3V -1 - mirthe-erc.org multiheterodyne spectroscopy using quantum and interband cascade lasers Jonas...

1
Mid-infrared multiheterodyne spectroscopy using quantum and interband cascade lasers Jonas Westberg 1* , Lukasz Sterczewski 1 , Link Patrick 1 , and Gerard Wysocki 1 1 Department of Electrical Engineering, Princeton University, Princeton N.J. 08544 *email: [email protected] Princeton University Laser Sensing Laboratory pulse.princeton.edu October, 2016 Motivation Acknowledgments Future work Results Experimental methods and procedures Conclusions Broadband, non-invasive trace gas sensing with multimode Fabry-Pérot Quantum Cascade Lasers (QCLs) or Interband Cascade Lasers (ICLs). Direct down-conversion of optical modes to multiheterodyne beat notes. Separate access to individual radio- frequency (RF) beat notes for broadband measurement. Conventional (wavelength modulation) and advanced modulation techniques (e.g. Faraday modulation) to increase sensitivity of multiheterodyne beat note spectroscopy. 3060 3070 3080 3090 3100 3110 3120 LO Sig. sample cell + - FSR sig ν opt. -1 -2 +1 +2 0 -3 ν opt. 0 -1 -2 -3 +1 +2 FSR LO sig. det. ν opt. -1 -2 +1 +2 0 -3 ν RF ν RF absorption dispersion + - 50 mA 3V ν opt . -1 -2 +1 +2 0 -3 20 GS/s ICL 1 ICL 2 FTIR 50 mA 3V a * cm -1 * b Locking procedure Frequency discriminator log PID 28-46 MHz RF Toptica mFALC 110 LO RF 40 MHz OPLL Sample signal LO Sig. sample cell absorption dispersion QCL 1 QCL 2 Reference signal Discriminator voltage (V) 70 mV/MHz Locking stability Figure a: Experimental schematic of the multiheterodyne setup. The light sources in this particular example are a pair of ICLs operating around 3.2 μm. The setup is based on the conventional dual-comb spectroscopy configuration. Figure b: FITR spectra of the signal and local oscillator multi-mode lasers. 115 120 125 -80 -60 -40 -20 2 MHz 2 kHz 720 725 730 735 -70 -60 -50 -40 * Frequency (MHz) 0 200 400 600 800 -80 -70 -60 -50 -40 -30 -20 * Power (dB) Frequency (MHz) Offset and repetition rate corrected -80 -70 -60 -50 -40 -30 -20 Power (dB) Offset-corrected * -80 -70 -60 -50 -40 -30 -20 Power (dB) Raw spectrum * 3108 3110 3112 3114 3116 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Transmission Wavenumber (cm -1 ) MH Measurement HITRAN fit 3110 3112 3114 3116 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Transmission Wavenumber (cm -1 ) MH Measurement HITRAN fit -0.2 -0.1 0.0 0.1 0.2 0.3 40 80 120 160 200 Amplitude (a.u.) Time (ms) MH DAS Ref.-corr. -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 1 s averaging Detuning (GHz) 0.2 0.4 0.6 0.8 1.0 Transmission -0.2 -0.1 0.0 0.1 0.2 0.3 -40 -20 0 20 40 1 s averaging Phase (°) Time (ms) MH DS meas. Neighbor-corr. -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Detuning (GHz) 20 μs acq. time Frequency [MHz] Detector signal [V] 0 -1 +1 -2 +2 -3 +3 -4 +4 -5 +5 -6 +6 -7 +7 -8 +8 -9 +9 -10 +10 -11 FWHM 1.9 MHz QCL RF beat note spectrum Multiheterodyne spectroscopy using FP- QCLs and ICLs Intermutual frequency stabilization/locking Frequency discriminator (low cost) OPLL Single mode detection swept direct absorption (ramp rate 1 kHz) wavelength modulation (f m = 10 kHz, 2f lock-in det.) dispersion spectroscopy (ramp rate 1 kHz) Multimode (broadband) detection 25 cm -1 coverage Rapid response time (10 μs) Fully electronically controlled Seamless switching between detection modes Opto-mechanically simple setup Complexity on the detection/signal processing side Phase and timing correction. Post-processing algorithm to improve SNR and enable coherent averaging. ICL multiheterodyne spectroscopy of ethylene and methane. Swept absorption and dispersion measurements at 1 kHz ramp rate. Short acquisition times (20 μs) for broadband measurements. QCL multiheterodyne measurements of N 2 O at low pressure absorption dispersion QCL multiheterodyne measurement of N 2 O at low pressure using 2f wavelength modulation. Broadband QCL multiheterodyne measurement of isobutane. 10 μs acquisition time. 25 cm -1 spectral coverage. ref. det. ν RF ν RF RSA RSA 40 MHz 40 MHz phase det. P(t) t P(t) oscilloscope t sig. det. Dispersion engineering of devices to expand stable bias and temperature regions. Explore THz QCL multiheterodyne spectroscopy. Coherent averaging to increase sensitivity for longer acquisition times. Broadband measurements ( 100 cm -1 ) Rapid response time ( μs) High resolution ( MHz) Challenges: The authors gratefully acknowledge F. Capasso, L. Diehl, M. Troccoli for providing FP-QCLs, and J. Meyer from the Naval Research Laboratory for providing the FP-ICLs used in this study. The work is supported by DARPA SCOUT program (W31P4Q161001), U.S. Environmental Protection Agency (U.S. EPA), RD-83513701-0 National Science Foundation (NSF ERC MIRTHE), EEC-0540832.

Transcript of 3V -1 - mirthe-erc.org multiheterodyne spectroscopy using quantum and interband cascade lasers Jonas...

Page 1: 3V -1 - mirthe-erc.org multiheterodyne spectroscopy using quantum and interband cascade lasers Jonas Westberg1*, Lukasz Sterczewski1, Link Patrick 1, and Gerard Wysocki 1Department

Mid-infrared multiheterodyne spectroscopy using quantum and interband cascade lasers

Jonas Westberg1*, Lukasz Sterczewski1, Link Patrick1, and Gerard Wysocki11Department of Electrical Engineering, Princeton University, Princeton N.J. 08544

*email: [email protected]

PrincetonUniversity

Laser

Sensing

Laboratorypulse.princeton.edu

October, 2016

Motivation

Acknowledgments

Future work

Results

Experimental methods and procedures

Conclusions

• Broadband, non-invasive trace gas sensing with multimode Fabry-Pérot Quantum Cascade Lasers (QCLs) or Interband Cascade Lasers (ICLs).

• Direct down-conversion of optical modes to multiheterodyne beat notes.

• Separate access to individual radio-frequency (RF) beat notes for broadband measurement.

• Conventional (wavelength modulation) and advanced modulation techniques (e.g. Faraday modulation) to increase sensitivity of multiheterodyne beat note spectroscopy.

3060 3070 3080 3090 3100 3110 3120

LO

Sig. sample cell+

-

FSRsig

νopt.

-1

-2+1

+2

0

-3

νopt.

0

-1-2

-3

+1

+2

FSRLO

sig. det.

νopt.

-1

-2+1

+2

0

-3

νRF

νRF

absorption dispersion

+

-

50 mA 3V

νopt.

-1

-2+1

+2

0

-3

20 GS/s

ICL1

ICL2

FTIR

50 mA 3V

a

*

cm-1

*

b

Locking procedure

Frequency discriminator

log PID

28-46 MHz

RFToptica

mFALC 110LO

RF

40 MHz

OPLL

Sam

ple

sig

nal

LO

Sig.sample cell

absorption dispersion

QCL1

QCL2

Reference signal

Dis

crim

inat

or

volt

age

(V)

70 mV/MHz

Locking stability

Figure a: Experimental schematic of the multiheterodyne setup. The light sources in this particular example are a pair of ICLs operating around 3.2 μm. The setup is based on the conventional dual-comb spectroscopy configuration.

Figure b: FITR spectra of the signal and local oscillator multi-mode lasers.

115 120 125

-80

-60

-40

-20

2 MHz

2 kHz†

720 725 730 735

-70

-60

-50

-40 *

Frequency (MHz)

0 200 400 600 800

-80

-70

-60

-50

-40

-30

-20

*†

Pow

er

(dB

)

Frequency (MHz)

Offset and repetition rate corrected

-80

-70

-60

-50

-40

-30

-20

Pow

er

(dB

)

Offset-corrected†

*

-80

-70

-60

-50

-40

-30

-20

Pow

er

(dB

)

Raw spectrum†

*

3108 3110 3112 3114 3116

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tra

nsm

issio

n

Wavenumber (cm-1)

MH Measurement

HITRAN fit

3110 3112 3114 3116

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tra

nsm

issio

n

Wavenumber (cm-1)

MH Measurement

HITRAN fit

-0.2 -0.1 0.0 0.1 0.2 0.340

80

120

160

200

Am

plit

ude (

a.u

.)

Time (ms)

MH DAS

Ref.-corr.

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

1 s averaging

Detuning (GHz)

0.2

0.4

0.6

0.8

1.0

Tra

nsm

issio

n

-0.2 -0.1 0.0 0.1 0.2 0.3-40

-20

0

20

40 1 s averaging

Phase (

°)

Time (ms)

MH DS meas.

Neighbor-corr.

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Detuning (GHz)

20 μs acq. time

Frequency [MHz]

Dete

cto

r sig

nal [V

] 0 -1+1 -2

+2-3 +3 -4 +4

-5 +5 -6 +6-7

+7-8 +8

-9 +9-10 +10 -11

FWHM 1.9 MHz

QCL RF beat note spectrum

• Multiheterodyne spectroscopy using FP-QCLs and ICLs

• Intermutual frequency stabilization/locking• Frequency discriminator (low cost)• OPLL

• Single mode detection• swept direct absorption (ramp rate 1 kHz)• wavelength modulation (fm = 10 kHz, 2f lock-in

det.)• dispersion spectroscopy (ramp rate 1 kHz)

• Multimode (broadband) detection• 25 cm-1 coverage• Rapid response time (10 μs)

• Fully electronically controlled• Seamless switching between detection modes

• Opto-mechanically simple setup• Complexity on the detection/signal

processing side

• Phase and timing correction.

• Post-processing algorithm to improve SNR and enable coherent averaging.

• ICL multiheterodyne spectroscopy of ethylene and methane.

• Swept absorption and dispersion measurements at 1 kHz ramp rate.

• Short acquisition times (20 μs) for broadband measurements.

• QCL multiheterodyne measurements of N2O at low pressure

• absorption

• dispersion

• QCL multiheterodyne measurement of N2O at low pressure using 2fwavelength modulation.

• Broadband QCL multiheterodyne measurement of isobutane.

• 10 μs acquisition time.

• 25 cm-1 spectral coverage.

ref. det.

νRF

νRF

RSA

RSA

40 MHz

40 MHz

phase det.

P(t

)

t

P(t

)

oscilloscope

t

sig. det.

• Dispersion engineering of devices to expand stable bias and temperature regions.

• Explore THz QCL multiheterodyne spectroscopy.

• Coherent averaging to increase sensitivity for longer acquisition times.

• Broadband measurements ( 100 cm-1)• Rapid response time ( μs)• High resolution ( MHz)

Challenges:

The authors gratefully acknowledge F. Capasso, L. Diehl, M. Troccoli for providing FP-QCLs, and J. Meyerfrom the Naval Research Laboratory for providing the FP-ICLs used in this study.

The work is supported by • DARPA SCOUT program (W31P4Q161001), • U.S. Environmental Protection Agency (U.S.

EPA), RD-83513701-0 • National Science Foundation (NSF ERC

MIRTHE), EEC-0540832.