4. 54 Dt2 Ans Intro

download 4. 54 Dt2 Ans Intro

of 28

Transcript of 4. 54 Dt2 Ans Intro

  • 8/13/2019 4. 54 Dt2 Ans Intro

    1/28

    INTRODUCTION TOAUTONOMIC PHARMACOLOGY

    INTRODUCTION TOAUTONOMIC PHARMACOLOGY

    .

    .

    .

    .

  • 8/13/2019 4. 54 Dt2 Ans Intro

    2/28

    2

    Brunton LL, Lazo JS, Paeker KL, eds. Goodman &

    Gilmans The Pharmacological Basis of Therapeutics

    Katzung BG. Basic & Clinical Pharmacology

    Rang HP, Dale MM et al. Pharmacology

    References:

    References:

    http://www.pharmacology2000.com/Autonomics/In

    troduction/Introobj1.htm

    E-Books:

    Website:

  • 8/13/2019 4. 54 Dt2 Ans Intro

    3/28

    3

    1. Anatomy of Autonomic Nervous System (ANS), review

    2. Neurotransmitters of ANS

    2.1 Cholinergic transmission

    2.2 Adrenergic transmission

    2.3 Presynaptic regulation2.4 Effects of drugs on autonomic transmission

    3. Autonomic Receptors

    3.1 Cholinoceptors

    3.2 Adrenoceptors

    4. Autonomic Functions

    Objectives

    Objectives

  • 8/13/2019 4. 54 Dt2 Ans Intro

    4/28

    44

    Nervous System(NS)

    Nervous System(NS)

    Central

    NS

    Peripheral

    NS Brain

    Spinal cord

    1. Anatomy of Autonomic Nervous System (ANS)Review

    Autonomic

    Somatic

  • 8/13/2019 4. 54 Dt2 Ans Intro

    5/28

    55

    1. Autonomous (independent)

    2. Necessary for life

    3. Consist of 2 basic neurons

    - pre-ganglionic neuron- post-ganglionic neuron

    4. Divided into 2 types (opposite actions)- parasympathetic NS (rest & digest)

    - sympathetic NS (fight or flight response)

    Autonomic Nervous System (ANS)

    2 N i (NT) & h i M d l i

  • 8/13/2019 4. 54 Dt2 Ans Intro

    6/28

    6

    2.Neurotransmitters (NT) & their Modulation(: synthesis, storage, and release of NT)

    1 = uptake of precursors2 = synthesis of transmitter

    3 = storage of transmitter

    4 = degradation of transmitter

    5 = depolarization bypropagated action potential

    6 = influx of Ca2+ in response to

    depolarization

    7 = release of transmitter byexocytosis

    8 = diffusion to postsynaptic

    membrane

    9 = interaction withpostsynaptic receptors

    10= inactivation of transmitter

    11= reuptake of transmitter or

    degradation products12= interaction with

    presynaptic receptors

    1

    4

    5

    6

    113

    12

    7

    10

    8

    9

    2

  • 8/13/2019 4. 54 Dt2 Ans Intro

    7/28

    7

    2.1 Cholinergic Transmission2.1 Cholinergic Transmission

    2 2. Storage:into synaptic vesicles

    3

    3. Release:by Ca2+-mediated exocytosis

    4. Action:binds to cholinergic receptors

    45

    5. Degradation:

    hydrolysed by AchE

    1 1. ACh synthesis:CAT

    choline + acetyl CoA --> ACh

  • 8/13/2019 4. 54 Dt2 Ans Intro

    8/28

    8

    2.2 Adrenergic Transmission2.2 Adrenergic Transmission

    2

    2. Storage:

    into synaptic vesicles

    3

    3. Release: exocytosis

    (by Ca2+-mediated)

    4

    4. Action: binds toadrenergic receptors

    1 1. NE synthesis:Tyrosine ->DOPA->Dopamine -> NE

    55. Metabolism:

    - re-uptake

    - hydrolysis- diffusion

  • 8/13/2019 4. 54 Dt2 Ans Intro

    9/28

    9

    Neurotransmitters of the ANS

    Principal transmitters

    Are acetylcholine (ACh) and noradrenaline (NA)

    Pre-ganglionic neurons are cholinergic (ACh)

    Post-ganglionic

    - parasympathetic neurons are cholinergic (ACh)- sympathetic neurons, mainly noradrenergic (NA)

    though a few are cholinergic (e.g. sweat glands)

    Non noradrenaline none cholinergic (NANC transmitters)

    : NO and VIP (parasympathetic), ATP and NPY (sympathetic)

    Others, such as 5-HT, GABA and dopamine Co-transmission

  • 8/13/2019 4. 54 Dt2 Ans Intro

    10/28

    10

    2.3 Presynaptic Regulation2.3 Presynaptic Regulation

    Release of transmitter electrical activity in the nerve fiber&

    substances that produce locally

    There are 2 types of the regulation:

    Heterotropic interactions: one NT affects the release of another.

    Homotropic interactions: the NT affects the nerve terminals fromwhich it is being released.

  • 8/13/2019 4. 54 Dt2 Ans Intro

    11/28

    11

    Ex: inhibitory and facilitory influences on noradrenalinerelease from sympathetic nerve endings

    Ex: inhibitory and facilitory influences on noradrenalinerelease from sympathetic nerve endings

    2 4 Eff t f D A t i T i i

    2 4 Eff t f D A t i T i i

  • 8/13/2019 4. 54 Dt2 Ans Intro

    12/28

    12

    Promote transmitterrelease

    Adrenergic nerveterminals

    Tyramine,amphetamine

    Causes explosivetransmitter release

    Cholinergic andadrenergic vesicles

    -Latrotoxin5Prevents releaseCholinergic vesiclesBotulinum toxin

    Reduces transmitterreleaseNerve terminal calciumchannels

    -Conotoxin GVIA

    4

    Modulate releaseNerve terminal membranereceptors

    Many3

    Transmitter release

    Prevents storage,depletes

    Adrenergic terminalsvesicles

    Reserpine

    Prevents storage,depletes

    Cholinergic terminalsvesicles

    VesamicolTransmitter storage

    Blocks synthesisAdrenergic nerveterminals and adrenalmedulla: cytoplasm

    -Methyltyrosine(metyrosine)

    Blocks uptake ofcholine and slowssynthesis

    Cholinergic nerveterminals: membrane

    HemicholiniumTransmittersynthesis

    Block sodiumchannels; blockconduction

    Nerve axonsLocal anesthetics,tetrodotoxin,1

    saxitoxin2

    Action potentialpropagation

    ActionSiteDrug ExampleProcess Affected

    2.4 Effects of Drugs on Autonomic Transmission2.4 Effects of Drugs on Autonomic Transmission

    1. Puffer fish,2. Red tide3. NE, DA, ACh,AgII,

    PGs

    4. Marine snail5. Black widow spider

    Kat2007 T6-5 p 90

  • 8/13/2019 4. 54 Dt2 Ans Intro

    13/28

    13

    Inhibits enzyme; increasesstored transmitter pool

    Adrenergic nerve terminals(monoamine oxidase)

    Tranylcypromine

    Inhibits enzyme; prolongsand intensifies transmitteraction

    Cholinergic synapses(acetylcholinesterase)

    NeostigmineEnzymaticinactivationof transmitter

    Binds muscarinic receptors;prevents activation

    Receptors, parasympatheticeffector cells

    Atropine

    Binds and activatesmuscarinic receptors

    Receptors, parasympatheticeffector cells (smooth muscle,glands)

    Bethanechol

    Prevents activationNeuromuscular end platesTubocurarine

    Binds nicotinic receptors;opens ion channel inpostsynaptic membrane

    Receptors at nicotiniccholinergic junctions(autonomic ganglion,

    neuromuscular end plates)

    Nicotine

    Binds receptors;prevents activation

    Receptors at adrenergicjunctions

    Propranolol

    Binds receptors;activates adenylyl cyclase

    Receptors at adrenergicjunctions

    Isoproterenol

    Binds receptors;prevents activation

    Receptors at adrenergicjunctions

    Phentolamine

    Binds receptors; causes

    contraction

    Receptors at adrenergic

    junctions

    NorepinephrineReceptor

    activation orblockade

    ActionSiteDrug ExampleProcessAffected

    3 A t i R t

  • 8/13/2019 4. 54 Dt2 Ans Intro

    14/28

    14

    3. Autonomic Receptors

    Skeletal muscle neuromuscular endplatesNicotinic NM

    Postganglionic neurons, some presynaptic cholinergic

    terminals

    Nicotinic NN

    Vascular endothelium, especially cerebral vessels; CNSneurons

    Muscarinic M5

    CNS neurons; possibly vagal nerve endingsMuscarinic M4

    Exocrine glands, Vessels (smooth muscle &endothelium); CNS neurons

    Muscarinic M3(Granular type)

    Myocardium, Smooth muscle,

    Some presynaptic sites; CNS neurons

    Muscarinic M2

    (Cardiac type)

    CNS neurons, Sympathetic postganglionic neurons,

    Some presynaptic sites

    Muscarinic M1

    (Neural type)

    3.1 CholinoceptorsTypical LocationsReceptor Name

  • 8/13/2019 4. 54 Dt2 Ans Intro

    15/28

    15

    Postsynaptic effector cells, especially lipocytes; heartBeta3

    Postsynaptic effector cells, especially smooth muscle

    and cardiac muscle

    Beta2

    Postsynaptic effector cells, especially heart,

    lipocytes, brain; presynaptic adrenergic and

    cholinergic nerve terminals, juxtaglomerular

    apparatus of renal tubules, ciliary body epithelium

    Beta1

    Presynaptic adrenergic nerve terminals, platelets,

    lipocytes, smooth muscle

    Alpha2

    Postsynaptic effector cells, especially smooth muscleAlpha1

    3.2 Adrenoceptors

    Typical LocationsReceptor Name

    T f R Eff Li k

    T f R t Eff t Li k

  • 8/13/2019 4. 54 Dt2 Ans Intro

    16/28

    16

    Type of Receptor-Effector Linkage, reviewType of Receptor-Effector Linkage, review

    Li G d I Ch l

  • 8/13/2019 4. 54 Dt2 Ans Intro

    17/28

    17

    Ligan-Gated Ion Channels: nACh, GABA A, 5-HT3

    Composed of 5 subunits Ex:nicotinic receptor

    ACh + Receptor (alpha site)

    Open transmembrane ion channel

    Na+ influx

    Depolarization

    Muscle contraction

    G P t i C l d R t

    G P t i C l d R t

  • 8/13/2019 4. 54 Dt2 Ans Intro

    18/28

    18

    G-Protein-Coupled Receptor: muscarinic & adrenergic receptors

    G-Protein-Coupled Receptor: muscarinic & adrenergic receptors

    The main G protein subtypes and their functions

    The main G protein subtypes and their functions

  • 8/13/2019 4. 54 Dt2 Ans Intro

    19/28

    19

    The main G-protein subtypes and their functionsThe main G-protein subtypes and their functions

    - adenylyl cyclase cAMP

    Open cardiac K channelsHyperpolarization HR (ACh)

    analgesic (opioids)

    As for G subunits (see above). Also: activate potassium channels

    inhibit voltage-gated Ca channels

    activate GPCR kinases

    activate mitogen-activated proteinkinase cascade.

    All GPCRsGsubunits

    + PLC second messengers

    inositol trisphosphate (IP3)

    and diacylglycerol (DAG)

    ACh (muscarinic), serotonin,

    etc.

    Gq

    Not yet clearNeurotransmitters in brainGo

    -Adrenergic amines, ACh

    (muscarinic), opioids, serotonin,etc.

    Gi

    + adenylyl cyclase cAMP-Adrenergic amines,glucagon,histamine, serotonin, etc.

    Gs

    Main effectorsAssociated receptorsTypes

    G-protein and 2nd messenger control of cellular effector systems

    G-protein and 2nd messenger control of cellular effector systems

  • 8/13/2019 4. 54 Dt2 Ans Intro

    20/28

    20

    G-protein and 2nd messenger control of cellular effector systemsG-protein and 2 messenger control of cellular effector systems

    Structure of Phosphatidylinositol Bisphosphate (PIP2)

    Structure of Phosphatidylinositol Bisphosphate (PIP2)

  • 8/13/2019 4. 54 Dt2 Ans Intro

    21/28

    21

    Structure of Phosphatidylinositol Bisphosphate (PIP2)Showing sites of cleavage by different phospholipases

    Structure of Phosphatidylinositol Bisphosphate (PIP2)Showing sites of cleavage by different phospholipases

  • 8/13/2019 4. 54 Dt2 Ans Intro

    22/28

    Ex: Regulation of energy metabolism by cAMP

    Ex: Regulation of energy metabolism by cAMP

  • 8/13/2019 4. 54 Dt2 Ans Intro

    23/28

    23

    g gy yg gy y

    Figure shows cAMP production in response to -adrenoceptor activation affectsenzymes involved in glycogen and fat metabolism in liver, fat & muscle cells

    4 Autonomic Functions

  • 8/13/2019 4. 54 Dt2 Ans Intro

    24/28

    24

    Control specific organs

    - smooth muscle

    - exocrine secretion

    - heart (rate and force)

    - certain metabolic processes

    4. Autonomic Functions

    Nicotinic receptor (N)Cholinergic: AChGanglion & NMJ

    Adrenergic receptors ( & )Adrenergic: NESympathetic

    Muscarinic receptors (M)Cholinergic: AChParasympathetic

    ReceptorNeurotransmitter

    The Main Effects of ANSR&D2003 Table 9-1p127

  • 8/13/2019 4. 54 Dt2 Ans Intro

    25/28

    25M3

    Secretion-No effectGlands

    M3

    Constriction2

    No sympathetic innervation,but dilated by circulatingadrenaline

    Smooth muscle

    Bronchi

    Viscera

    -No effect2

    Dilatation

    -No effectConstrictionVeins

    M3

    (via NO)DilatationConstrictionSalivary gland

    M3

    (via NO)DilatationConstrictionErectile tissue

    -No effectConstrictionViscera, skin, brain-No effect2DilatationMuscle

    -No effectConstrictionCoronary

    Arterioles

    Blood vessels

    M2

    No effect

    1Automaticity

    Force Ventricular muscle

    M2

    M2

    Conduction velocity AV block

    1

    Automaticity AV nodeM

    2Force

    1Force Atrial muscle

    M2

    Rate 1

    Rate SA node

    Heart

    Cholinergicreceptor typea

    Parasympathetic effectAdrenergicreceptor typea

    Sympathetic effectOrgan

    R&D2003 Table 9 1p127

    Cholinergicreceptor typea

    Parasympathetic effectAdrenergicreceptor typea

    Sympathetic effectOrgan

  • 8/13/2019 4. 54 Dt2 Ans Intro

    26/28

    26No effect, 2GlycogenolysisGluconeogenesis

    Liver

    -No effect1Renin secretionKidney

    M3

    Secretion-No effectLacrimal glands

    M3

    Secretion, SecretionSalivary glands

    -No effectPiloerectionPilomotor

    No effect-Secretion (mainly

    cholinergic via M3receptors)

    Sweat glands

    Skin

    M3

    ContractionRelaxation (slight)Ciliary muscle

    M3

    ConstrictionDilatationPupil

    Eye

    M3

    ErectionEjaculationMale sex organs

    2

    RelaxationNon-pregnant

    -VariableContractionPregnantUterus

    M3

    Sphincter relaxation1

    Sphincter contraction

    M3

    Contraction2

    RelaxationBladder

    M3

    M3

    SecretionGastric acid secretion

    -No effectGlandsM3Dilatation2, 2ConstrictionSphincters

    M3

    Motility 1,

    2,

    2Motility Smooth muscle

    Gastrointestinal tract

    receptor typereceptor type

    : ANS

    : ANS

  • 8/13/2019 4. 54 Dt2 Ans Intro

    27/28

    27

    1. System that regulates physiologic processes. automatically

    2. Divided into 2 major divisions: sympathetic & parasympathetic

    3. Physiology of ANS

    1. Activates fight-or-flight responses.

    2. Increases the following: HR and contractility

    Bronchodilation

    Hepatic glycogenolysis &

    glucose release

    2. Causes sweaty palms

    3. Controls ejaculation

    : ANS: ANS

    http://www.merck.com/mmpe/sec16/ch208/ch208a.html

    1. Conserves and restores

    2. Stimulates GI secretionsand motility

    3. Slows HR

    4. Reduces BP

    5. Controls erection

    Parasympathetic (anabolic)Sympathetic (catabolic)

  • 8/13/2019 4. 54 Dt2 Ans Intro

    28/28

    28

    QuestionsQuestions