3D Imaging of Microstructural Evolution in SOFC Anodes

19
3D Imaging of Microstructural Evolution in SOFC Anodes George J. Nelson Assistant Professor Mechanical and Aerospace Engineering University of Alabama in Huntsville

Transcript of 3D Imaging of Microstructural Evolution in SOFC Anodes

Page 1: 3D Imaging of Microstructural Evolution in SOFC Anodes

3D Imaging of Microstructural Evolution in SOFC AnodesGeorge J. NelsonAssistant ProfessorMechanical and Aerospace EngineeringUniversity of Alabama in Huntsville

Page 2: 3D Imaging of Microstructural Evolution in SOFC Anodes

Overview

• The Solid Oxide Fuel Cell• Why Three-Dimensional Imaging?• SOFC Anode Degradation▫ X-ray nanotomography measurements

▫ Characterization and analysis of microstructure

▫ Identification of degradation mechanisms

• Summary and Conclusions• Potential Extensions

Page 3: 3D Imaging of Microstructural Evolution in SOFC Anodes

The Solid Oxide Fuel Cell (SOFC)• Electrolyte: solid ion

conducting ceramic• Key microstructural

features:▫ Porous electrodes▫ Dispersed reaction sites

Fuel Channel

Electrolyte

Anode

Air ChannelInterconnect

Cathode

Interconnect

Planar SOFC

Tubular SOFC

(Fuel Cell Handbook, 2004)Triple Phase Boundary (TPB)

Page 4: 3D Imaging of Microstructural Evolution in SOFC Anodes

The Need for 3D Image Data

• 3D networks supply reactants to reaction sites.• 3D microstructure evolves during operation.• 2D data is not the whole picture.

M. Raetz, Yes/NoCannarozzo et al., J. Fuel Cell Sci. Tech., 4(2) 99-106, 2007.

Page 5: 3D Imaging of Microstructural Evolution in SOFC Anodes

Observing SOFC Microstructure

• Transmission x-ray microscope▫ Condenser gathers monochromatic x-ray

beam and directs it onto sample.▫ Fresnel zoneplate lens focuses x-rays.▫ CCD records the final x-ray image.

• Absorption contrast imaging▫ X-ray nanotomography performed above

and below x-ray absorption edge.Below Edge

8317 eV

Above Edge

8357 eV

K. N. Grew, Y. Chu, W. K. S. Chiu et al., J. Electrochem. Soc., 157(6) B783-BB792 , 2010.

Page 6: 3D Imaging of Microstructural Evolution in SOFC Anodes

Experimental Details

Breakdownofsamplesetforstacksbasedonthefinereferencemicrostructure.Stack Operational

Time(h)RVEReplicatesperSample RVEReplicates

perStackReference 0 REFN23(3),REFN25(3) 6Stack A 158 SAC4‐C01(2),SAC4N01(2),SAC4N11(2) 6Stack B 240 SBC1‐C01(2),SBC1N27(3) 5Stack C 1130 SCC3‐C01(2),SCC3N12(2) 4

G. J. Nelson, W. K. S. Chiu et al., Acta Materialia, 60 3491–3500, 2012.

• Samples taken from cells operated in long term SOFC tests (Faes et al., Fuel Cells, 9(6), 841-851, 2009).

• X-ray absorption contrast imaging applied to map 3D anode microstructure and composition while preserving samples.

• Multiple representative volume elements (RVEs) extracted from sample x-ray nanotomography data.

Page 7: 3D Imaging of Microstructural Evolution in SOFC Anodes

Comparison to SEM Results

• X-ray nanotomographyphase sizes are within experimental error of SEM stereological results.

StackofOrigin(TestTime)

MeanNiParticleDiameter,µmX‐rayNanotomography SEMSectioning

Reference(t=0h) 0.66(± 0.25) 0.58(± 0.25)StackA(t=158h) 0.83(± 0.16) 0.67(± 0.31)StackB(t=240h) 0.91(± 0.13) 0.70(± 0.33)Stack C(t=1130h) 0.77(± 0.13) 0.73(± 0.35)

Representative Volume Element (RVE)

6.625 µm

Faes et al., Fuel Cells, 9(6), 841-851 2009

10 µm

Segmented SEMX-ray Nanotomography

Page 8: 3D Imaging of Microstructural Evolution in SOFC Anodes

0

0.4

0.8

1.2

1.6

0 400 800 1200

Mean Nickel Pha

se Diameter, µ

m

Operational Time, h

RVE Mean

Stack Mean

First Order Model

Critical Diameter

00.20.40.60.81

0 500 1000Operational Time, hOperational Time, hY

SZ

Ph

ase

Dia

met

er, µ

m

Anode Microstructural Evolution

G. J. Nelson, W. K. S. Chiu et al., Acta Materialia, 60 3491–3500, 2012.

• Nanotomographydata analyzed for multiple RVEs.

• Distinct growth seen in mean diameter of Ni phase.▫ Large initial growth

constrained after longer operation.

• Behavior suggests a pinning mechanism.▫ Ceramic YSZ

restricts further growth of Ni.

▫ Critical diameters follow YSZ trends.

Page 9: 3D Imaging of Microstructural Evolution in SOFC Anodes

0

0.4

0.8

1.2

0 400 800 1200

Effective TP

B Len

gth, m

‐2

Operational Time (h)

RVE MeanStack MeanFirst Order Model

×1013

Operational Time (h)

1.2

0.8

0.4

0Eff

ecti

ve T

PB L

engt

h, m

-2

0 400 800 1200

Active Sites Lost

Impacts of Microstructural Evolution

InfluenceofoperationaltimedNi TPBL Nom.(Eff) Ni‐YSZContactAreaNom. (Eff.) Ni Contiguity

p‐value 0.0184 0.0066(0.0133) 0.0084(0.0186) 0.0198

0

1

2

3

0 400 800 1200Effective Ni‐YSZ Contact Area, m

‐1

Operational Time (h)

RVE MeanStack MeanFirst Order Model

×106

Operational Time (h)

0 400 800 1200

3

2

1

0Ni-

YSZ

Con

tact

Are

a, m

-1

Contact Area Lost

50

60

70

80

90

100

0 400 800 1200

Nickel Contiguity, %

Operational Time (h)

RVE Mean

Stack Mean

Linear Fit

Operational Time (h)

100

90

80

70

60

50Ni P

hase

Con

tigu

ity,

%0 400 800 1200

Networks Broken

3D IMAGING REVEALS PHYSICAL MECHANISM & PERFORMANCE IMPACTS.

Page 10: 3D Imaging of Microstructural Evolution in SOFC Anodes

Summary and Conclusions

• SOFCs and other energy storage and conversion devices: ▫ 3D systems of mixed functional materials▫ Require 3D image data for complete analysis

• X-ray nanotomography can provide such data.• Methods are proven for SOFC anodes▫ 3D data provides insight into Ni coarsening and performance

degradation not accessible with 2D data. Coarsening controlled by phase interaction, pinning mechanism. Network breakdown increases active site and conductivity loss.

• Methods are applicable to batteries, solar cells, and other energy storage and conversion devices.

Page 11: 3D Imaging of Microstructural Evolution in SOFC Anodes

Further Applications

Epting et al., Adv. Funct. Mater., 22 555-560, 2012.

Eller et al., J. Electrochem. Soc., 158(8) B963-B970, 2011.

Chen-Wiegart et al., Electrochem. Comm., 21 58-61, 2012. Haibel et al.,J. Electrochem. Soc.,157(4) A387-A391, 2010.

PEM Fuel Cells

Ceramic Foams and Catalysts

Batteries

Petrasch et al., J. Quant. Spectrosc. Radiat. Transfer, 105 180–197, 2007.

Haussener et al., J. Heat Transfer, 132 023305 , 2009.

Page 12: 3D Imaging of Microstructural Evolution in SOFC Anodes

Chemical Composition Mapping

• X-ray absorption near edge structure (XANES)▫ Scanning sample

over a broader spectrum discerns chemical species.

• Technique also applicable to:▫ Battery electrodes▫ Super capacitors▫ Solar cells

G. J. Nelson, W. K. S. Chiu et al., Appl. Phys. Lett., 98 173109 , 2011.

Page 13: 3D Imaging of Microstructural Evolution in SOFC Anodes

Acknowledgements

• Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award DE-SC0001061), Prof. Kenneth L. Reifsnider, Director.

• National Science Foundation Award CBET-1134052• Prof. Wilson K. S. Chiu, University of Connecticut• Prof. Anil Virkar, University of Utah• LENI, École Polytechnique Fédérale de Lausanne• Dr. Kyle Grew, Army Research Laboratory

Page 14: 3D Imaging of Microstructural Evolution in SOFC Anodes
Page 15: 3D Imaging of Microstructural Evolution in SOFC Anodes

Electrochemical Storage & Conversion

• Distinct arrangements of materials, phases, structures

• Functionally designed material systems

• Microstructure is critical to performance and reliability.

Li-Ion Batteries Solid Oxide Fuel Cells Dye-Sensitized Solar CellsJ.R. Wilson, S.B. Barnett et al., J. Power Sources, 196 3443–3447, 2011.

M. Graetzel, Nature, 414 338-344, 2001.G. J. Nelson, W. K. S. Chiu et al., ActaMaterialia, 60 3491–3500, 2012.

Page 16: 3D Imaging of Microstructural Evolution in SOFC Anodes

Basic Fuel Cell Operation

• Conversion of chemical energy to electrical energy.▫ H2 + ½ O2 H2O

• Anode: Oxidation

• Cathode: Reduction

• Electrolyte: Transfer of ions to complete reaction.

IonsFuel

- / +

Oxygen

Anode CathodeElectrolyte

e- e-

Page 17: 3D Imaging of Microstructural Evolution in SOFC Anodes

Major Types of Fuel Cells

• Classified by electrolyte:▫ Solid Oxide Fuel Cell▫ Molten Carbonate Fuel Cell▫ Phosphoric Acid Fuel Cell▫ Polymer Electrolyte Fuel Cell▫ Alkaline Fuel Cell

SOFC: O2-

MCFC: CO32-

PAFC: H+

AFC: OH-

PEMFC: H+

An. Ca.Electrolyte

700 °C – 600 °C

1000 °C – 600 °C

200 °C– 150 °C

200 °C– 50 °C

100 °C– 30 °C3A 3C

3A 3C

2A 2C

1A 1C

4A 4C

Anode Reaction (A) Cathode Reaction (C)

1 H2 + O2- H2O + CO2 + 2e-

CO + O2- CO2 + 2e-½O2 + 2e- O2-

2 H2 + CO32- H2O + 2e-

CO + CO32- 2CO2 + 2e-

½O2 + CO2 + 2e- CO32-

3 H2 2H+ + 2e- ½O2 + 2H+ + 2e-H2O

4 H2 + 2(OH)- H2O + 2e- ½O2 + H2O + 2e- 2(OH)-

Page 18: 3D Imaging of Microstructural Evolution in SOFC Anodes

SOFC Anode Degradation

• Electrode microstructural evolution causes substantial power loss.• Ni coarsening is a widely observed anode degradation mechanism.• 3D imaging captures microstructural morphology (shape and size)

and topology (network connectivity).

Page 19: 3D Imaging of Microstructural Evolution in SOFC Anodes

Dihedral Angle Measurement

• Iterative search of RVE identifies two-phase and three-phase boundaries.

• Spline interpolation between voxels determines local dihedral angle.

• A distribution of dihedral angles is calculated based on the local angles.

θNi

PoreYSZ

Ni

YSZ Pore

#/vol

G. J. Nelson, W. K. S. Chiu et al., Acta Materialia, 60 3491–3500, 2012.