4.1.DiffusionEq

22
Diffusion Equation f S i i ept. of Energy System Engineering Shim Hyung Jin

description

Diffusion Eq

Transcript of 4.1.DiffusionEq

Page 1: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 1/22

Diffusion Equation

f S i iept. of Energy System Engineering

Shim Hyung Jin

Page 2: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 2/22

 Reactor Theory

Neutron Current

 Net flow

- -

- in 3-D

ˆ

 

 j

 j

 normal componentto - plane

 x

 y z

ˆ ˆ ˆ ˆ ˆ

net   as rec on

- in 2-D

( , s n cos s n s n cos x y z  

ˆ ˆ( , , ) ( , , ) ( )r E d n r E d v E     

 Need for net inflowor outflowto exmine balance

4

ˆ( , ) ( , , )ˆ J r E r E d  

 

- vec or sum o angu ar ux

net flow formed toward a direction

ˆ ˆ ˆ ˆ yˆ z

in a volume

- scalar sum

  x y z

ˆ x( , )

( , ) J r E 

n r E v E 

ˆ( , ) ( ) ( , ) ( , ) ( , )n r E v E J r E n r E r E  

r E 

v

v

2 SNU Monte Carlo Lab.

4 ˆ( , ) ( , , )r E r E d     

scalar flux important for reaction rate

Page 3: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 3/22

 Reactor Theory

Normal Component of Current

- Number of neutrons passing through unit area of a surface per unit time in a net flow field 

 plane A 

after t  v

ˆunit normal vector ( )n

: travel distance forv t t   

n

moving with toward directionv    

 neutrons per unit volumen height of parallel pipe = cosv t   

total volume = cosv t A  

total number ofneutrons passed

= cosnv t A  

ˆˆ ˆ ˆ J J x J y J z n v  

- normal component to a surface to parallel to y-z plane

: number of neutrons assin throu h unit area on -z lane er unit time J nv x const 

3 SNU Monte Carlo Lab.

Page 4: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 4/22

 Reactor Theory

Neutron Balance in a Volume Element for given Energy

0 0 0 ,( , , ) J x x y y   E 

 z

omi

 z  

0Inflow through surface at y z x x  

 z , , J x z

, , x J x y z y z

0 0

0( , , ) z z y y L

 x x L J x y z dydz  

at a surface point

 x

 A y z  

V x z  

 x

 z y

 y 

( , , ) x y z 0 0 z y

0( , , ) x J x y z y z       0 0 0

0 0 0

( )

( )

 y y x y y

 z z x z z

 

 

 x mean va ue t eorem

0Outflow through surface at y z x x x    Net outflow or leakage through all six surfaces

0 0

0 00( , , )

 z z y y R

 x x z y

 L J x x y z dydz 

0( , , ) x J x x y z y z      

 R L R L R L

 x x y y z z L L L L L L L

0 0( , , ) ( , , ) x x J x x y z J x y z y z  

 Net outflow or leakage through surface y z  

 R L

 x x x L L L

0 0

0 0

( , , ) ( , , )

( , , ) ( , , )

 y y

 z z

 J x y y z J x y z z x

 J x y z z J x y z x y

 

 

4 SNU Monte Carlo Lab.

0 0( , , ) ( , , ) x x J x x y z J x y z y z  

Page 5: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 5/22

 Reactor Theory

Neutron Balance in a Volume Element

 Loss within the volume by collision

 z z x x  

0 0 0

( , , , )V t  z y x

C x y z E dxdydz 

( , , , )t    x y z E V        

 in small volume

 Production within the volume by source

s iS S S S   0

( ) ( , , , ) f    E x y z E dE    

0 0 0 z z y y x x  

0 0 0

0 0 0

( ) ( , , ) z z y y x x

 z y x E x y z dxdydz     

0 0 0

0 0 0

0 0 0 0,

(

,

,

,

, , ) z z y y x x

s z y x

 z y x

s x y z E dxdydz  

 

0

( ) ( ) ( , , , ) f  E E x y z E dE V    

   

5 SNU Monte Carlo Lab.

0, , , , , ,s   x y z s x y z

Page 6: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 6/22

 Reactor Theory

Neutron Balance in a Volume

 Overall balance

  0 0 0 0( , , ) ( , , ) ( , , ) ( , , ) x x y y J x x y z J x y z y z J x y y z J x y z z x  

 

s i

0 0

0 0

, , , , , ,

( ) ( ) ( , , , ) ( ) ( , , , ) ( , , , )

 z z t 

 f s E E x y z E dE V E E x y z E dE V s x y z E V    

a ance equa on or vo ume e emen

 divide by V x y z   0 00 0

( , , ) ( , , )( , , ) ( , , )   y y x x  J x y y z J x y z J x x y z J x y z       

 

0 0( , , ) ( , , )( , , , ) z z

 x y

 J x y z z J x y z x y z E V 

 z

   

 

 

0 0( ) ( ) ( , , , ) ( ) ( , , , ) ( , , , ) f s E E x y z E dE E E x y z E dE s x y z E    

    0 0( , , ) ( , , )

lim   x x x J x x y z J x y z J  

6 SNU Monte Carlo Lab.

  , , , , ,0 0 0

0, ,

 x x y z x x   

Page 7: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 7/22

 Reactor Theory

Neuton Balance Equation

 Leakage term

 y x   z

 x y z

limV  V    

: outflow per unit volumedivergence J 

 Balance equation

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )

( , )

t f s E E 

 J r E r E r E E r E r E dE r E E r E dE 

s r E 

 

  for approximationFic  of k's law cur tren

4

ˆ ˆ- exact if ( , ) ( , , ) J r E r E d    

( , ) ( , ) ( , ) J r E D r E r E  

 

- - -

net flow

 

- net flow occurs due to by either and/ordifference

densityveloc in two reity gions

dense re ion

7 SNU Monte Carlo Lab.

or faster neutrons- proportional to the gradient of flux ( )nv

Page 8: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 8/22

 Reactor Theory

Diffusion Equation

( , ) ( , ) ( , ) ( , )t  D r E r E r E r E   

  , , , , , f s E E 

 E r E r E E r E E r E E s r E    

scalar flux on- contains as unknown functly ion!

- in each constant property region

2( ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( , )

( , )

t f s E E  D E r E E r E E E r E dE E E r E dE 

s r E 

 

* ( ), ( ) andetc. are region dependent constantt  D E E 

8 SNU Monte Carlo Lab.

Page 9: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 9/22

 Reactor Theory

One Group Formulation

2( ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( , ) ( , )t f s

 E E  D E r E E r E E E r E dE E E r E dE s r E   

- define group flux and average cross sections and

0 ( ) ( )( ) ( , ) ; obtained from infinite lattice calculation x

 x E E dE r r E dE      

0( ) E dE  

- integrate over energy

0 0

, , ,t t a sr r r 

0 0( ) ( ) ( , ) = ( ) ( , ) ( ) f f f 

 E  E E r E dE dE E r E dE r    

0 0 0 0 0( ) ( , ) = ( ) ( , ) = ( ) ( , ) ( )s s s s E E r E dE dE E E dE r E dE E r E dE r   

2 2   0

,

- one group diffusion equation

9 SNU Monte Carlo Lab.

( ) ( ) ( ) ( )a f  D r r r s r     

Page 10: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 10/22

 Reactor Theory

Plane Source in Non-Multiplying Infinite Medium

2

 Diffusion Equation in 1-D 0 for nonmultiplying material ( 0) f  y z

 

20a D

dx 

0: (0) , ( ) 0 BC    

2neutrons er unit cm secs   2 1d       D

 Solution x x

  x

2 2dx L

w ere : us on eng , cma

1 1

( )

  L L

 x Ae Ce  

0( ) x

 Ld D

 J x D e 

 

0

( )   L x e   0 0 0 0

4 2

s

0 0

1   Ds 

 x

0(0)  D

 J 

 L

 0 0Relation ship between and ? J s

0 0

1

1  s D

   

 Interpretation of diffusion length

1 36.7%e 1

Relaxation to after traveling  L

0 4 2 L

10 SNU Monte Carlo Lab.

 x L

Page 11: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 11/22

 Reactor Theory

Uniform Source in Non-Multiplying Finite Medium

2d    

: ( ) 0, ( ) 0 BC a a   1D Diffusion Equation with Independent Source2

01d s    02   a

dx

 General Solution

2 2dx L D

0s

( ) ( ) ( ) H P x x x  

a   a- Homogeneous Solution

2

2

1

 L   

use cosh sinh for finite s stems x x  

2 21 0 H  H 

dx L    ( ) cosh sinh H    x A x C x  

- Particular Solution

2

22 H 

 H d dx

    cosh   x 

cosh   a 

20 0 0

2

1P P

a

s s s L

 L D D  

0 after subtractionC  

0 1 after additions A     a-

0( ) cosh sinh 0a

sa A a C a  

 

s

 cosha   a 

0 cosh( ) 1

s x x

    

 

11 SNU Monte Carlo Lab.

cos s n

a

a a a  

  a

0 cosh coshcosha

s a xa

  

Page 12: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 12/22

 Reactor Theory

Point Source in Infinite Non-multiplying Region

2 01   sr r  

 Balance Equation

 L D

2 2

2

1   d d r 

r dr dr   Symmetry consideration (no polar and azimuthal dependence)

0

21 10

d d r   

 Equation at locations other than origin

12 0r r 

2 10

d r r 

 

2 10

r dr dr L   L   dr L

r r 

r r 

 L L

Solution

r L

2

22

d r d r r 

dr dr  

   

 L Lr Ae Ce 

( )r A C r r 

 

 BC1: finite as r  0;

 L

e A r C 

0BC2: as r 0 J Area s r 

 Ld d e

1 1 1 1r r 

12 SNU Monte Carlo Lab.

= J D D DC 

dr dr r  

2 2

 L L DCe DCe

r rL r rL

Page 13: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 13/22

 Reactor Theory

Point Source in Infinite Non-multiplying Region

24 4 (1 )r 

 L  r 

 J r DCe L

 

2

00

lim 4 4r 

 J r DC s  

0

4

sC 

 D 

0

( ) 4

 Ls   e

r   D r    

 Interpretations

- As 0 oint sourcer    

a- If 0,   L 1r 

 Le

0s

0( )4

sr 

 D r  

 

4   r  

- Superposition of multiple sources 0( )

ir r 

 Ls   er  

13 SNU Monte Carlo Lab.

i   ir r    

Page 14: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 14/22

 Reactor Theory

Linear Anisotropy in Angular Flux Distribution

( , ) ( , ) ( , ) J r E D r E r E  

 J cos  J  

- exact if angular flux is linear in cos  J   J 

 

0 1( ) a a   axisymmetric (no dependence in ) 

0 1, ?a a

0 ( )2 sin   d   

ˆ: angle between vector and J    J    

1 ( )2   d   

04   a 

0a   

1

1( )2 J  J d   

 

1

0 11

2   a a d   

1 1

2 2

1 11 0

2 4a d a d    

1

4

3

1 3

14

a J  

1 3

14 SNU Monte Carlo Lab.

 4 4  

 2 2

Page 15: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 15/22

 Reactor Theory

Partial Currents and Albedos

1 3( ) 2 ( )

2 2 J   

1 0 1

1 1 0( ) ( ) ( ) J d d d   

1 1 1 3 1 1

0 0: par a curren o pos ve rec on

2 2 4 2  out   

0 0 1 3 1 1

1 1

 < <

2 2 4 2in  

 

0 1 1: artial current to ne ative direction J d J      cos  J  

1

: from the core (system) to surroundings

in

 p

 J 

 J   

 J 

 J  ou

: from the surroundings to the core (system)out 

 Alternatively

 J    

15 SNU Monte Carlo Lab.

in

Page 16: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 16/22

 Reactor Theory

Anisotropic Scattering

Isotropic in CMS : low energy, light nucleus

C12 U238

1

1( ) 0 p d   

16 SNU Monte Carlo Lab.

Page 17: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 17/22

 Reactor Theory

Transport Cross Section

 Migration of a Source Neutron Emitted toward a Direction (source by either fission or scat.)

-

in an absorption free medium

another three vectors toocate on a erent p ane

escr e success ve trave

with two vectors forming a plane

and the ro ection of 3rd vectors

on the plane

trans ort mean free ath

1   s x     2

2   s x       n

n s x    

 

211

str s

   

1

1

 

with bigger , longer travel from the source point toward the initial direction

easier diffusion

17 SNU Monte Carlo Lab.

Page 18: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 18/22

 Reactor Theory

Transport Cross Section and Diffusion Coefficient

 Transport corrected scattering cross section

1

1tr 

s

   

1tr 

s s  reduced scattering cross section to consider anisotropic scattering

tr 

tr a s transport cross section, later to be used to define diffusion coefficient

 

a s s t s

 Diffusion coefficient

1 D    tr 1  

- Under linear anisotropy in angular distribution

3 tr  s , ,s tr 3

18 SNU Monte Carlo Lab.

Page 19: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 19/22

 Reactor Theory

Boundary Conditions for Diffusion Equation

 Boundary condition for angular flux at vacuum boundary

ˆ ˆ, ,v in

r       invacuum

vr 

 Interface condition1a 2a

ˆ ˆ, , , ,

 I I r E r E    

 I r 

 I r 

 Boundary condition for diffusion equationoutward direction

1 32 ( , ) ( ) ( )

2 2 z z J z  

-   1

1. 5

2

2. 5

transport

diffusionshape

2

 

1 3  2

2 2 J      - 1 - 0. 5 0. 5 1

0. 5s ape

19 SNU Monte Carlo Lab.

 pos t ve angu ar unp ys cashaded areas not the same 0in j

Page 20: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 20/22

 Reactor Theory

BC for Diffusion Equation

 Adjustment for zero net incoming current

0 0

1 12 ( , )

2 2

net 

in J z d J d   

4 2 3 4 2

 J J    0

2 J   2 Ddz

2dz D

22 0

3 3tr 

tr 

  

2( ) 0tr  z  

 Zero flux at extrapolated location

2  

( 0.711 ) 0tr  z   more realistic condition

3

1: albedo boundary condition

 D d J or 

     * = : Partial current albedoin

 p

 J  

20 SNU Monte Carlo Lab.

out 

Page 21: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 21/22

 Reactor Theory

Interface Condition for Diffusion Equation

ˆ ˆ

 Transport interface condition

, , , , I I r E r E    

ˆ ˆ

 Flux continuity

4 4, , , , I I 

 

, , I I r E r E    

 Current continuity

4 4

ˆ ˆ ˆ ˆ, , , , I I 

r E d r E d    

 

 

diffusion coefficients are different

1 2, , I I 

21 SNU Monte Carlo Lab.

R Th

Page 22: 4.1.DiffusionEq

7/17/2019 4.1.DiffusionEq

http://slidepdf.com/reader/full/41diffusioneq 22/22

 Reactor Theory

Validity of Fick's law

 Fick's law valid if free back-and-forth collisions with nuclei

net flow

from dense region or faster neutron region

 Limitations of Fick's law and diffusion equation

- cases ac ng ree ac an ort co s ons w t nuc e

1. near strong absorber 

. near oun ary

3. near source

1 . near interface of very different materials4. in a medium of low density

homo enize cell first usin trans ort calc. result

22 SNU Monte Carlo Lab.