4029 u-du : Integrating Composite Functions

25
4029 u-du: Integrating Composite Functions AP Calculus

description

4029 u-du : Integrating Composite Functions. AP Calculus. Find the derivative. dx/du-part of the antiderivative. Integrating Composite Functions (Chain Rule ) Revisit the Chain Rule If let u = inside function du = derivative of the inside becomes. u-du Substitution. - PowerPoint PPT Presentation

Transcript of 4029 u-du : Integrating Composite Functions

Page 1: 4029    u-du : Integrating Composite Functions

4029 u-du: Integrating Composite Functions

AP Calculus

Page 2: 4029    u-du : Integrating Composite Functions

(5 π‘₯5+4 π‘₯3+3π‘₯+2 )5

Find the derivative

5 (5 π‘₯5+4 π‘₯3+3 π‘₯+2 )4 (25 π‘₯4+12 π‘₯2+3 )

dx/du-part of the antiderivative

Page 3: 4029    u-du : Integrating Composite Functions

u-du SubstitutionIntegrating Composite Functions

(Chain Rule)Revisit the Chain Rule

If let u = inside function

du = derivative of the inside

becomes

2 3( 1)d xdx

2 3 2 2( 1) 3( 1) (2 )d x x xdx

3 2( ) = 3( )d duu u dxdx

ΒΏ π‘₯2+1

2 π‘₯𝑑π‘₯

Page 4: 4029    u-du : Integrating Composite Functions

A Visual Aid

USING u-du Substitution a Visual AidREM: u = inside function du = derivative of the inside

let u =

becomes now only working with f , the outside function

2 23( 1) 2x xdx 23u du

π‘₯2+12 π‘₯𝑑π‘₯

(π‘₯2+1 )𝑑𝑒=ΒΏ 2 π‘₯𝑑π‘₯

3 (𝑒3

3 )+𝑐𝑒3+𝑐

(π‘₯2+1 )3+𝑐

Page 5: 4029    u-du : Integrating Composite Functions

Example 1 : du given

Ex 1: 2 3(5 1) *10x xdx 𝑒=5 π‘₯2+1𝑑𝑒=10π‘₯𝑑π‘₯𝑒3𝑑𝑒

𝑒4

4+𝑐

14

(5 π‘₯2+1 )4+𝑐 proof

14

(5 π‘₯2+1 )4+𝑐

4( 14 ) (5 π‘₯2+1 )3 (10 π‘₯ )

(5 π‘₯2+1 )3 (10 π‘₯ )

Page 6: 4029    u-du : Integrating Composite Functions

Example 2: du given

Ex 2:  

1 22 33 ( 1)x x dx𝑒=π‘₯3+1𝑑𝑒=3 π‘₯2𝑑π‘₯

(π‘₯3+1 )12 3 π‘₯2𝑑π‘₯

𝑒12 𝑑𝑒

𝑒32

32

+𝑐

23𝑒

32+𝑐

𝑦=23

(π‘₯3+1 )32 +𝑐

Page 7: 4029    u-du : Integrating Composite Functions

Example 3: du given

Ex 3:  

2

2 *1

x dxx

𝑒=(π‘₯2+1 )

𝑑𝑒=2π‘₯𝑑π‘₯

(π‘₯2+1 )βˆ’ 1

2 2 π‘₯𝑑π‘₯

π‘’βˆ’ 1

2 𝑑𝑒𝑒

12

12

+𝑐

2𝑒12 +𝑐

2 (π‘₯2+1 )12 +𝑐

Page 8: 4029    u-du : Integrating Composite Functions

Example 4: du given

Ex 4:  

2( ) sec ( )tan x x dx

Both ways !

𝑒=tan (π‘₯ΒΏ)¿𝑑𝑒=𝑠𝑒𝑐2(π‘₯)𝑑π‘₯

𝑒𝑑𝑒𝑒2

2+𝑐

12 π‘‘π‘Žπ‘›

2(π‘₯)+𝑐

𝑒=sec (π‘₯)𝑑𝑒=sec (π‘₯ ) tan (π‘₯ )

𝑒𝑑𝑒𝑒2

2+𝑐

12 𝑠𝑒𝑐

2 (π‘₯ )+𝑐

1+π‘‘π‘Žπ‘›2 (π‘₯ )=𝑠𝑒𝑐2(π‘₯)

Derivative only

𝑠𝑒𝑐2 (π‘₯ )𝑑π‘₯

Function and derivative

tan (π‘₯ ) 𝑠𝑒𝑐2 (π‘₯ )𝑑π‘₯

Page 9: 4029    u-du : Integrating Composite Functions

Example 5: Regular Method

Ex 5:  

2

cossin

x dxx

cos (π‘₯) (sin (π‘₯ ))βˆ’2𝑑π‘₯ (sin (π‘₯ ))βˆ’2 cos (π‘₯ )𝑑π‘₯π‘’βˆ’2π‘‘π‘’π‘’βˆ’1

βˆ’1+𝑐 βˆ’π‘’βˆ’1+𝑐

βˆ’sin (π‘₯ )βˆ’1+π‘βˆ’ 1

sin (π‘₯ )+𝑐=βˆ’csc (π‘₯ )+𝑐

𝑒=sin(π‘₯ )𝑑𝑒=cos (π‘₯ )𝑑π‘₯

cos (π‘₯)sin (π‘₯)

βˆ— 1sin (π‘₯ )

= cot (π‘₯ ) csc (π‘₯ )𝑑π‘₯

βˆ’ csc (π‘₯ )+𝑐

Page 10: 4029    u-du : Integrating Composite Functions

Working with Constants < multiplying by one>

Constant Property of Integration

 ILL. let u =

du = and

becomes =

 Or alternately = =

5cos 5 cosx dx x dx

4(1 2 )x dx (1 2 )x

4 1( )2

u du 41 ( )

2u du

2dx

42 (1 2 )2

x dx 41 ( )2

u du

12

du dx

41 (1 2 ) 22

x dx

Page 11: 4029    u-du : Integrating Composite Functions

Example 6 : Introduce a Constant - my method

2* 9x x dx

𝑒=9 βˆ’π‘₯2

𝑑𝑒=βˆ’2 π‘₯𝑑π‘₯βˆ’2βˆ’2π‘₯ √9βˆ’ π‘₯2𝑑π‘₯

βˆ’ 12βˆ’2

βˆ’ 12 (9 βˆ’π‘₯2 )

12 βˆ’ 2π‘₯𝑑π‘₯

βˆ’ 12𝑒

12 𝑑𝑒

βˆ’ 12 (𝑒

32

32 )+𝑐

βˆ’ 13𝑒

32 +𝑐

βˆ’ 13

(9 βˆ’π‘₯2 )32 +𝑐

Page 12: 4029    u-du : Integrating Composite Functions

Example 7 : Introduce a Constant

2sec (3 )x dx𝑒=3 π‘₯𝑑𝑒=3𝑑π‘₯

33 𝑠𝑒𝑐2 (3 π‘₯ ) 𝑑π‘₯13 𝑠𝑒𝑐2 (3 π‘₯ ) 3𝑑π‘₯13 𝑠𝑒𝑐2 (𝑒)𝑑𝑒13 tan (𝑒)+𝑐

13 tan (3 π‘₯ )+𝑐

Page 13: 4029    u-du : Integrating Composite Functions

sec (π‘₯ ) tan (π‘₯ )𝑑π‘₯ 𝑒=sec π‘₯𝑑𝑒=sec π‘₯ tanπ‘₯sec π‘₯

sec π‘₯ sec (π‘₯ ) tan (π‘₯ )𝑑π‘₯1

sec π‘₯ sec π‘₯ tanπ‘₯ sec π‘₯ 𝑑π‘₯1

sec π‘₯𝑒𝑑𝑒1

sec π‘₯𝑒2

2+𝑐

( 1sec π‘₯ ) 𝑠𝑒𝑐

2π‘₯2

+𝑐

12 sec π‘₯+𝑐

Page 14: 4029    u-du : Integrating Composite Functions
Page 15: 4029    u-du : Integrating Composite Functions

Example 8 : Introduce a Constant << triple chain>>

4sin (2 )cos(2 )x x dx 𝑒=sin(2π‘₯)𝑑𝑒=cos (2 π‘₯ )2𝑑π‘₯

12 𝑠𝑖𝑛4 (2π‘₯ ) cos (2π‘₯ )βˆ—2𝑑π‘₯12𝑒4𝑑𝑒12 (𝑒

5

5 )+𝑐𝑒5

10+𝑐

110 𝑠𝑖𝑛

5 (2π‘₯ )+𝑐

Page 16: 4029    u-du : Integrating Composite Functions

Example 9 : Introduce a Constant - extra constant

<< extra constant>

You is what You is inside5 (3 π‘₯+4 )5𝑑π‘₯

𝑒=3 π‘₯+4𝑑𝑒=3𝑑π‘₯

13 5 (3 π‘₯+4 )5 3𝑑π‘₯53𝑒5𝑑𝑒

53 (𝑒

6

6 )+𝑐5

18(3 π‘₯+4 )6+𝑐

Page 17: 4029    u-du : Integrating Composite Functions

Example 10: Polynomial

2 4

3 1(3 2 1)

x dxx x

𝑒=(3 π‘₯2βˆ’ 2π‘₯+1 )𝑑𝑒=(6 π‘₯βˆ’2)𝑑π‘₯

12

2(3 π‘₯βˆ’1)

(3 π‘₯2βˆ’ 2π‘₯+1 )4𝑑π‘₯

12π‘’βˆ’ 4𝑑𝑒  

12 (𝑒

βˆ’3

βˆ’ 3 )+π‘βˆ’ 1

6(3 π‘₯2βˆ’ 2π‘₯+1 )βˆ’ 3

+𝑐

Page 18: 4029    u-du : Integrating Composite Functions

Example 11: Separate the numerator

2

2 11

x dxx

𝑒=π‘₯2+1𝑑𝑒=2π‘₯𝑑π‘₯

2 π‘₯π‘₯2+1

𝑑π‘₯+ 1π‘₯2+1

𝑑𝑒𝑒 + 1

π‘₯+12

ln|𝑒|+arctan(π‘₯)+𝑐

π‘’βˆ’1𝑑𝑒+ 1π‘₯2+1

¿𝑒0

0

Page 19: 4029    u-du : Integrating Composite Functions

Formal Change of Variables << the Extra β€œx”>> 

 ILL: Let

Solve for x in terms of u then

and  becomes

2 6 *2x x dx (2 6)u x

62

u x

2du dx6 * *

2u u du

ΒΏ 1

2 (𝑒32 βˆ’ 6𝑒

12 )𝑑𝑒

12𝑒3 /2π‘‘π‘’βˆ’ 1

26𝑒1/2𝑑𝑒=12 (𝑒

5/2

52 )

❑

βˆ’( 12 )6(𝑒

3 / 2

32 )=1

5𝑒5 /2 βˆ’2𝑒3 /2

15

(2 π‘₯+6 )52 βˆ’2 (2π‘₯βˆ’6 )3/2+𝑐

Page 20: 4029    u-du : Integrating Composite Functions

Formal Change of Variables << the Extra β€œx”>> 

Rewrite in terms of u - du

2 13

x dxx

(2π‘’βˆ’7 )π‘’βˆ’ 1

2 𝑑𝑒

𝑒=π‘₯+3𝑑𝑒=𝑑π‘₯π‘₯=π‘’βˆ’3

2 π‘₯=2π‘’βˆ’ 62 π‘₯βˆ’1=2π‘’βˆ’ 7

(2π‘’βˆ’ 32 βˆ’7𝑒

βˆ’ 12)𝑑𝑒

2βˆ— 25𝑒

52 βˆ’7βˆ—2𝑒

12 +𝑐

45𝑒

52 βˆ’14𝑒

12+𝑐

45

(π‘₯+3 )52 βˆ’14 (π‘₯+3 )

12 +𝑐

Page 21: 4029    u-du : Integrating Composite Functions

Assignment

Day 1 Worksheet Larson HW 4029

Day 2 Basic Integration Rules Wksht

extra x Larson 4029 58f

anti for tan /cot Text p. 338 # 18 - 52 (3x)

Page 22: 4029    u-du : Integrating Composite Functions

Integrating Composite Functions(Chain Rule)

( 1)( ) = n( ) *n nd u u udx

Remember: Derivatives Rules

Remember: Layman’s Description of Antiderivatives

( 1)( ) n nn u du u c

*2nd meaning of β€œdu” du is the derivative of an implicit β€œu”

Page 23: 4029    u-du : Integrating Composite Functions

Development

  

must have the derivative of the inside in order to find

the antiderivative of the outside 

*2nd meaning of β€œdx” dx is the derivative of an implicit β€œx” more later if x = f then dx = f /

( ( )) '( ( ))* '( )d f g x f g x g xdx

( ( )) '( ( ))* '( )d f g x f g x g xdx

( ( )) [ '( ( ))* '( )]d f g x f g x g x dx

( ( )) '( ( ))* '( )f g x f g x g x dx

Page 24: 4029    u-du : Integrating Composite Functions

Development

from the layman’s idea of antiderivative  

β€œThe Family of functions that has the given derivative”

must have the derivative of the inside in order to find

---------- the antiderivative of the outside 

( ( )) '( ( ))* '( )d f g x f g x g xdx

( ( )) '( ( ))* '( )d f g x f g x g xdx

( ( )) '( ( ))* '( )f g x f g x g x dx

3( )d udx

23( ) * u du

Page 25: 4029    u-du : Integrating Composite Functions

Working With Constants: Constant Property of Integration

With u-du Substitution

REM: u = inside function du = derivative of the inside

Missing Constant?

2 2 2 23( 1) *2 = 3 ( 1) *2x xdx x xdx 23 u du

Worksheet - Part 1

5cos 5 cosx dx x dx

4(1 2 )x dx u = du =

4 4 42 1 1(1 2 ) = (1 2 ) 2 = ( )2 2 2

x dx x dx u du