreconstructions, which seem to require much slower, and older, upliftof mountain systems (Molnar et al., 1993), as well as with hypotheseslinking global climatic cooling and enhanced sensitivity of climaticchange to plateau uplift (Ruddiman and Kutzbach, 1989; Raymo andRuddiman, 1992).

Sedimentation Rates

The sedimentation rate history implied by the δ 1 8 θ age modelapplied here to Site 846 is illustrated in Figure 9. Sediment accumu-lation rates are uncorrected for coring distortion and, thus, may be onaverage 10% higher than actual rates cause by the lengthening of thesediment depths associated with assembly of the composite depthsection (Hagelberg et al., 1992, this volume; Harris et al., this vol-ume). The rates found here vary from -15 to -70 m/m.y., apparentlyrhythmically. The dominant period of variation in sedimentation rateis 100 k.y., similar to but not significantly coherent with that of- δ 1 8 θ (Fig. 10).

To assess the reason for this low coherency between sedimentationrate and - δ 1 8 θ in spite of the similarity of their dominant periods, wecompare bandpass-filtered versions of the sedimentation-rate curvewith those of δ'8O, δ13C, and orbital eccentricity (from Berger, 1978)in Figure 11. In this figure, the vertical scale represents deviationsfrom mean sedimentation rate (represented by the solid line) withinthe 100-k.y. band (frequency 0.010 k.y.-1, bandwidth 0.010 k.y.-1).For scaling on the plots, the bandpassed δ 1 8 θ record was multipliedby 30 (Fig. 11 A), and the bandpassed δ13C record was multiplied by-60 (Fig. HB). The 100-k.y. bandpassed variations in orbital eccen-tricity are multiplied by 600 (Fig. HC). Note that scaling of the

844

Page 7: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

A 1 f l 40-1.8 Ma

Figure 9. Sedimentation rates at Site 846, calculated as the first derivative ofthe age-depth model developed here. The sedimentation rate variations containa ~ 100-k.y. rhythm throughout the interval 0 to 1.8 Ma.

filtered isotope and orbital eccentricity curves is only for convenienceof visual comparison with sedimentation rates.

The amplitude of the sedimentation rate variations in the 100-k.y.band is relatively constant through time, in contrast to the growth inamplitude of δ 1 8 θ (Fig. 11 A) and δ13C (Fig. HB). In the intervalyounger than 0.9 Ma, high sedimentation rates are clearly linked withglacial events as recorded by -δ 1 8 θ, or carbon reservoir shifts recordedby δ13C. Prior to 0.9 Ma, there is no clear link between sedimentationrates and global climate as recorded by either δ'8O or δ'3C, but there isa strong correlation between high sedimentation rates and high orbitaleccentricity in the 100-k.y. band (Fig. 11C). It appears that an older linkbetween variations in sedimentation rate and orbital eccentricity isreplaced near 0.9 Ma by a relationship with ice volume, when theamplitude of ice-volume variations becomes large enough to becomethe dominant influence on global climates.

The existence of a strong 100-k.y. rhythm in sedimentation rateprior to the growth of a strong 100-k.y. cycle of ice volume is puz-zling, because direct variations of insolation in this band are verysmall (Berger, 1978). Most models rely on the existence of ice sheetswith long response times (Imbrie et al., 1993), perhaps coupled to theslow isostatic response of Earth's crust (DeBlonde and Peltier, 1991),to create 100-k.y. cycles in climate. The strong 100-k.y. rhythm insedimentation rates without a link to glaciation or sea level requires asource of 100-k.y. power in the climate or sedimentary systems otherthan ice sheets. The mechanism does not appear to be deep-oceancirculation, because the amplitude of global scale watermass varia-tions appears to evolve through time, unlike the sedimentation ratescalculated here (Raymo et al., 1990; Mix et al., this volume).

Crowley et al. (1992) suggested (based on energy balance modelresults) that a source of 100-k.y. power in climate, independent of ice,could lie in the tropics, where large continental land masses straddlethe equator. Here, maximum sun angle is reached twice each year nearthe vernal and autumnal equinoxes. With varying precession of theequinoxes, changes in continental heating may drive monsoonal cli-mate systems at either equinox. In their model, this converts short-period precessional forcing into a 100-k.y. (and 400-k.y.) rhythmicresponse that mimics orbital eccentricity.

The mechanisms to transfer continental heating cycles into oceanicsedimentation could be steering of winds, which affects upwelling andlocal biological productivity, or changes in rainfall on the continent,which could affect local weathering and erosion. The finding thatmajor sediment composition variations are small at Site 846 relative tosedimentation rate changes (Emeis et al., this volume) suggests thatboth these effects may be important, because accumulation rates ofboth biogenic and terrigenous components vary. These mechanismsmay account for the in-phase relationship between sedimentation ratesat Site 846 and eccentricity prior to 0.9 Ma. If the tropical continentalheating hypothesis of Crowley et al. (1992) proves to be viable as amechanism to create 100-k.y. climate rhythms, two questions arise: (1)Why is there no strong 400-k.y. cycle of sedimentation rate (Fig. 10),as would be expected from a nonlinear response of monsoons toprecession? and (2) Why do ice-volume variations appear to over-whelm this co-variation of sedimentation rates with eccentricity in theinterval younger than 0.9 Ma?

100ky

41 kyH bw

o

-100

00.00 0.02 0.04 0.06

Frequency (ky~^)

Figure 10. A. Power spectra of δ 1 8 θ (dashed line) and sedimentation rate (solidline) indicate that sedimentation rates vary with a dominant period of 100 k.y.(similar to the dominant period of δ 1 8θ, or the shorter dominant period of orbitaleccentricity). B. Coherency spectrum, demonstrates that sedimentation rate isnot coherent with δ 1 8 θ in the dominant 100-k.y. band over the interval 0 to 1.8Ma. C. Phase spectrum. In the 100-k.y. band, phase of sedimentation rate is about-180°, indicating highest sedimentation rates associated on average with glacialintervals. Low coherency precludes detailed interpretation of phase, however.

SUMMARY AND CONCLUSIONS

1. A detailed record of δ 1 8 θ and δ13C measurements of the benthicforaminifers Cibicides wuellerstorfi and Uvigerina peregrina, overthe interval from 0 to 1.8 Ma in Site 846, confirms the necessity ofassembling a composite depth section to match data among holes atODP sites, with a depth model different from standard drilling depths.

2. We find no evidence for systematic variations in the δ 1 8θ orδ13C isotopic offsets between the two species at this site, outside ofnormal analytical noise on foraminiferal samples.

3. An age model is documented for Site 846. This model assumesthat the SPECMAP δ 1 8 θ age model (Imbrie et al., 1984) applies from0 to 0.6 Ma and that the Site 677 age model of Shackleton et al. (1990)applies from 0.6 to 1.8 Ma. With this age model, Site 846 is wellcorrelated with other records including that of Site 849 (Mix et al.,this volume).

4. There is a strong linear relationship between δ'8O and δ13C inthe 100- and 41-k.y. bands associated with orbital eccentricity andobliquity. A weak relationship may be present at the 23-k.y. preces-sional period, but none is detected at the 19-k.y. period. Variations inboth isotope systems may be present at periods near 30 k.y., a periodexpected to result from non-linear interaction between orbital eccen-tricity and tilt.

5. Varying phase of δ13C relative to - δ 1 8 θ at different periods,especially a significant lag at shorter periods, suggests an exponentialresponse time for the organic carbon reservoir of 1 to 2 k.y., consistentwith that found by Mix et al. (this volume).

845

Page 8: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, N.J. SHACKLETON

100 k.y. cycle: SOLID = Sedimentation Rate. DASHED = δ ' °Ox 30

100 k.y. cycle: SOLID = Sedimentation Rate. DASHED = δ ' J C x -60

100 k.y. cycle: SOLID = Sedimentation Rate. DASHED = eccentricity x 600

0.8 1.0

Age (Ma)

Figure 11. Bandpass-filtered records of sedimentation rates compared to isotopic and orbital signalsin the 100-k.y. band (center frequency 0.010 k.y.~1, bandwidth 0.010 k.y.~1) indicate a strong linkof sedimentation rates to glacial-interglacial climate cycles in the interval 0 to 0.9 Ma, but a link toorbital eccentricity (or the amplitude of orbital precession) from 0.9 to 1.8 Ma. A. Comparison offiltered sedimentation rate (solid line) and δ 1 8 θ (dashed line, multiplied by 30 for visual scale, up =glacial extreme), demonstrates strong correlation from 0 to 0.9 Ma. B. Comparison of filteredsedimentation rate (solid line) and δ13C (dashed line, multiplied by -60 for visual scale, up = lowoceanic δ'3C), demonstrates strong correlation from 0 to 0.9 Ma. C. Comparison of filteredsedimentation rate (solid line) and orbital eccentricity (dashed line, multiplied by 600 for visualscale, up = high eccentricity or high amplitude of precession), demonstrates strong correlation from0.9 to 1.8 Ma.

6. The long-term evolution of the orbital climate rhythms is dif-ferent in each band. The 100-k.y. rhythm grows through time in bothδ 1 8 θ and δ'3C, from low amplitudes prior to 1.2 Ma to highest ampli-tudes in the last few 100 k.y.. In the 41-k.y. band, greatest amplitudesoccur prior to 1.2 Ma. Decreasing amplitude in this band is consistentwith a transfer of energy from the 41-k.y. period to the growing100-k.y. period of climate, as envisioned by the inertial ice feedbackof Imbrie et al. (1993). In the precession bands (23- and 19-k.y.periods), amplitude modulation of the δ 1 8 θ and 613C records appearsto be at least partially independent of each other and also independentof the long-term evolution of the 100- and 41-k.y. cycles. Thus, thegrowing 100-k.y. climate cycle is probably not driven by a nonlinearresponse to precessional forcing.

7. Sedimentation rates at Site 846 vary with a strong 100-k.y.cycle, ranging from about 15 to 70 m/m.y. Unlike the stable isotoperecords, the amplitude of sedimentation rate variations in the 100-k.y.band is relatively constant over the past 1.8 Ma. Younger than 0.9 Ma,high sedimentation rates in this band are associated with glacialstages. Prior to 0.9 Ma, there is a strong link between sedimentationrate and orbital eccentricity. A source of 100-k.y. power in deep-seapaleoclimate records, independent of ice volume, may be seasonalsolar heating of large equatorial continents. In an energy balancemodel this produces a 100-k.y. monsoon cycle in nonlinear responseto orbital precession (Crowley et al., 1992). Sedimentation rates atSite 846 thus may reflect monsoonal steering of winds that influencelocal upwelling and biogenic sedimentation, and/or changes in rain-fall that affect local weathering, erosion and sedimentation of ter-rigenous material.

ACKNOWLEDGMENTS

We thank the Shipboard Scientific Party and ODP curatorial stafffor their efforts in obtaining Leg 138 materials, as well as NSF,USSAC, and NERC for financial support. The laboratory assistanceof A. Morey, J. Wilson, B. Rugh, and M. Hall is greatly appreciated.A careful review by W. Prell improved the manuscript.

REFERENCES*

Berger, A., 1978. Long-term variations of caloric insolation resulting from theEarüYs orbital elements. Quat. Res., 9:139-167.

Crowley, T.J., Kim, K.-Y, Mengel, J.G., and Short, D.A., 1992. Modeling100,000-year climate fluctuations in pre-Pleistocene time series. Science,255:705-707.

DeBlonde, G., and Peltier, W.R., 1991. A one-dimensional model of continen-tal ice volume fluctuations through the Pleistocene: implications for theorigin of the mid-Pleistocene transition. /. Clim., 4:318-344.

Duplessy, J.-C, Shackleton, NJ., Matthews, R.K., Prell, W. Ruddiman, W.F.,Caralp, M. and Hendy, CH., 1984. 13C record of benthic foraminifera inthe last interglacial ocean: implications for the carbon cycle and the globaldeep water circulation. Quat. Res., 21:225-243.

Hagelberg, T., Shackleton, N., Pisias, N., and Shipboard Scientific Party, 1992.Development of composite depth sections for Sites 844 through 854. In

* Abbreviations for names of organizations and publications in ODP reference lists followthe style given in Chemical Abstracts Service Source Index (published by AmericanChemical Society).

846

Page 9: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

Mayer, L., Pisias, N., Janecek, T, et al., Proc. ODP, Init. Repts., 138 (Pt.1): College Station, TX (Ocean Drilling Program), 79-85.

Hagelberg, T.K., Pisias, N.G., and Elgar, S.L., 1991. Linear and nonlinearcouplings between orbital forcing and the marine δ 1 8 θ record during thelate Neogene. Paleoceanography, 6:729-746.

Imbrie, J., Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla,G., Kutzbach, J., Martinson, D., Mclntyre, A., Mix, A., Molfino, B.,Morley, J., Peterson, L., Pisias, N., Prell, W., Raymo, M., Shackleton, N.,and Toggweiler, J., 1993. On the structure and origin of major glaciationcycles, 2. The 100,000-year cycle. Paleoceanography, 8:699-735.

Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G.,Kutzbach, J., Martinson, D.G., Mclntyre, A., Mix, A.C., Molfino, B.,Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E.,Shackleton, NJ., and Toggweiler, J.R., 1992. On the structure and originof major glaciation cycles, 1. Linear responses to Milankovitch forcing.Paleoceanography, 7:701-738.

Imbrie, J., Hays, J.D., Martinson, D.G., Mclntyre, A., Mix, A.C., Morley, J.J.,Pisias, N.G., Prell, W.L., and Shackleton, NJ., 1984. The orbital theory ofPleistocene climate: support from a revised chronology of the marine δI8Orecord. In Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (Eds.),Milankovitch and Climate (Pt. 1): Dordrecht (D. Reidel), 269-305.

Imbrie, J., and Imbrie, J.Z., 1980. Modeling the climatic response to orbitalvariations. Science, 207:943-953.

Imbrie, J., Mix, A.C., and Martinson, D.G., 1993. Milankovitch theory viewedfrom Devils Hole. Nature, 363:531-533.

Kroopnick, P., 1974. The dissolved O2-CO2-13C system in the eastern equato-

rial Pacific. Deep-Sea Res. Part A, 21:211-227.Levitus, S., Conkright, M.E., Reid, J.L., Najjar, R.G., andMantyla, N.A., 1993.

Distribution of nitrate phosphate, and silicate in the world oceans. Prog.Oceanogn, 31:245-273.

Lonsdale, P., 1976. Abyssal circulation of the southeastern Pacific and somegeological implications. J. Geophys. Res., 81:1163-1176.

Martinson, D.G., Menke, W., and Stoffa, PL., 1982. An inverse approach tosignal correlation. J. Geophys. Res., 87:4807^818.

Mayer, L., Pisias, N., Janecek, T, et al., 1992. Proc. ODP, Init. Repts., 138(Pts. 1 and 2): College Station, TX (Ocean Drilling Program).

Molnar, P., England, P., and Martinod, J., 1993. Mantle dynamics, uplift of theTibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31:357-396.

Pisias, N.G., Mix, A.C., and Zahn, R., 1990. Nonlinear response in the globalclimate system: evidence from benthic oxygen isotopic record in coreRC13-110. Paleoceanography, 5:147-160.

Pisias, N.G., and Moore, T.C., Jr., 1981. The evolution of Pleistocene climate:a time series approach. Earth Planet. Sci. Lett., 52:450-458.

Raymo, M.E., and Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoicclimate. Nature, 359:117-122.

Raymo, M.E., Ruddiman, W.F., Shackleton, NJ., and Oppo, D.W., 1990.Evolution of global ice volume and Atlantic-Pacific δ13C gradients over thelast 2.5 m.y. Earth Planet. Sci. Lett., 97:353-368.

Ruddiman, W.F., and Kutzbach, J.E., 1989. Forcing of late Cenozoic northernhemisphere climate by plateau uplift in southern Asia and the AmericanWest. J. Geophys. Res., 94:18409-18427.

Ruddiman, W.F., Raymo, M., and Mclntyre, A., 1986. Matuyama 41,000-yearcycles: North Atlantic Ocean and northern hemisphere ice sheets. EarthPlanet. Sci. Lett, 80:117-129.

Shackleton, NJ., 1974. Attainment of isotopic equilibrium between oceanwater and the benthonic foraminifera genus Uvigerina: isotopic changesin the ocean during the last glacial. Les Meth. Quant, a"etude Var. Clim.au Cours du Pleist, Coll. Int. C.N.R.S., 219:203-209.

, 1977. Carbon-13 in Uvigerina: tropical rainforest history and theequatorial Pacific carbonate dissolution cycles. In Andersen, N.R., andMalahoff, A. (Eds.), The Fate of Fossil Fuel CO2 in the Oceans: New York(Plenum), 401-427.

Shackleton, NJ., Berger, A., and Peltier, W.R., 1990. An alternative astronomi-cal calibration of the lower Pleistocene time scale based on ODP Site 677.Trans. R. Soc. Edinburgh, Earth Sci., 81:251-261.

Zahn, R., and Mix, A.C., 1991. Benthic foraminiferal δ 1 8 θ in the ocean'stemperature-salinity-density field: constraints on ice age thermohalinecirculation. Paleoceanography, 6:1-20.

Date of initial receipt: 16 November 1993Date of acceptance: 16 March 1994Ms 138SR-160

847

Page 10: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, NJ. SHACKLETON

APPENDIX A

Benthic Foraminifer Stable Isotope Data from Site 846

Core, section,interval (cm) Species Lab.

Interval Depth Depth Depth(cm) (mbsf) (mcd) (rmcd) δ l 8 θ δL1C

Core, section,interval (cm) Species Lab.

Interval Depth Depth Depth(cm) (mbsf) (mcd) (rmcd) δ l s θ δ l 3C

846B-IH-846B-IH-846B-1H-846B-1H-846B-IH-846B-IH-846B-1H-846B-1H-846B-1H-846B-1H-846B-1H-846B-1H-846B-1H-846B-IH-846B-IH-2846B-1H-2846B-1H-2846B-1H-2846B-IH-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-1H-2846B-IH-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846D-1H-1846D-1H-I846B-1H-3846D-1H-1846D-1H-1846D-1H-2846D-1H-2846D-IH-2846D-1H-2846D-1H-2846D-1H-2846D-1H-2846D-1H-2846D-1H-2846D-1H-2846D-1H-2846D-1H-2846D-IH-2846D-1H-2846D-1H-2846D-1H-2846D-IH-2846D-IH-2846D-IH-2846D-IH-2846D-1H-2846D-1H-2846D-1H-2846D-1H-3846D-1H-3846D-IH-3846D-1H-3846D-1 H-3846D-1 H-3846D-IH-3846D-1H-3846D-1H-3846D-1H-3846D-IH-3846D-1H-3

tell.tell,'ell.

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wi,C. wiC. wiC. wiC. wiC. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.U. pereg.C. wuell.C. wuell.(J. pereg.C. wuell.U. pereg.C. wuell.(J. pereg.U. pereg.C. wuell.U. pereg.U. pereg.(J. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.C. wuell.C. wuell.U.peU. pe,C. wiU.peC. wu

-eg.reg.ell.•<•g•

'II.U. pereg.C. wuell.C. wuell.U. pereg.C. wuell(J. pereg.C. wuell.U. pereg.C. wuell.(J. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.

osuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuosuCAMosuosuCAMosuCAMosuCAMCAM

osuCAMCAMCAMOSUCAMOSUCAMOSUOSUOSUCAMCAMOSUCAMOSUCAMOSUOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSU

12233333

435363

7387100113123133145919293748576N78SS97109117I2<S137146918283948576778

108118

128137128128146138148

1828283848585868687878

IDS118118

128128138138148

5S

58

0.120.230.330.330.430.530.630.730.871.001.131.231.331.451.591.691.791.871.982.072.182.282.382.472.592.672.782.872.96.3.093.183.283.393.483.573.673.783.883.984.084.184.284.375.285.284.465.385.485.585.585.685.785.785.885.986.086.086.186.186.286.286.386.486.586.686.686.786.786.886.S86.987.087.087.187. IS7.287.287.387.387.487.487.587.58

0.12 0.12

0.23 0.230.33 0.33

0.33 0.330.43 0.430.53 0.53

0.63 0.630.73 0.730.87 0.8700 1.0013 1.1323 1.23

33 1.3345 1.4559 1.5969 1.69

79 1.7987 1.8798 1.98

2.07 2.072.18 2.182.28 2.28

2.38 2.382.47 2.472.59 2.592.67 2.672.78 2.78

2.87 2.872.96 2.963.09 3.093.18 3.183.28 3.28

3.39 3.39

3.48 3.483.57 3.573.67 3.673.78 3.78

3.88 3.883.98 3.994.08 4.104.18 4.204.28 4.28

4.37 4.374.28 4.434.28 4.434.46 4.46

4.38 4.554.48 4.674.58 4.794.58 4.794.68 4.904.78 5.024.78 5.024.88 5.124.98 5.225.08 5.325.08 5.325.18 5.425.18 5.425.28 5.525.28 5.525.38 5.625.48 5.725.58 5.825.68 5.925.68 5.925.78 6.025.78 6.025.88 6.135.88 6.135.98 6.236.08 6.336.08 6.336.18 6.436.18 6.436.28 6.536.28 6.536.38 6.636.38 6.636.48 6.726.48 6.726.58 6.826.58 6.82

3.38 0.14

3.46 0.013.65 -0.103.88 -0.064.14 -0.17

4.47 -0.214.99 -0.414.99 -0.434.90 -0.414.56 -0.294.76 -0.324.74 -0.44

4.64 -0.384.49 -0.334.56 -0.204.48 -0.164.44 -0.204.51 -0.184.35 -0.194.37 -0.24

4.43 -0.234.33 -0.264.35 -0.21

4.34 -0.304.46 -0.254.35 -0.38

4.50 -0.404.33 -0.414.36 -0.534.35 -0.434.47 _o.474.42 -0.534.50 -0.47

4.48 -0.304.11 -0.124.33 -0.213.98 0.014.04 -0.083.90 -0.124.06 -0.09

4.09 -0.134.08 -0.184.01 -0.013.90 -0.45

3.92 -0.323.93 -0.213.76 -0.234.03 -0.293.76 0.093.88 -0.253.40 0.003.59 -0.113.44 -0.043.13 0.222.98 0.12

3.10 0.013.40 -0.054.06 -0.13

4.04 -0.284.16 -0.244.21 -0.304.71 -0.334.88 -0.404.37 -0.254.56 -0.254.84 -0.41

4.75 -0.37

4.77 -0.494.70 -0.374.68 -0.534.61 -0.584.54 -0.364.40 -0.53

4.56 -0.364.63 -0.494.47 -0.574.59 -0.564.65 -0.364.68 -0.644.71 -0.58

4.64 -0.614.57 -0.554.75 -0.46

846D-1H-3846D-1H-3846D-1H-3846D-1H-3846D-1H-3846D-1H-3846D-1H-3846D-IH-3846D-1H-3846D-1H-3846D-1H-3846D-1H-3846D-1 H-3846D-1H-3846D-1H-3846D-1H-3846D-1H-3846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1 H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1H-4846D-1 H-4846D-1H-4846D-1H-4846D-1 H-4846D-1H-4846D-IH-4846D-IH-4846D-1H-4846D-1H-4846D-1H-5846D-1 H-5846D-1H-5846D-1H-5846D-1 H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-IH-5846D-1H-5846D-1H-5846D-1 H-5846D-IH-5846D-1 H-5846D-1H-5846D-1H-5846D-1H-5846D-1 H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-1H-5846D-IH-6846D-1H-6846B-2H-3846D-1H-6846B-2H-3846D-1H-6846D-1H-6846B-2H-3

U. pereg.(J. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.U. pereg.C. wuell.(J. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.(J. pereg.C. wuell.(J. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuetl.C. wuell.C. wuetl.C. wuell.C. wuell.C. wuell.C. wuell.

CAMCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMCAMOSUCAMOSUCAMOSUCAMCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMOSUOSUOSUOSUOSUOSUOSU

68787888889898

108108118118128128138138148148

81818282838384858

586868787888

9898

108108118118128128138138148

14888

181828283838484858586868787888889898

108108118118128128138138148148

888

1818283829

7.687.787.787.887.887.987.988.088.088.188.188.288.288.388.388.488.488.588.688.688.788.788.88S.8S8.9S9.089.089 . 1 8

9.189.289.289.389.389.489.489.589.589.689.689.789.789.889.889.989.98

10.0810.0810.1810.1810.2810.2810.3810.3810.4810.4810.5810.5810.6810.6810.7810.7810.8810.8810.9810.9811.0811.0811.1811.1811.2811.2811.3811.3811.4811.4811.5811.5810.0811.6810.1811.7811.8810.29

6.686.786.786.886.886.986.987.087.087.18

7.187.287.287.387.387.487.487.587.687.687.787.787.887.887.988.088.088.18

8.188.288.288.388.388.488.488.588.588.688.688.788.788.888.888.988.989.089.089.189.189.289.289.389.389.489.489.589.589.689.689.789.789.889.889.989.98

10.0810.0810.1810.1810.2810.2810.3810.3810.4810.4810.5810.5810.6810.6810.7810.7810.8810.89

6.917.007.007.097.097.187.187.277.277.367.367.457.457.537.537.627.627.717.797.797.887.887.957.958.038,108.108.188.188.268.268.348.348.428.428.508.508.598.598.688.688.778.778.878.878.988.989.089.089.199.199.299.299.409.409.499.499.589.589.689.689.789.789.879.879.969.96

10.0610.0610.1610.1610.2710.2710.3810.3810.5010.5010.5510.6110.7110.7310.8410.91

4.574.504.444.374.504.464.324.254.364.284.244.214.274.334.324.284.324.304.324.604.044.093.943.974.033.504.503.613.643.753.883.633.793.543.663.513.553.393.523.813.784.194.464.254.574.114.034.114.284.123.993.813.883.803.663.763.724.164.174.154.154.424.424.584.474.504.434.534.494.464.464.404.534.354.414.344.434.424.274.494.394.484.27

-0.33-0.44-0.51-0.43-0.36-0.44-0.50-0.54-0.37-0.43-0.66-0.43-0.60-0.54-0.47-0.54-0.59-0.43-0.43-0.35-0.42-0.24-0.21-0.33-0.32-0.51-0.51-0.09-0.11-0.12-0.23

0.02-0.11

0.02-0.06-0.43-0.10-0.31-0.21-0.54-0.42-0.56-0.35-0.56-0.42-0.77-0.20-0.66-0.32-0.66-0.28-0.44-0.22-0.33-0.30-0.43-0.11-0.55-0.43-0.55-0.36-0.78-0.60-0.57-0.56-0.78-0.51-0.67-0.57-0.99-0.67-0.99-0.78-0.88-0.76-1.00-0.84-0.82-0.64-0.55-0.76-0.54-0.50

Page 11: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

APPENDIX A (continued)

Core, section,

interval (cm)

846D-1H-6846B-2H-3846D-1H-6846B-2H-3846B-2H-3846D-1H-6846B-2H-3846D-1H-6846B-2H-3846D-1H-6846B-2H-3846D-1H-6846B-2H-3846D-1H-6846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-1H-3846B-2H-4846B-2H-4846B-2H-4846C-2H-1846C-2H-1846B-2H-4846C-2H-1846B-2H-4846C-2H-1846B-2H-4846B-2H-4846C-2H-1846B-2H-4846B-2H-4846C-2H-1846B-2H-4846B-2H-4846C-2H-1846C-2H-2846B-2H-4846C-2H-2846B-2H-4846C-2H-2846C-2H-2846B-2H-4846B-2H-4846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-2846C-2H-3846C-2H-3846C-2H-3846C-2H-3846C-2H-3846C-2H-3846C-2H-3846C-2H-3846D-2H-1846D-2H-1846C-2H-3846D-2H-1846D-2H-1846C-2H-3846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-1846D-2H-2846D-2H-2846D-2H-2846D-2H-2

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.U. pereg.C. wuell.C. wuell.U. pereg.C. wuell.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.U. pereg.C. wuell.U. pereg.U. pereg.U. pereg.C. wuell.U. pereg.

Lab.

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUCAMOSUOSUCAMOSUOSUCAMOSUCAMOSUCAMOSUCAMOSUCAMCAMOSUCAMCAMCAMOSUCAM

Interval(cm)

4838584858786888779888

10896

118108118128137147

31323889831

10841

1185462

1287387

13895

106148

8117

181262838

136144485868788898

108118128138148

81828384858687888

88181898282838384848585868787888

8181828

Depth Depth Depth(mbsf) (mcd) (rmcd)

11.9810.3812.0810.4810.5812.2810.6812.3810.7712.4810.8812.5810.9612.6811.0811.1811.2811.3711.4711.5311.6311.7312.8812.9811.8113.0811.9113.1812.0412.1213.2812.2312.3713.3812.4512.5613.4813.5812.6713.6812.7613.7813.8812.8612.9413.9814.0814.1814.2814.3814.4814.5814.6814.7814.8814.9815.0815.1815.2815.3815.4815.5815.6815.7813.5813.5815.8813.6813.6815.9813.7813.7813.8813.8813.9813.9814.0814.0814.1814.2814.2814.3814.5114.6114.6114.71

10.98 10.9410.98 11.0311.08 11.0411.08 11.1211.18 11.2011.28 11.2311.28 11.2811.38 11.3211.37 11.3611.48 11.4111.48 11.4911.58 11.5011.56 11.5911.68 11.5911.68 11.7111.78 11.8011.88 11.8711.97 11.9412.07 12.0312.13 12.0912.23 12.2012.33 12.3312.41 12.3812.51 12.4312.41 12.4312.61 12.5112.51 12.5312.71 12.6212.64 12.6412.72 12.7112.81 12.7912.83 12.8112.97 12.9712.91 13.0513.05 13.0613.16 13.1813.01 13.2013.11 13.2713.27 13.2913.21 13.3313.36 13.3713.31 13.3913.41 13.4613.46 13.4613.54 13.5413.51 13.5613.61 13.6713.71 13.7713.81 13.8513.91 13.9114.01 13.9614.11 14.0214.21 14.0814.31 14.1814.41 14.3214.51 14.4614.61 14.5914.71 14.6914.81 14.7714.91 14.8615.01 14.9515.11 15.0615.21 15.1815.31 15.3315.48 15.4215.48 15.4215.41 15.4715.58 15.5215.58 15.5215.51 15.6015.68 15.6315.68 15.6315.78 15.7415.78 15.7415.88 15.8515.88 15.8515.98 15.9515.98 15.9516.08 16.0616.18 16.1716.18 16.1716.28 16.2716.41 16.4116.51 16.5116.51 16.5116.61 16.61

δ l s 0

4.243.954.144.013.813.873.843.943.953.853.923.874.074.174.033.964.143.903.873.833.853.593.803.823.634.053.743.253.253.363.473.743.733.724.134.644.284.634.434.574.754.614.704.514.714.414.554.554.634.534.594.524.934.214.084.554.134.134.114.014.093.923.723.803.493.533.523.263.143.213.293.232.933.213.373.253.353.333.483.683.754.344.534.555.074.96

δ l 3 c

-0.65-0.23-0.48-0.44-0.28-0.10-0.48-0.39-0.46-0.37-0.55-0.51-0.53-0.55-0.38-0.47-0.48-0.36-0.41-0.61-0.48-0.46-0.34-0.33-0.44-O.50-0.43-0.22-0.28-0.27-0.30-0.45-0.28-0.42-0.53-0.67-0.51-0.63-0.51-0.65-0.53-0.52-0.49-0.57-0.58-0.36-0.58-0.67-0.69-0.72-0.60-0.46-0.56-0.44-0.25-0.54-0.34-0.19-0.13-0.26-0.22-0.27

0.080.04

-0.22-0.11

0.190.110.120.03

-0.110.110.010.060.00

-0.070.01

-0.040.01

-0.32-0.17-0.34-0.46-0.46-0.49-0.36

Core, section,interval (cm)

846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-2846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-3846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846D-2H-4846B-3H-2846D-2H-4846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-2846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-3846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4

Species

C. wuell.U. pereg.U. pereg.C. wuell.U. pereg.C. wuell.(J. pereg.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.C. wuell.U. pereg.C. wuell.U. pereg.U. pereg.C. wuell.U. pereg.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.

Lab.

OSUCAMCAMOSUCAMOSUCAMCAMOSUCAMOSUCAMOSUCAMOSUOSUCAMOSUCAMCAMOSUCAMOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

Interval(cm)

2838484858586878789898

108108118118128128128138

81118212838485868788898

1088

182838485868788898

108118128

8138

182737485869788898

109117128137147

8182736485869778899

108118128137146

31323344453627279

Depth Depth Depth(mbsf) (mcd) (rmcd)

14.7114.8114.9114.9115.0115.0115.1115.2115.2115.4115.4115.5115.5115.6115.6115.7115.7115.7115.8116.0116.0416.1116.1416.2116.3116.4116.5116.6116.7116.8116.9117.0117.1517.2517.3517.4517.5517.6517.7517.8517.9518.0518.1518.2518.3518.0818.4518.1818.2718.3718.4818.5818.6918.7818.8818.9819.0919.1719.2819.3719.4719.5819.6819.7719.8619.9820.0820.1920.2720.3820.4920.5820.6820.7820.8720.9621.0321.1321.2321.3421.4421.5321.6221.7221.7921.92

16.61 16.6116.71 16.7116.81 16.8216.81 16.8216.91 16.9216.91 16.9217.01 17.0217.11 17.1117.11 17.1117.31 17.3117.31 17.3117.41 17.4117.41 17.4117.51 17.5117.51 17.5117.61 17.6117.61 17.6117.61 17.6117.71 17.7117.91 17.9017.94 17.9318.01 18.0018.04 18.0318.11 18.1018.21 18.2018.31 18.3018.41 18.4118.51 18.5118.61 18.6118.71 18.7118.81 18.8118.91 18.9119.05 19.0519.15 19.1519.25 19.2519.35 19.3519.45 19.4519.55 19.5519.65 19.6519.75 19.7519.85 19.8519.95 19.9520.05 20.0520.15 20.1520.25 20.2520.13 20.2720.35 20.3520.23 20.3520.32 20.4320.42 20.5120.53 20.6120.63 20.7020.74 20.8120.83 20.9120.93 21.0621.03 21.2121.14 21.3721.22 21.4621.33 21.5621.42 21.6221.52 21.6821.63 21.7621.73 21.8321.82 21.9021.91 22.0122.03 22.1522.13 22.2822.24 22.4122.32 22.5022.43 22.6022.54 22.7022.63 22.7822.73 22.8722.83 22.9522.92 23.0123.01 23.0823.08 23.1423.18 23.2223.28 23.3023.39 23.3923.49 23.4823.58 23.5623.67 23.6523.77 23.7623.84 23.8323.97 23.97

δ l 8o

4.894.924.845.174.914.934.514.674.734.424.504.434.494.564.514.444.464.484.444.434.524.554.454.644.714.594.614.644.434.264.044.083.933.823.824.353.873.943.684.124.214.264.394.384.264.074.204.044.084.104.264.384.374.344.484.204.334.214.123.913.883.943.743.723.583.874.354.404.214.044.014.084.013.794.024.184.394.884.785.104.794.934.994.864.764.81

δ l3c

-0.63-0.36-0.36-0.37-0.26-0.55-0.24-0.35-0.44-0.35-0.44-0.45-0.45-0.57-0.60-0.49-0.45-0.43-0.35-0.35-0.44-0.46-0.44-0.39-0.42-0.45-0.39-0.37-0.22-0.08-0.12

0.100.160.250.23

-0.240.110.13

-0.010.190.160.220.290.250.200.130.16

-0.02-0.07-0.13-0.33-0.34-0.28-0.31-0.34-0.30-0.50-0.36-0.39-0.34-0.22-0.23-0.15

0.05-0.02-0.20-0.30-0.38-0.17-0.21-0.12-0.06-O.02

0.02-0.21-0.24-0.27-0.45-0.39-0.58-0.54-0.62-0.59-0.60-0.64-0.59

Page 12: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, NJ. SHACKLETON

APPENDIX A (continued)

Core, section,interval (cm)

846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-4846B-3H-5846B-3H-5846C-3H-846B-3H-846B-3H-846B-3H-846B-3H-846D-3H-846B-3H-846D-3H-846D-3H-846D-3H-846D-3H-846D-3H-846D-3H-846D-3H-846D-3H-846D-3H-846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-2846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-3846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-4846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-5846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.

Lab.

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

Interval(cm)

103116125136144

718182838485848685868788898

108118128138

8182838485868788898

108118128138

8182838485868788898

108118128138138

8182838485868788898

108118128

81828

3848586878

98108118128138148

81828384858

Depth Depth Depth(mbsf) (mcd) (rmcd)

22.0322.1622.2522.3622.4422.5722.682 1 . 6 8

21.7821.8821.9822.0823.4822.1823.5823.6823.7823.8823.9824.0824.1824.2824.3824.5824.6824.7824.8824.9825.0825.1825.2825.3825.4825.5825.6825.7825.8826.0826.1826.2826.3826.4826.5826.6826.7826.8826.9827.0827.1827.2827.3827.3827.5827.6827.7827.8827.9828.0828.1828.2828.3828.4828.5828.6828.7829.0829.1829.2829.3829.4829.5829.6829.7829.8829.9830.0830.1830.2830.3830.4830.5830.6830.7830.8830.9831.08

24.08 24.0824.21 24.2124.30 24.3024.41 24.4024.49 24.4824.62 24.6024.73 24.7124.68 24.7624.78 24.8324.88 24.8824.98 24.9425.08 25.0125.18 25.0725.18 25.0925.28 25.2025.38 25.3025.48 25.3625.58 25.4025.68 25.4325.78 25.4625.88 25.4925.98 25.5326.08 25.5826.28 26.0026.38 26.2426.48 26.3326.58 26.3926.68 26.4426.78 26.4926.88 26.5726.98 26.7127.08 27.0727.18 27.2827.28 27.3727.38 27.4427.48 27.4927.58 27.5627.78 27.7327.88 27.8527.98 27.9828.08 28.0928.18 28.1928.28 28.2928.38 28.3928.48 28.4828.58 28.5828.68 28.6828.78 28.7828.88 28.8928.98 28.9929.08 29.0829.08 29.0829.28 29.2729.38 29.3729.48 29.4829.58 29.5929.68 29.6929.78 29.7829.88 29.8729.98 29.9730.08 30.0830.18 30.1830.28 30.2830.38 30.3830.48 30.4730.78 30.7830.88 30.8830.98 30.9831.08 31.0831.18 31.1831.28 31.2831.38 31.3831.48 31.4931.58 31.5931.68 31.6831.78 31.7831.88 31.8931.98 32.0232.08 32.1632.18 32.3232.28 32.4632.38 32.5732.48 32.6632.58 32.7432.68 32.8232.78 32.91

δli(o

4.674.734.734.744.724.594.554.614.544.514.474.334.554.324.554.424.384.564.424.494.444.434.034.484.634.594.644.434.234 . 1 8

4.274.394.304.414.344.524.654.474.474.314.114.164.033.943.983.733.683.663.774.034.204.073.974.684.634.604.414.444.084.384.304.174.013.864 . 1 2

4.054.034.063.993.773.673.723.854.043.593.623.944.464.444.794.694.784.724.564.464.54

δ l3c

-0.62-0.60-0.60-0.68-0.56-0.74-0.65-0.61-0.64-0.72-0.65-0.56-0.65-0.51-0.58-0.58-0.57-0.70-0.63-0.78-0.60-0.46-0.28-0.51-0.62-0.53-0.48-0.39-0.41-0.13-0.24-0.42-0.58-0.60-0.37-0.64-0.70-0.54-0.55-0.40-0.42-0.55-0.29-0.35-0.47-0.20-0.24-0.44-0.38-0.42-0.58-0.37-0.36-0.64-0.62-0.67-0.53-0.49-0.62-0.49-0.39-0.30-0.22-0.31-0.40-0.40-0.67-0.50-0.43-0.28-0.42-0.39-0.30-0.45-0.40-0.47-0.43-0.74-0.83-0.82-0.82-0.85-0.80-0.81-0.85-0.89

Core, section,interval (cm)

846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-6846D-3H-7846D-3H-7846D-3H-7846D-3H-7846D-3H-7846C-4H-1846D-3H-7846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4-1846C-4H-2846C-4H-2846C-4H-2846C-4H-2846C-4H-2846C-4H-2846C-4H-2846C-4H-2846D-4H-1846D-4H-1846D-4H-1846C-4H-2846D-4H-1846C-4H-2846D-4H-1846C-4H-2846D-4H-1846C-4H-2846D-4H-1846C-4H-2846D-4H-1846D-4H-1846C-4H-2846D-4H-1846D-4H-1846D-4H-1846D-4H-1846D-4H-1846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-2846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3846D-4H-3

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.

Lab.

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

Interval(cm)

68788898

108118128138148

8182838482858384858

78

8898

108118128138

818283848586878283848

9858

10868

11878

12888

1389898

148108118128138148

81828

38485868788898

108118128138

1488

182838484858586878

98108118128138

Depth Depth Depth(mbsf) (mcd) (rmcd)

31.1831.2831.3831.4831.5831.6831.7831.8831.9832.0832.1832.2832.3832.4831.2832.5831.3831.4831.5831.6831.7831.8831.9832.0832.1832.2832.3832.5832.6832.7832.8832.9833.0833.1833.2832.7832.8832.9833.4833.0833.5833.1833.6833.2833.7833.3833.8833.4833.4833.9833.5833.6833.7833.8833.9834.0834.1834.2834.3834.4834.5834.6834.7834.8834.9835.0835.1835.2835.3835.4835.5835.6835.7835.8835.9835.9836.0836.0836.1836.2836.3836.4836.5836.6836.7836.88

32.88 33.0232.98 33.1533.08 33.2633.18 33.3333.28 33.3933.38 33.4333.48 33.4833.58 33.5333 68 33 6033.78 33.7033.88 33.9133.98 34.1434.08 34.2734.18 34.3534.48 34.4034.28 34.4334.58 34.5434.68 34.6734.78 34.7734.88 34.8834.98 34.9835.08 35.0935.18 35.1935.28 35.2935.38 35.3935.48 35.4835.58 35.5835.78 35.7835.88 35.8835.98 35.9836.08 36.0836.18 36.1836.28 36.2836.38 36.3836.48 36.4836.38 36.4936.48 36.5736.58 36.6736.68 36.6836.68 36.7636.78 36.7836.78 36.8736.88 36.8836.88 36.9636.98 36.9836.98 37.0637.08 37.0837.08 37.1637.08 37.1637.18 37.1837.18 37.2637.28 37.3637.38 37.4637.48 37.5537.58 37.6537.68 37.7537.78 37.8537.88 37.9437.98 38.043 8 . 0 8 3 8 . 1 4

38.18 38.2438.28 38.3438.38 38.4438.48 38.5438.58 38.6438.68 38.7338.78 38.8338.88 38.9338.98 39.0339.08 39.1439.18 39.2339.28 39.3339.38 39.4439.48 39.5439.58 39.6439.58 39.6539.68 39.7439.68 39.7539.78 39.8539.88 39.9639.98 40.0740.08 40.1940.18 40.3140.28 40.4140.38 40.5040.48 40.58

δ'«O

4.514.454.464.054 . 1 7

4.224 . 1 5

4.094 . 1 5

4 . 1 5

4.264.404.534.464.474.244.234.033.953.513.763.633.533.393.344.083.814.213.983.893.833.703.944.003.893.723.964.084.094.064.224.244.223.784.063.643.903.833.884.354.184.414.474.384.324.214.284.234.184.214.204.154.043.793.673.342.923.934.033.363.613.583.843.633.763.464.284.004.244.244.284 . 1 2

4.304.334.083.90

δ i3c

-0.79-0.79-0.69-0.51-0.57-0.65-0.66-0.54-0.79-0.76-0.98-1.06-0.96-0.91-0.94-0.80-0.75-0.57-0.51-0.42-0.25-0.26-0.20-0.29-0.40-0.53-0.43-0.29-0.26-0.23-0.29-0.16-0.32-0.42-0.22-0.36-0.37-0.43-0.32-0.40-0.30-0.64-0.62-0.14-0.32-0.20-0.17-0.09-0.31-0.35-0.39-0.37-0.39-0.46-0.52-0.52-0.58-0.61-0.59-0.64-0.63-0.58-0.37-0.27-0.03-0.19-0.29-0.41-0.70-0.16-0.24-0.17-0.12-0.22

0.020.12

-0.18-0.08-0.40-0.39-0.43-0.49-0.50-0.54-0.36-0.16

850

Page 13: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

APPENDIX A (continued)

Core, section,

interval (cm)

846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-4846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-5846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-6846D-4H-7846D-4H-7846D-4H-7846D-4H-7846D-4H-7846D-4H-7846D-4H-7846C-5H-1846C-5H-1846D-4H-7846C-5H-1846C-5H-1846C-5H-1846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-2846C-5H-3846C-5H-3846C-5H-3846D-5H-846D-5H-846D-5H-846D-5H-846D-5H-846D-5H-846D-5H-846D-5H-846D-5H-846D-5H-

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.

Lab.

OSUOSUOSUOSU

OSUOSUOSUOSUOSUOSUOSUOSU

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

Interval(cm)

818

283848586878

98108118128138148

818

384858

78

98108118128138148

818

384858

788898

107118128137148

8182838485868

10811878

128138148

1828384858687888

108118128138148

81828

88

182838485868

78

Depth Depth Depth(mbsf) (mcd) (rmcd)

37.0837.1837.2837.3837.4837.5837.6837.7837.8837.9838.0838.1838.2838.3838.4838.5838.6838.7838.8838.9839.0839.1839.2839.3839.4839.5839.6839.7839.8839.9840.0840.1840.2840.3840.4840.5840.6840.7840.8840.9841.0741.1841.2841.3741.4841.5841.6841.7841.8841.9842.0842.1841.5841.6842.2841.7841.8841.9842.0842.1842.2842.3842.4842.5842.6842.7842.8842.9843.0843.1843.2843.3843.4843.5843.6843.7842.0842.0842.1842.2842.3842.4842.5842.6842.7842.88

40.68 40.7240.78 40.7940.88 40.8640.98 40.9341.08 41.0241.18 41.1241.28 41.2241.38 41.3541.48 41.4741.58 41.6041.68 41.7241.78 41.8241.88 41.9241.98 42.0142.08 42.1142.18 42.1942.28 42.2842.38 42.3842.48 42.4842.58 42.5842.68 42.6942.78 42.7942.88 42.9042.98 43.0043.08 43.0943.18 43.1943.28 43.2843.38 43.3843.48 43.4843.58 43.5843.68 43.6943.78 43.7943.88 43.8943.98 43.9944.08 44.0844.18 44.1744.28 44.2644.38 44.3544.48 44.4544.58 44.5544.67 44.6544.78 44.7744.88 44.8844.97 44.9845.08 45.0945.18 45.1845.28 45.2745.38 45.3645.48 45.4545.58 45.5545.68 45.6645.78 45.7745.63 45.8345.73 45.8745.88 45.8845.83 45.9045.93 45.9446.03 46.0146.13 46.1146.23 46.2246.33 46.3446.43 46.4346.53 46.5346.63 46.6346.73 46.7346.83 46.8346.93 46.9447.03 47.0447.13 47.1347.23 47.2347.33 47.3347.43 47.4347.53 47.5347.63 47.6347.73 47.7347.83 47.8347.68 47.9047.68 47.9147.78 48.0047.88 48.0647.98 48.1348.08 48.2048.18 48.3148.28 48.4348.38 48.5848.48 48.73

δ l 8o

4.003.833.893.924.204.234.314.344.484.364.424.344.214.364.053.953.923.883.894.043.863.803.623.683.703.893.783.543.793.803.503.573 943.714.114.164.144.103.874.174.094.184.023.773.773.553.763.493.513.834.064.424.274.424.484.384.584.524.254.304.224.194.103.983.893.853.773.683.813.874.034.254.354.284.264.224.054.354.264.354.094.114.134.053.943.79

δ l3c

-0.14-0.29-0.33-0.26-0.49-0.56-0.61-0.66-0.71-0.58-0.68-0.65-0.61-0.79-0.52-0.38-0.39-0.38-0.29-0.25

0.00-0.16

0.03-0.01

0.02-0.02-0.06-0.07-0.13-0.15-0.29-0.23-0.42-0.39-0.49-0.62-0.59-0.73-0.73-0.54-0.42-0.57-0.26

0.02-0.25

0.06-0.21-0.17-0.75-0.92-0.60-0.60-0.59-0.66-0.84-0.68-0.70-0.59-0.50-0.54-0.44-0.34-0.38-0.34-0.14-0.12-0.19-0.15-0.22-0.28-0.31-0.54-0.55-0.52-0.58-0.59-0.20-0.45-0.40-0.43-0.48-0.59-0.65-0.41-0.23-0.28

Core, section,interval (cm)

846D-5H-1846D-5H-1846D-5H-1846D-5H-1846D-5H-1846D-5H-1846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-2846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-3846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-4846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-5846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6846D-5H-6

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.U. pereg.C. wuell.U. pereg.C. wuell.C. wuell.U. pereg.U. pereg.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.U. pereg.U. pereg.U. pereg.C. wuell.C. wuell.

Lab.

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

OSUOSU

Interval(cm)

98107118127138148

71728374858678897

108118127138148

77

1728374867788897

108118127138148

8182838485868788898

108118128128138148

8182838485868788898

108118118128128138138148

88

1818283848585868789898

108118

128138

Depth Depth Depth(mbsf) (mcd) (rmcd)

42.9843.0743.1843.2743.3843.4843.5743.6743.7843.8743.9844.0844.1744.3844.4744.5844.6844.7744.8844.9845.0745.0745.1745.2845.3745.4845.6745.7845.8845.9746.0846.1846.2746.3846.4846.5846.6846.7846.8846.9847.0847.1847.2847.3847.4847.5847.6847.7847.7847.8847.9848.0848.1848.2848.3848.4848.5848.6848.7848.8848.9849.0849.1849.1849.2849.2849.3849.3849.4849.5849.5849.6849.6849.7849.8849.9850.0850.0850.1850.2850.4850.4850.5850.6850.7850.88

48.58 48.8648.67 48.9548.78 49.0448.87 49.1048.98 49.1849.08 49.2449.17 49.2949.27 49.3649.38 49.4349.47 49.4949.58 49.5849.68 49.6849.77 49.7949.98 50.0550.07 50.1550.18 50.2650.28 50.3650.37 50.4450.48 50.5550.58 50.6550.67 50.7650.67 50.7750.77 50.9050.88 51.0450.97 51.1451.08 51.2451.27 51.4051.38 51.4851.48 51.5551.57 51.6251.68 51.7151.78 51.7951.87 51.8851.98 51.9852.08 52.0752.18 52.1852.28 52.2852.38 52.3952.48 52.5152.58 52.6352.68 52.7552.78 52.8552.88 52.9552.98 53.0353.08 53.1153.18 53.1953.28 53.2853.38 53.3753.38 53.3753.48 53.4753.58 53.5753.68 53.6853.78 53.7953.88 53.8853.98 53.9854.08 54.0754.18 54.1654.28 54.2654.38 54.3754.48 54.4754.58 54.5854.68 54.6854.78 54.7854.78 54.7854.88 54.8854.88 54.8854.98 54.9754.98 54.9755.08 55.0755.18 55.1755.18 55.1755.28 55.2855.28 55.2855.38 55.3855.48 55.4955.58 55.5955.68 55.6855.68 55.6855.78 55.7855.88 55.8856.08 56.0756.08 56.0756.18 56.1756.28 56.2756.38 56.3656.48 56.47

δ l 8o

3.773.703.803.653.844.014.144.144.154.104.164.144.093.983.893.593.543.483.413.683.643.853.914.054.224.214.114.184.084.103.853.913.753.553.543.683.864.014.194.274.254.083.883.863.493.513.463.193.253.353.243.283.734.004.314.344.204.033.733.743.743.543.453.493.403.323.393.393.414.043.844.304.344.194.063.733.583.563.723.924.034.164.404.304.303.80

δ l3c

-0.14-0.01-0.24-0.14-0.29-0.29-0.42-0.52-0.67-0.64-0.60-0.58-0.58-0.44-0.25

0.01-0.06

0.02-0.08-0.35-0.30-0.15-0.24-0.26-0.50-0.57-0.45-0.44-0.35-0.26-0.25-0.18-0.08-0.05-0.05-0.19-0.32-0.42-0.45-0.50-0.44-0.51-0.32-0.54-0.09-0.12

0.03-0.05-0.16-0.04-0.30-0.38-0.50-0.54-0.65-0.46-0.53-0.36-0.24-0.11-0.03

0.110.220.210.13

-0.010.04

-0.24-0.12-0.41-0.27-0.37-0.50-0.58-0.17

0.03-0.03-0.03-0.09-0.37-0.76-0.54-0.64-0.50-0.66-0.15

851

Page 14: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, NJ. SHACKLETON

APPENDIX A (continued)

Core, section,interval (cm)

846D-5H-6846D-5H-7846D-5H-7846D-5H-7846D-5H-7846D-5H-7846D-6H-1846D-5H-7846D-5H-7846D-6H-1846D-6H-1846D-5H-7846D-6H-1846D-6H-1846B-6H-5846D-6H-1846B-6H-5846D-6H-1846B-6H-5846B-6H-5846D-6H-1846B-6H-5846B-6H-5846D-6H-1846D-6H-1846B-6H-5846D-6H-1846D-6H-1846D-6H-1846B-6H-5846D-6H-1846D-6H-2846B-6H-5846D-6H-2846B-6H-5846D-6H-2846D-6H-2846B-6H-5846B-6H-5846D-6H-2846B-6H-5846B-6H-5846D-6H-2846B-6H-5846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-2846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.

Lab.

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

Interval(cm)

14888

1828381848582838684858

868

18782842SS495898

10868

118128138

78148

88818982828

10911838

12813848

14758687888

98I0S118118128138148

81828384858

68788898

Depth Depth Depth(mbsf) (mcd) (rmcd)

50.9851.0851.0851.1851.2851.3851.6851.4851.5851.7851.8851.6851.9852.0851.0852.1851.1852.2851.2851.4252.3851.4951.5852.4852.5851.6852.6852.7852.8851.7852.9853.0851.8853.1851.9853.2853.2852.0952.1853.3852.2852.3853.4852.4753.5853.6853.7853.8853.9854.0854.1854.1854.2854.3854.4854.5854.6854.7854.8854.9855.0855.1855.2855.3855.48

56.58 56.5956.68 56.7156.68 56.7156.78 56.8456.88 56.9856.98 57.1257.08 57.2457.08 57.2557.18 57.3657.18 57.3757.28 57.4357.28 57.4357.38 57.4857.48 57.5857.58 57.5857.58 57.6557.68 57.6857.68 57.7657.78 57.7857.92 57.9257.78 57.9757.99 57.9958.08 58.0857.88 58.0957.98 58.1858.18 58.1858.08 58.2158.18 58.2558.28 58.2858.28 58.2858.38 58.3158.48 58.3658.38 58.3858.58 58.4358.48 58.4858.68 58.5358.68 58.5658.59 58.5958.68 58.6858.78 58.7858.78 58.7858.88 58.8858.88 58.9758.97 58.9758.98 59.0759.08 59.1459.18 59.2059.28 59.2459.38 59.2959.48 59.3559.58 59.4159.58 59.4259.68 59.5359.78 59.7059.88 59.9859.98 60.2960.08 60.3760.18 60.4160.28 60.4460.38 60.4660.48 60.4960.58 60.5260.68 60.5760.78 60.7560.88 61.20

δ l 8o

3.834.084.133.873.813.723.853.734.043.733.874.094.174.194.104.104.053.833.883.813.873.783.723.803.823.603.733.723.653.753.653.803.733.743.843.823.693.943.883.723.813.903.883.893.834.233.664.194.064.333.593.444.254.284.144.154.174.254.204.1 14.064.033.803.683.64

δ l λc

-0.05-0.22-0.23-0.12-0.02

0.120.000.02

-0.040.00

-0.13-0.12-0.10-0.30-0.37-0.30-0.16-0.24-0.19-0.20-0.30-0.17-0.11-0.16-0.24-0.01-0.080.2S0.150.080.02

-0.07-0.03-0.070.00

-0.23-0.23-0.16-0.04-0.09-0.11-0.11-0.220.040.07

-0.500.02

-0.30-0.37-0.34-0.02-0.03-0.57-0.60-0.60-0.57-0.47-0.69-0.63-0.53-0.39-0.40-0.21-0.14-0.10

Core, section,interval (cm)

846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6H-3846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6h-4846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-5846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-6846D-6H-7846D-6H-7846D-6H-7846D-6H-7846D-6H-7846D-6H-7846D-6H-7846D-6H-7846D-6H-7

Notes: Tabulated

Species

C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.(J. pereg.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.U. pereg.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.C. wuell.

Lab.

OSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSUOSU

Interval(cm)

108118128138148

8:

2828384858

78

98108118118128138138148

8182838485868788898

108118128138148

1828283848

7898

108118128138148

81828383848586767

Depth Depth Depth(mbsf) (mcd) (rmcd)

55.5855.6855.7855.8855.9856.0856.1856.2856.2856.3856.4856.5856.6856.7856.8856.9857.0857.1857.1857.2857.3857.3857.4857.5857.6857.7857.8857.9858.0858.1858.2858.3858.4858.5858.6858.7858.8858.9859.0859.1859.2859.2859.3859.4859.5859.6859.7859.9860.0860.1860.2860.3860.4860.5860.6860.7860.8860.8860.9861.0861.1761.17

60.98 61.2861.08 61.3161.18 61.3361.28 61.3661.38 61.3861.48 61.4361.58 61.4761.68 61.5461.68 61.5461.78 61.6761.88 61.9261.98 62.0962.08 62.1662.18 62.2262.28 62.2662.38 62.3262.48 62.4862.58 62.7062.58 62.7162.68 62.8362.78 62.9162.78 62.9262.88 62.9562.98 63.0363.08 63.0863.18 63.1463.28 63.2263.38 63.3263.48 63.4463.58 63.5863.68 63.7063.78 63.8263.88 63.9663.98 64.0864.08 64.1964.18 64.2864.28 64.3564.38 64.4264.48 64.5464.58 64.6564.68 64.7664.68 64.7664.78 64.8564.88 64.9464.98 65.0465.08 65.1365.18 65.2365.38 65.4265.48 65.5265.58 65.6265.68 65.7265.78 65.8265.88 65.9265.98 66.0366.08 66.1266.18 66.2266.28 66.3266.28 66.3266.38 66.4266.48 66.5166.57 66.6066.57 66.60

δ l x θ

3.453.753.743.854.004.054.113.864.184.003.613.863.513.583.903.773.623.593.743.913.883.644.123.843.713.813.793.433.503.583.733.403.443.563.883.884.143.943.913.994.063.823.923.573.693.623.583.883.563.543.513.713.753.904.054.033.603.723.793.643.693.59

δ L 1 c

-0.26-0.41-0.29-0.51-0.79-0.57-1.00-0.82-0.62-0.87-0.47-0.32-0.51-0.50-0.67-0.46-0.40-0.56-0.22-0.85-0.69-0.66-0.74-0.52-0.56-0.51-0.53-0.41-0.56-0.28-0.55-0.29-0.16-0.52-0.61-0.60-0.84-0.52-0.45-0.72-0.57-0.65-0.49-0.27-0.61-0.48-0.59-0.59-0.36-0.45-0.33-0.61-0.74-0.55-0.51-0.53-0.52-0.17-0.32-0.62-0.47-0.50

isotope data are relative to PDB standard, with species corrections afollows: Cibicides wuellerstorfi δ O = measured + 0.64 and Uvigerina peregrina δ C= measured + 0.90. OSU = Oregon State University; CAM = University of Cambridge.

Page 15: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

BENTHIC FORAMINIFERAL STRATIGRAPHY

APPENDIX B

Age Model and Sedimentation Rates for Site 846

Age(Ma)

0.00270.00480.00740.00980.01230.01470.01700.01940.02170.02390.02610.02830.03030.03230.03420.03600.03780.03960.04120.04290.04450.04600.04760.04910.05060.05220.05370.05530.05690.05860.06040.06220.06410.06620.06840.07080.07340.07630.07940.08270.08610.08980.09350.09710.10070.10410.10740.11050.11350.11630.11900.12150.12400.12640.12880.13110.13340.13560.13780.14010.14220.14440.14660.14870.15080.15290.15490.15700.15900.16110.16310.16520.16740.16960.17190.17440.17710.18000.18330.18700.19120.19590.20120.2068

Depth(rmcd)

0.100.200.300.400.500.600.700.800.901.001.101.201.301.401.501.601.701.801.902.002.102.202.302.402.502.602.702.802.903.003.103.203.303.403.503.603.703.803.904.004.104.204.304.404.504.604.704.804.905.005.105.205.305.405.505.605.705.805.906.006.106.206.306.406.506.606.706.806.907.007.107.207.307.407.507.607.707.807.908.008.108.208.308.40

Rate(m/m.y.)

59.142.740.240.941.341.842.543.244.044.946.247.749.451.353.455.357.058.760.461.763.164.565.465.865.464.563.562.160.458.355.953.250.246.843.339.936.733.831.429.528.127.427.227.628.529.831.433.134.736.438.039.640.942.042.943.644.244.645.045.646.146.346.647.347.848.348.748.748.748.548.147.245.844.041.738.835.532.228.825.522.620.118.417.8

Age(Ma)

0.21240.21760.22220.22610.22930.23210.23460.23670.23870.24050.24210.24370.24530.24700.24880.25050.25220.25400.25600.25820.26050.26310.26590.26890.27210.27530.27850.28170.28500.28810.29130.29440.29740.30050.30350.30650.30950.31250.31560.31860.32160.32450.32730.33000.33250.33480.33710.33930.34150.34360.34580.34800.35030.35250.35480.35720.35970.36220.36480.36750.37040.37330.37640.37950.38260.38580.38900.39210.39510.39810.40110.40390.40670.40950.41230.41500.41780.42060.42340.42620.42900.43180.43450.4373

Depth(rmcd)

8.508.608.708.808.909.009.109.209.309.409.509.609.709.809.90

10.0010.1010.2010.3010.4010.5010.6010.7010.8010.9011.0011.1011.2011.3011.4011.5011.6011.7011.8011.9012.0012.1012.2012.3012.4012.5012.6012.7012.8012.9013.0013.1013.2013.3013.4013.5013.6013.7013.8013.9014.0014.1014.2014.3014.4014.5014.6014.7014.8014.9015.0015.1015.2015.3015.4015.5015.6015.7015.8015.9016.0016.1016.2016.3016.4016.5016.6016.7016.80

Rate(m/m.y.)

18.520.623.928.233.138.243.749.053.958.461.662.160.458.357.557.556.453.148.744.240.437.134.532.731.631.030.931.031.331.732.232.532.732.933.133.233.133.133.233.433.834.636.138.641.543.845.245.845.945.945.745.044.343.642.641.540.238.837.435.934.633.532.632.031.631.531.832.433.133.834.535.235.736.136.236.136.035.835.735.735.836.136.537.3

Age(Ma)

0.43990.44250.44500.44740.44960.45180.45390.45580.45770.45960.46130.46310.46480.46650.46820.47000.47170.47360.47550.47740.47950.48180.48410.48670.48940.49230.49540.49850.50180.50520.50850.51180.51510.51820.52120.52390.52610.52790.52980.53200.53480.53830.54270.54760.55260.55750.56180.56560.56900.57210.57500.57780.58060.58350.58640.58950.59280.59640.60040.60470.60930.61420.61920.62390.62820.63190.63500.63770.64010.64230.64430.64620.64800.64960.65130.65290.65460.65620.65800.65990.66190.66420.66680.6699

Depth(rmcd)

16.9017.0017.1017.2017.3017.4017.5017.6017.7017.8017.9018.0018.1018.2018.3018.4018.5018.6018.7018.8018.9019.0019.1019.2019.3019.4019.5019.6019.7019.8019.9020.0020.1020.2020.3020.4020.5020.6020.7020.8020.9021.0021.1021.2021.3021.4021.5021.6021.7021.8021.9022.0022.1022.2022.3022.4022.5022.6022.7022.8022.9023.0023.1023.2023.3023.4023.5023.6023.7023.8023.9024.0024.1024.2024.3024.4024.5024.6024.7024.8024.9025.0025.1025.20

Rate(m/m.y.)

38.239.441.042.945.247.449.751.853.855.456.857.858.558.557.856.855.453.651.649.346.643.540.738.135.633.632.030.830.129.930.230.631.232.535.741.849.653.349.240.532.025.721.820.020.221.924.627.931.033.435.035.735.734.933.331.128.826.424.222.321.020.420.622.125.229.634.639.443.747.751.655.158.059.961.061.260.158.055.151.446.640.935.129.4

Age(Ma)

0.67370.67810.68330.68910.69490.70050.70540.70950.71290.71600.71870.72140.72390.72640.72890.73150.73410.73680.73950.74230.74510.74790.75060.75340.75610.75870.76120.76370.76620.76850.77080.77310.77530.77750.77960.78180.78380.78580.78770.78950.79130.79320.79500.79690.79890.80090.80300.80520.80750.80990.81240.81500.81770.82050.82350.82650.82970.83300.83640.83980.84330.84680.85030.85380.85720.86040.86360.86660.86940.87220.87480.87720.87960.88200.88420.88650.88870.89090.89310.89530.89750.89970.90160.9034

Depth(rmcd)

25.3025.4025.5025.6025.7025.8025.9026.0026.1026.2026.3026.4026.5026.6026.7026.8026.9027.0027.1027.2027.3027.4027.5027.6027.7027.8027.9028.0028.1028.2028.3028.4028.5028.6028.7028.8028.9029.0029.1029.2029.3029.4029.5029.6029.7029.8029.9030.0030.1030.2030.3030.4030.5030.6030.7030.8030.9031.0031.1031.2031.3031.4031.5031.6031.7031.8031.9032.0032.1032.2032.3032.4032.5032.6032.7032.8032.9033.0033.1033.2033.3033.4033.5033.60

Rate(m/m.y.)

24.620.818.417.217.519.222.526.731.034.637.138.839.539.739.438.838.037.036.335.835.735.936.436.937.738.639.640.741.842.944.044.845.646.146.547.449.051.554.155.455.254.252.951.850.348.246.444.742.840.939.237.736.234.733.332.131.030.129.328.828.528.428.729.230.131.332.634.135.837.639.441.042.443.444.344.845.245.445.245.446.148.654.361.7

Age(Ma)

0.90490.90630.90780.90940.91110.91310.91520.91760.92020.92310.92620.92960.93320.93700.94100.94520.94930.95300.95640.95920.96180.96440.96720.97020.97350.97700.98090.98510.98970.99471.00011.00581.01161.01761.02341.02891.03381.03811.04161.04461.04721.04951.05151.05351.05531.05711.05871.06041.06191.06351.06511.06671.06821.06991.07151.07321.07501.07691.07881.08081.08301.08521.08761.09001.09251.09501.09771.10031.10291.1055

:

::

.1081

.1107

.1132

.1156

.1180

.1204

.1228

.1251

.1275

.12981.13221.13451.13691.1393

Depth(rmcd)

33.7033.8033.9034.0034.1034.2034.3034.4034.5034.6034.7034.8034.9035.0035.1035.2035.3035.4035.5035.6035.7035.8035.9036.0036.1036.2036.3036.4036.5036.6036.7036.8036.9037.0037.1037.2037.3037.4037.5037.6037.7037.8037.9038.0038.1038.2038.3038.4038.5038.6038.7038.8038.9039.0039.1039.2039.3039.4039.5039.6039.7039.8039.9040.0040.1040.2040.3040.4040.5040.6040.7040.8040.9041.0041.1041.2041.3041.4041.5041.6041.7041.8041.9042.00

Rate(m/m.y.)

67.669.065.560.254.549.044.240.036.633.630.928.726.925.424.524.325.528.332.636.638.237.234.832.129.426.924.722.720.919.318.117.316.917.117.719.221.825.730.936.441.545.949.753.256.258.560.462.163.363.963.963.362.360.859.257.355.152.850.448.045.643.742.040.739.638.738.238.038.038.439.039.740.341.141.842.342.542.642.642.542.442.342.041.8

853

Page 16: 43. Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846

A.C. MIX, J. LE, NJ. SHACKLETON

APPENDIX B (continued)

Age(Ma)

1.14171.14411.14651.14891.15131.15371.15601.15831.16051.16271.16491.16701.16911.17121.17331.17541.17761.17981.18211.18461.18731.19021.19351.19721.20121.20571.21051.21551.22041.22511.22951.23351.23711.24031.24331.24601.24861.25101.25321.25551.25761.25981.26191.26401.26611.26821.27031.27241.27461.27671.27881.28091.28301.28511.28721.28931.29131.29341.29541.29741.29941.30151.30351.30551.30761.30971.31181.31401.31611.31841.32061.32291.32531.32761.33001.33241.33481.3372

Depth(rmcd)

42.1042.2042.3042.4042.5042.6042.7042.8042.9043.0043.1043.2043.3043.4043.5043.6043.7043.8043.9044.0044.1044.2044.3044.4044.5044.6044.7044.8044.9045.0045.1045.2045.3045.4045.5045.6045.7045.8045.9046.0046.1046.2046.3046.4046.5046.6046.7046.8046.9047.0047.1047.2047.3047.4047.5047.6047.7047.8047.9048.0048.1048.2048.3048.4048.5048.6048.7048.8048.9049.0049.1049.2049.3049.4049.5049.6049.7049.80

Rate(m/m.y.)

41.6 141.4 141.3 141.6 142.2 142.8 143.5 144.3 145.0 146.1 146.9 147.5 147.8 147.8 147.5 146.6 145.4 143.7 141.5 138.8 135.6 132.2 129.0 126.0 123.5 121.6 120.5 120.2 120.7 ]22.0 124.0 126.5 129.4 132.4 135.3 137.9 140.4 142.6 144.3 145.6 146.4 147.1 147.4 ]47.5 147.6 147.5 147.3 ]47.1 ]47.1 147.3 ]47.4 ]47.5 147.7 ]47.8 148.0 148.4 ]48.8 :49.0 149.4 ]49.5 ]49.4 :49.1 ]48.9 ]48.5 :48.1 ]47.6 147.1 ]46.3 :45.5 ]44.6 :43.9 :43.2 ]42.6 142.1 :41.8 :41.7 141.7 !41.8 :

Age(Ma)

.3396

.3420

.3443

.3467

.3490

.3512

.3535

.3557

.3579

.3601

.3624

.3647

.3670

.3694

.3719

.3745

.3773

.3802

.3833

.3866

.3902

.3939

.3978

.4019

.4060

.4101

.4141

.4179

.4217.4252L.4286..4317.4347

..43761.4404.4431

..4457L.4484[.45091.4534.45591.45841.46091.4634..46601.46871.47151.47461.47781.4812[.4850[.48911.49351.49831.5033[.5084[.5134[.5182[.52281.5270[.5308[.53421.53741.54031.54311.54561.54811.55051.5528[.55511.55751.5599[.56241.56501.56781.57081.57401.5775

Depth(rmcd)

49.9050.0050.1050.2050.3050.4050.5050.6050.7050.8050.9051.0051.1051.2051.3051.4051.5051.6051.7051.8051.9052.0052.1052.2052.3052.4052.5052.6052.7052.8052.9053.0053.1053.2053.3053.4053.5053.6053.7053.8053.9054.0054.1054.2054.3054.4054.5054.6054.7054.8054.9055.0055.1055.2055.3055.4055.5055.6055.7055.8055.9056.0056.1056.2056.3056.4056.5056.6056.7056.8056.9057.0057.1057.2057.3057.4057.5057.60

Rate(m/m.y.)

41.942.242.643.344.044.344.744.944.844.744.343.442.240.739.037.335.233.131.129.227.526.225.224.624.424.725.426.327.629.030.732.434.135.536.537.237.938.539.339.940.240.239.839.137.936.334.332.229.927.625.523.521.820.619.919.820.321.322.925.027.530.332.935.437.839.841.342.542.842.641.840.739.137.034.732.329.827.4

Age(Ma)

1.58141.58551.59011.59501.60021.60561.61111.61651.62171.62661.63091.63481.63831.64131.64401.64641.64851.65051.65231.65401.65571.65721.65881.66031.66181.66321.66481.66641.66801.66981.67171.67371.67591.67841.68111.68421.68781.69181.69631.70131.70671.71221.71761.72261.72711.73111.73461.73771.74041.74281.74501.74701.74891.75071.75251.75431.75611.75801.75991.76191.76401.76631.76871.77131.77411.77701.78011.78331.78661.78991.79311.79621.79911.80191.80441.80681.80911.8111

Depth(rmcd)

57.7057.8057.9058.0058.1058.2058.3058.4058.5058.6058.7058.8058.9059.0059.1059.2059.3059.4059.5059.6059.7059.8059.9060.0060.1060.2060.3060.4060.5060.6060.7060.8060.9061.0061.1061.2061.3061.4061.5061.6061.7061.8061.9062.0062.1062.2062.3062.4062.5062.6062.7062.8062.9063.0063.1063.2063.3063.4063.5063.6063.7063.8063.9064.0064.1064.2064.3064.4064.5064.6064.7064.8064.9065.0065.1065.2065.3065.40

Rate(m/m.y.)

25.123.021.219.818.818.318.318.820.021.824.227.431.135.239.744.248.552.956.759.962.364.366.066.966.965.863.961.858.755.051.247.242.938.634.330.326.523.421.019.318.518.419.320.923.526.830.635.039.543.847.650.753.455.155.955.754.753.150.948.545.742.840.037.435.033.131.630.730.530.831.833.335.437.840.543.246.249.2

854