4 Fundamental Definitions: System and Property Basic Unit...

20
ES206 Fluid Mechanics UNIT A: Fundamental Concepts ROAD MAP . . . A - 1: Engineering Fundamentals A - 2: Fluid Properties and Characteristics Unit A - 1: List of Subjects What is Fluid Mechanics? Basic Dimensions in Engineering Basic Unit System Fundamental Definitions: System and Property

Transcript of 4 Fundamental Definitions: System and Property Basic Unit...

Page 1: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

ES206 Fluid Mechanics

UNIT A: Fundamental Concepts

ROAD MAP . . .

A-1: Engineering Fundamentals

A-2: Fluid Properties and Characteristics

ES206 Fluid Mechanics

Unit A-1: List of Subjects

What is Fluid Mechanics?

Basic Dimensions in Engineering

Basic Unit System

Fundamental Definitions: System and Property

Page 2: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

What is Fluid? What is Fluid Mechanics?

• A fluid is defined as a substance that deforms continuously when acted by shear

forces

• Fluid mechanics is the engineering science that deals with the action of forces

and associated motion of fluids

Continuum Mechanics

• In classic fluid mechanics, “fluids” are treated as a hypothetical continuous

substance, called continuum

• Continuum assumption employs an idea that fluids are made up continuously

with many (many) small particles. A continuum is a body that can be sub-

divided into many (many) infinitesimal elements with properties being those of

the bulk material.

Advanced Subjects in Fluid Mechanics

• Hydrodynamics: flow of fluids (liquids) in no change of density

(incompressible) flows

• Gas Dynamics: flow of fluids (gases) that undergo significant change of density

(compressible) flows ➔ Aerodynamics: flow of air

Unit A-1Page 1 of 6

What is Fluid Mechanics?

Continuum assumptionLiquids – water, oil, . . .Gases – vapor, air, . . .

Hydrodynamics, Gas Dynamics, Aerodynamics

Page 3: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Basic Dimensions

• An engineering property can be described in terms of three basic dimensions

Mass (M) / Length (L) / Time (T) = MLT System

Force (F) / Length (L) / Time (T) = FLT System

• An engineering property (units) are all combinations of these three basic

dimensions (plus temperature: )

• So, is it possible to combine certain properties to create a “dimensionless”

property? YES, and it is very important in engineering!

For example . . . Reynolds number (Re):

( )( )( )

( )

( )( )( )

( )

3 1

1 1

Density Velocity LengthRe ?

Viscosity

ML LT L

ML T

− −

− −= = =

Unit A-1Page 2 of 6

Basic Dimensions in Engineering

Page 4: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

SI Unit System

Mass = Kilogram (kg) / Length = Meter (m) / Time = Second (s)

Temperature = Kelvin (K) / Celsius (C)

Force = Newton (N): 1 N = (1 kg)(1 m/s2)

Temperature unit conversion: K = C + 273

Common Problem (KILOGRAM “FORCE”)

Is 1 kilogram force = 1 kilogram mass ?

“An object of 1 kilogram MASS has WEIGHT (force) of 1 kilogram on

EARTH”

Kilogram “Force” (kgf) and kilogram “Mass” (kg) are different properties, and

cannot be mixed-up

Force unit conversion: 9.8 Newton = 1 kgf

Unit A-1Page 3 of 6

Basic Unit System (1)

SI (Systemé International) Unit System

Page 5: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

US Customary Unit System

Mass = Slug / Length = Feet (ft) / Time = Second (s)

Temperature = Rankine (R) / Fahrenheit (F)

Force = Pound (lb): 1 lb = (1 slug)(1 ft/s2)

Temperature unit conversion: R = F + 460

Common Problem (POUND “MASS”)

Is 1 pound force = 1 pound mass ?

“An object of 1 pound MASS has WEIGHT (force) of 1 pound on EARTH”

Pound “Force” (lb) and Pound “Mass” (lbm) are different properties, and cannot

be mixed-up

Mass unit conversion: 1 slug = 32.2 lbm

Unit A-1Page 4 of 6

Basic Unit System (2)

Traditional (U.S. Customary) = British Gravitational (BG) or English Engineering (EE) Unit System

Slug or Pound Mass (lbm)?

Page 6: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Mass and weight are two different properties.

Mass = fundamental physical property (how much “matters” are packed into an

object: note that this is, in fact, “non-measurable” quantity . . .)

Weight = size of the gravitational pull (the “force” exerted on an object): this can

be measured, certainly.

Newton’s 2nd law states: Weight = Mass Gravitational Acceleration (W mg= )

Hence, 2

300 N30.6 kg

9.8 m/s

Wm

g= = =

Note: this mass is a unique property of an object (will never change); therefore,

under the gravitational acceleration of 4 ft/s, the weight of the same object becomes

( )( )2 0.3048 m30.6 kg 4 ft/s

1 ftW mg= = = 37.3 N

Unit A-1Page 5 of 6

Class Example Problem

Related Subjects . . . “Basic Unit System”

Page 7: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

System and Property

• System: an object of focus, enclosed by system boundaries

• Property: characteristics that can be measured

Extensive and Intensive Properties

• Extensive properties (B): depends on the extent of the system (area, weight,

length, mass, . . .)

Mass (m)

Linear Momentum (mV )

Energy (E)

• Intensive properties (b): independent of the extent of the system (density,

temperature, . . .)

B mb= or B

bm

=

B = Mass (m) ➔ 1B

bm

= =

B = Linear Momentum (m V ) ➔ m

bm

= =V

V

B = Energy (E) ➔ E

b em

= =

Unit A-1Page 6 of 6

Fundamental Definitions:System and Property

Extensive and Intensive Properties

Page 8: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

ES206 Fluid Mechanics

UNIT A: Fundamental Concepts

ROAD MAP . . .

A-1: Engineering Fundamentals

A-2: Fluid Properties and Characteristics

ES206 Fluid Mechanics

Unit A-2: List of Subjects

Fluid Properties

Ideal Gas Model

Compressibility of Fluid

Vapor Pressure

Surface Tension

Viscosity

Newtonian and Non-Newtonian Fluids

Dynamic Viscosity of Common Fluids

Page 9: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Fluid Density

• Density (or “Mass” Density)

= mass per unit volume (kg/m3 or slug/ft3)

• Specific Weight (or “Weight” Density)

= weight per unit volume (N/m3 or lb/ft3)

• Specific weight and density are related: g =

Density of water: = 1,000 kg/m3 or 1.94 slug/ft3

Specific weight of water: = 9,800 N/m3 or 62.4 lb/ft3

Specific Gravity

• Specific Gravity (SG) is the ratio of the density (or specific weight) of a given

fluid to the water

fluid fluid

water water

or SG

=

• Specific gravity indicates “how heavy” the liquid is, compared against water:

SGHg = 13.6

Unit A-2Page 1 of 12

Fluid Properties

g =

Specific Gravity (SG)

Page 10: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Equation of State

• Ideal Gas Equation of State: p RT=

• R is the specific gas constant (air: 287 J/kgK or 1,716 ftlb/slugR)

Note) specific gas constant depends on the type of gas (gas specific):

Helium: 2,077 J/kgK or 12,420 ftlb/slugR

Hydrogen: 4,124 J/kgK or 24,660 ftlb/slugR

Nitrogen: 296.8 J/kgK or 1,775 ftlb/slugR

Oxygen: 259.8 J/kgK or 1,554 ftlb/slugR

• Pressure (p) must be the absolute pressure (not “gage” pressure)

Note) conversion of pressures:

pabsolute = pgage + patm

• Temperature (T) must be in absolute scale (not “relative scale”)

Note) conversion of temperatures:

K = C + 273 and R = F + 460

Unit A-2Page 2 of 12

Ideal Gas Model

RTp =

Page 11: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Let us assume Nitrogen as an ideal gas. From Table 1.8 (textbook),

Nitrogen 296.8 J/(kg K)R =

Note) local standard atmosphere depends on altitude:

➔ Prescott (5,000 ft): 12.228 psi

➔ Daytona Beach (sea-level): 14.696 psi

Applying the equation of state (ideal gas law):

( ) ( )3 o1.5 kg/m 296.8 J/(kg K) 25 C 273 Kp RT = = +

= 132,670 Pa (132.67 kPa)

Note: this is the “absolute” pressure. The purpose of this problem is to determine

the “gage” pressure.

The gage pressure is the pressure above (or below, if vacuum) the atmospheric

pressure, where the given atmospheric pressure here is: atm 97 kPap =

Therefore:

gage abs atm 132.67 kPa 97 kPap p p= − = − = 35.67 kPa

Note that the atmospheric pressure is equal to “ZERO GAGE” pressure:

atm 0p = (gage)

Unit A-2Page 3 of 12

Class Example Problem

Related Subjects . . . “Ideal Gas Model”

Page 12: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Compressibility of Liquids

• Bulk Modulus of Elasticity (Ev) indicates “compressibility” of liquids:

Water: Ev = 2.2 GN/m2 (almost “incompressible”)

Compressibility of Gases

• Mach Number (M) indicates “compressibility” of gases: V

Mc

=

• Speed of Sound (c) of an ideal gas: c kRT= (k = 1.4 for air)

Expansion and Compression of Gases (Thermodynamic Processes)

• Isobalic process (the process is under the constant pressure): constantp =

• Isothermal process (the process is under the constant temperature):

constantp

=

• Isentropic process of gases (the process is frictionless and no heat exchange

with surroundings): “reversible” / “no heat exchange”

1.4constant

k

p p

= =

Unit A-2Page 4 of 12

Compressibility of Fluid

d

dp

VdV

dpEv =−= constant=p

constant=kp

pEv =

kpEv =

kRTc =

Page 13: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

The speed of sound for an ideal gas can be calculated by: c kRT= .

This equation is, however, cannot be applied for liquids (near incompressible).

Extremely high bulk modulus of elasticity of liquids leads to considerably high

speed of sound.

The speed of sound of a liquid can be determined by: vEc

= .

Bulk modulus of elasticity can be found from Table 1.6 (textbook).

For (a) gasoline: 9 2

3

1.3 10 N/m

680 kg/mc

= = 1,382.67 m/s = 3,092.94 mph

For (b) mercury: 10 2

4 3

2.85 10 N/m

1.36 10 kg/mc

=

= 1,447.61 m/s = 3,238.21 mph

For (c) seawater: 9 2

3 3

2.34 10 N/m

1.03 10 kg/mc

=

= 1,507.26 m/s = 3,371.64 mph

In case of air (at sea-level): 760 mphc =

Unit A-2Page 5 of 12

Class Example Problem

Related Subjects . . . “Compressibility of Fluid”

Page 14: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Vapor Pressure and Cavitation

• The pressure at which a change of phase (liquid => gas) occurs is called vapor

pressure

• Water boils at 212 F at 14.7 psi at sea-level

• Alternatively, vapor pressure is raised to 14.7 psi by increasing the temperature

to 212 F

• Water boiling occurs at a room temperature, if the pressure of the water is

reduced to its vapor pressure. This is called cavitation

• Therefore, the property “vapor pressure” of a liquid is not a constant value:

rather, it depends on the temperature.

For example: the vapor pressure of water is 1.77103 Pa (absolute) at 15.6 C.

However, you can also alternatively say that the vapor pressure of water is

exactly 1 atm (sea-level) at 100 C (this is called the “boiling”).

Unit A-2Page 6 of 12

Vapor Pressure

Page 15: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Surface Tension

• Each portion of the liquid surface exerts tension on adjacent portions of the solid

surface that are in contact. This is called surface tension

• Surface tension () for a water-air interface is: = 0.0734 N/m

Capillary Motion

Liquid in a glass tube: for wetting liquid (for example, water), the liquid will rise

up in the glass tube (figure a). For non-wetting liquid (for example, Mercury), the

liquid will be depressed (figure c)

Applying the equation of equilibrium (figure b),

( 0yF+

= ➔ ( )2 2 cosR h R = )

2 cos

hR

= ( = 0 for water, = 130 for Mercury)

Unit A-2Page 7 of 12

Surface Tension

Page 16: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Due to the surface tension, a capillary action (raising or depressing of a column of

liquid within a tube) will occur. The height of capillary action can be determined

by: 2 cos

hR

=

Properties of mercury can be found from Table 1.6 (textbook).

Mercury is a “non-wetting” liquid ( o130 = ): therefore,

( )( )( )

1 o

3 3 3

2 4.66 10 N/m cos130

133 10 N/m 1.5 10 mh

=

= −3.003×10−3 m (3.003 mm)

Negative sign means the column is depressed.

Unit A-2Page 8 of 12

Class Example Problem

Related Subjects . . . “Surface Tension”

Page 17: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Shear Stress in a Fluid

• Shear stress of a viscous fluid is proportional to rate of shear strain: du

dy =

du/dy represent “how much velocity change” is expected in the direction

perpendicular to the solid surface. The “velocity” can be interpreted as “how

much deformation of a fluid” in the direction parallel to the solid surface (shear

direction) is happening (shear strain).

• The proportional constant () is called dynamic (or absolute) viscosity

Viscosity

• Dynamic (or Absolute) viscosity (): units in Ns/m2 or lbs/ft2

• Kinematic viscosity ():

= (units in m2/s or ft2/s)

Unit A-2Page 9 of 12

Viscosity

dy

du = : Dynamic or

Absolute Viscosity

du

dy

Page 18: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Newtonian and Non-Newtonian Fluids

• Newtonian fluids: shear stress and rate of shear strain are directly proportional

du

dy = (Newtonian fluid)

• Non-Newtonian fluids: shear stress and rate of shear strain are not directly

proportional: Bingham plastic, shear thinning / thickening

Non-Newtonian fluids shows non-linear behavior (relationship between shear

stress and rate of shear strain cannot be described like Newtonian fluid). Non-

Newtonian fluids are not the main scope of this course: ES206 Fluid Mechanics

is a Newtonian Fluid Mechanics.

Examples of Non-Newtonian fluids include:

Shear thinning

Shear thickening

Bingham plastic

Unit A-2Page 10 of 12

Newtonian and Non-Newtonian Fluids

dy

du =

Page 19: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

Viscosity of Gases and Liquids

• Viscosity is a function of temperature

• Empirical equation of viscosity for gases: Southerland’s equation: 3 2CT

T S =

+

For air: C = 1.45810−6 kg

m s K

and S = 110.4 (K)

• Empirical equation of viscosity for liquids: Andrade’s equation:

B TDe =

• Empirical equations (often also called, “correlations”) are the equations obtained

by typically experimental data based “curve-fit,” thus the equation is not based

on theory (based on the “fact”).

Unit A-2Page 11 of 12

Dynamic Viscosity of Common Fluids

ST

CT

+=

2/3

TBDe /=

Page 20: 4 Fundamental Definitions: System and Property Basic Unit ...mercury.pr.erau.edu/~hayasd87/SH_AE301/reviews/ES206_A.pdfMass (M) / Length (L) / Time (T) = MLT System Force (F) / Length

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

For a Newtonian fluid, the shear stress is related to the viscosity and the rate of

shear strain, such that: du

dy =

For fluid 1, the shear stress developed on the top plate is:

( ) 2 21top plate 1

top plate

3 m/s 2 m/s0.4 N s /m 20 N/m

0.02 m

du

dy

− = = =

For fluid 2, the shear stress developed on the bottom plate is:

( ) 2 22bottom plate 2

bottom plate

2 m/s 0 m/s0.2 N s /m 20 N/m

0.02 m

du

dy

− = = =

Therefore, the ratio of these two shear stresses are equal to 1

Unit A-2Page 12 of 12

Class Example Problem

Related Subjects . . . “Viscosity”