353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

of 28 /28
Shaft Design Dr. Mostafa Rostom A. Atia Associate Prof. 1

Transcript of 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

Page 1: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

Shaft Design

Dr. Mostafa Rostom A. AtiaAssociate Prof.

1

Page 2: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 2

Loading modes

A shaft is a rotating member, usually of circular crosssection, used to transmit power or motion. It providesthe axis of rotation, or oscillation, of elements such asgears, pulleys, flywheels, cranks, sprockets, and thelike and controls the geometry of their motion.

An axle is a non-rotating member that carries notorque and is used to support rotating wheels, pulleys,and the like.

Page 3: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 3

Steps of Shaft Design

Material selection Geometric layout Stress and strength

Static strength Fatigue strength

Deflection and rigidity Bending deflection Torsional deflection Slope at bearings and shaft-supported elements Shear deflection due to transverse loading of short shafts

Vibration due to natural frequency

Page 4: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 4

Shaft Materials

Shafts can be made from low carbon, cold-drawn or hot-rolledsteel, such as ANSI 1020-1050 steels.

A good practice is to start with an inexpensive, low or mediumcarbon steel for the first time through the design calculations.

typical alloy steels for heat treatment include ANSI 1340-50,3140-50, 4140, 4340, 5140, and 8650.

Typical material choices for surface hardening include carburizinggrades of ANSI 1020, 4320, 4820, and 8620.

Cast iron may be specified if the production quantity is high, andthe gears are to be integrally cast with the shaft.

Page 5: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 5

Material for shafts

Page 6: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 6

Structure steel

Page 7: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 7

Material notes

Page 8: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 8

Material Notes

Page 9: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 9

Shaft Layout

The geometry of a shaft is generally that of a steppedcylinder

Page 10: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 10

Notes on Shaft Layout

Axial Layout of Components Supporting Axial Loads Providing for Torque Transmission

Keys Splines Setscrews Pins Press or shrink fits Tapered fits

Page 11: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 11

Bearing Arrangements

Page 12: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 12

Approximate shaft diameter

Power, KW 0.75 1.5 2.25 3 3.75 6 7.5 11.3 15 22.5 30 37.5 45 60 75 90 105 120 135 150 Speed, rpm Shaft Diameter, mm

60 45 55 60 65 65 75 80 85 95 105 110 115 120 130 140 145 150 155 160 170 80 45 50 55 60 60 70 75 80 85 95 105 110 115 120 130 135 140 145 150 155 100 40 50 50 55 60 65 70 75 85 90 100 105 110 115 120 130 135 135 140 145 120 40 45 50 55 55 65 65 75 80 85 95 100 105 110 115 120 125 130 135 140 140 35 45 50 50 55 60 65 70 75 85 90 95 100 105 115 120 120 125 130 135 160 35 40 45 50 55 60 60 70 75 80 85 90 95 105 110 115 120 120 125 130 180 35 40 45 50 50 55 60 65 70 80 85 90 95 100 105 110 115 120 120 125 200 35 40 45 50 50 55 60 65 70 75 85 85 90 100 105 110 110 115 120 120 250 35 40 40 45 50 55 55 60 65 70 80 85 85 95 100 100 105 110 115 115 300 30 35 40 45 45 50 55 60 65 70 75 80 85 90 95 100 100 105 110 110 400 30 35 40 40 45 50 50 55 60 65 70 75 75 85 85 90 95 100 100 105

Page 13: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 13

Shaft Static Stresses

Bending stress

Normal stress

Page 14: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 14

Shaft Static Stresses

Transverse shear stress

Torsion shear stress

Page 15: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 15

Shaft Static Stresses

Compound stress

Page 16: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 16

Example

The 15mm diameter solid steel is shaft shown in Figure. Twopulleys are keyed to the shaft where pulley B is of diameter400mm and pulley C is of diameter 800mm. Considering bendingand torsional stresses only, determine the locations andmagnitudes of the greatest stresses in the shaft.

Page 17: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 17

Ex. Cont.

𝑀𝑀 = �𝑀𝑀𝑦𝑦2 + 𝑀𝑀𝑧𝑧

2

𝜎𝜎 = 32 𝑀𝑀𝜋𝜋 𝑑𝑑3 =

32 × 82462𝜋𝜋 × 153 = 249 𝑀𝑀𝑀𝑀𝑀𝑀 𝜏𝜏 =

16 𝑇𝑇𝜋𝜋 𝑑𝑑3 =

16 × 160000𝜋𝜋 × 153 = 241 𝑀𝑀𝑀𝑀𝑀𝑀

𝜎𝜎𝑚𝑚𝑀𝑀𝑚𝑚 = 0.5 𝜎𝜎 + 0.5 �𝜎𝜎2 + 4 𝜏𝜏2 = 0.5 × 249 + 0.5 × �2492 + 4 × 2412 = 396 𝑀𝑀𝑀𝑀𝑀𝑀

𝜏𝜏𝑚𝑚𝑀𝑀𝑚𝑚 = 0.5 �𝜎𝜎2 + 4 𝜏𝜏2 = 0.5 × �2492 + 4 × 2412 = 271 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝐶𝐶 = �(40000)2 + (40000)2 = 56569 𝑁𝑁𝑚𝑚𝑚𝑚 𝑀𝑀𝐵𝐵 = �(20000)2 + (80000)2 = 82462 𝑁𝑁𝑚𝑚𝑚𝑚

Page 18: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 18

Shaft dynamic stresses

Mm and Ma are the midrange and alternating bending moments, Tm and Ta are the midrange and alternating torques, Kf and Kfs are the fatigue stress concentration factors for bending and torsion

Page 19: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 19

Shaft dynamic stresses

Von-Mises maximum stress

Page 20: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 20

A 1050 HR steel has a mean ultimate tensile strength of Sut = 725 MPaand a mean yield strength of 415 MPa. The endurance limit is 362 MPa.This material is used to manufacture the shaft, which is shown in thefigure. The shaft has a fatigue stress-concentration factors kf = 1.66 andkfs = 1.63. The rotating shaft is subjected to bending moment of 145kNmm and the steady torsion moment is 125 kNmm.

Determine the fatigue factor of safety. Determine the yielding factor of safety.

Page 21: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 21

Answer

For a rotating shaft, the constant bending moment will create a completelyreversed bending stress. Ma = 145 kNmm Tm = 125 kNmm Mm = Ta = 0

Then: fatigue factor of safety n = 3.1

1𝑁𝑁

= 16

𝜋𝜋 × 303 �[4 × (1.66 × 145000)2]1/2

362+

[3 × (1.63 × 125000)2]1/2

725� = 0.323

Page 22: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 22

Sol. Cont.

For the yielding factor of safety, determine an equivalentvon-Mises maximum stress using

Factor of safety

𝜎𝜎𝑚𝑚𝑀𝑀𝑚𝑚′ = ��32 × 1.66 × 145000

𝜋𝜋 × 303 �2

+ 3 × �16 × 1.63 × 125000

𝜋𝜋 × 303 �2

�1/2

= 112.6 𝑀𝑀𝑀𝑀𝑀𝑀

𝑛𝑛𝑦𝑦 = 𝑆𝑆𝑦𝑦𝜎𝜎𝑚𝑚𝑀𝑀𝑚𝑚′ =

415112.6

= 3.68

Page 23: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 23

Reducing Stress Concentration

Page 24: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 24

Deflection Considerations

Note:Check table A9 for shaft deflection calculations

Page 25: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 25

Deflection limits

Once deflections at various points have been determined, if any value is largerthan the allowable deflection at that point, a new diameter can be found from

Page 26: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 26

Shaft Critical Speeds due to its mass

When a shaft is turning, eccentricity causes a centrifugal forcedeflection, which is resisted by the shaft’s flexural rigidity E I .As long as deflections are small, no harm is done.

Critical speeds: at certain speeds the shaft is unstable, withdeflections increasing without upper bound.

When geometry is simple, as in a shaft of uniform diameter,simply supported, the task is easy. where m is the mass per unit length A the cross-sectional area γ the specific weight

Page 27: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 27

Shaft Critical Speeds due to deflection

Calculate the influence factor at each load (simple support x=a)

Calculate the influence factor at mid point

Calculate the Equivalent loads

Calculate the Critical speed

Page 28: 353_35435_ME357_2011_1__2_1_2_Shaft Design.pdf

M.Atia 28

First Shaft Critical Speeds

The First Shaft Critical Speed W1 combines the effect ofthe shaft mass and the deflection due to loads on the shaft