341-V90

346
Ingenieria Strycon Cra 13 # 35 - 43 COMPRESS Pressure Vessel Design Calculations Item: Separador Primario Vessel No: V-90 Customer: Plant process Equipment INC. Contract: - Designer: Carlos Alvarez Date: 13/02/2013 Location: Servicios Auxiliares y varios - Proyecto Star Purchaser: PACIFIC RUBIALES Vessel Name: Comp1.CW7 Service: Separador Primario Tag Number: 341-V-90 You can edit this page by selecting Cover Page settings... in the report menu.

Transcript of 341-V90

Page 1: 341-V90

Ingenieria Strycon

Cra 13 # 35 - 43

COMPRESS Pressure Vessel Design Calculations

Item: Separador PrimarioVessel No: V-90Customer: Plant process Equipment INC.

Contract: -Designer: Carlos Alvarez

Date: 13/02/2013Location: Servicios Auxiliares y varios - Proyecto Star

Purchaser: PACIFIC RUBIALESVessel Name: Comp1.CW7

Service: Separador PrimarioTag Number: 341-V-90

You can edit this page by selecting Cover Page settings... in the report menu.

Page 2: 341-V90

1/345

Page 3: 341-V90

Deficiencies Summary

No deficiencies found.

2/345

Page 4: 341-V90

Nozzle Schedule

Nozzlemark

Service SizeMaterials

Nozzle Impact Norm FineGrain Pad Impact Norm Fine

Grain Flange

N1 Nozzle #1 NPS 8 Sch 80 (XS) SA-106 B Smlspipe No No No N/A N/A N/A N/A WN A105 Class

150

N10 Nozzle#10 NPS 1 Sch 80 (XS) SA-106 A Smls

pipe No No No N/A N/A N/A N/A WN A105 Class150

N11 Nozzle#11 NPS 1 Sch 80 (XS) SA-106 B Smls

pipe No No No N/A N/A N/A N/A WN A105 Class150

N12 Nozzle#12

NPS 0,75 Class 6000 -threaded SA-105 No No No N/A N/A N/A N/A N/A

N13 Nozzle#13 NPS 2 Sch 80 (XS) SA-106 B Smls

pipe No No No N/A N/A N/A N/A WN A105 Class150

N14 Nozzle#14 NPS 8 Sch 80 (XS) SA-106 B Smls

pipe No No No N/A N/A N/A N/A WN A105 Class150

N2 Nozzle #2 NPS 6 Sch 80 (XS) SA-106 B Smlspipe No No No N/A N/A N/A N/A WN A105 Class

150

N3 Nozzle #3 NPS 4 Sch 80 (XS) SA-106 B Smlspipe No No No N/A N/A N/A N/A WN A105 Class

150

N4 Nozzle #4 NPS 2 Sch 80 (XS) SA-106 B Smlspipe No No No N/A N/A N/A N/A WN A105 Class

150

N5 Nozzle #5 NPS 18 Sch 1,000 SA-106 B Smlspipe No No No N/A N/A N/A N/A WN A105 Class

150

N6 Nozzle #6 NPS 0,375 Class 6000 -threaded SA-105 No No No N/A N/A N/A N/A N/A

N7 Nozzle #7 NPS 0,5 Class 6000 -threaded

SA-106 B Smlspipe No No No N/A N/A N/A N/A N/A

N8 Nozzle #8 NPS 0,75 Class 6000 -threaded

SA-106 B Smlspipe No No No N/A N/A N/A N/A N/A

N9 Nozzle #9 NPS 0,75 Class 6000 -threaded

SA-106 B Smlspipe No No No N/A N/A N/A N/A N/A

3/345

Page 5: 341-V90

Nozzle Summary

Nozzlemark

OD(in)

tn

(in)Req t

n(in)

A1? A2?Shell Reinforcement

Pad Corr(in)

Aa/A

r(%)

Nom t(in)

Design t(in)

User t(in)

Width(in)

tpad(in)

N1 8,625 0,5 0,322 Yes Yes 0,487* 0,3905 N/A N/A 0 100,0

N10 1,315 0,179 0,133 Yes Yes 0,5 N/A N/A N/A 0 Exempt

N11 1,315 0,179 0,133 Yes Yes 0,5 N/A N/A N/A 0 Exempt

N12 1,75 0,35 0,0625 Yes Yes 0,487* N/A N/A N/A 0 Exempt

N13 2,375 0,218 0,154 Yes Yes 0,487* N/A N/A N/A 0 Exempt

N14 8,625 0,5 0,322 Yes Yes 0,5 0,3666 N/A N/A 0 100,0

N2 6,625 0,432 0,28 Yes Yes 0,5 0,3198 N/A N/A 0 100,0

N3 4,5 0,337 0,237 Yes Yes 0,5 0,3193 N/A N/A 0 100,0

N4 2,375 0,218 0,154 Yes Yes 0,5 N/A N/A N/A 0 Exempt

N5 18 1 0,1206 Yes Yes 0,487* 0,3928 N/A N/A 0 100,0

N6 1,25 0,2875 0,0625 Yes Yes 0,5 N/A N/A N/A 0 Exempt

N7 1,5 0,33 0,0714 Yes Yes 0,5 N/A N/A N/A 0 Exempt

N8 1,75 0,35 0,0714 Yes Yes 0,5 N/A N/A N/A 0 Exempt

N9 1,75 0,35 0,0714 Yes Yes 0,5 N/A N/A N/A 0 Exempt

tn: Nozzle thicknessReq tn: Nozzle thickness required per UG-45/UG-16Nom t: Vessel wall thicknessDesign t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37User t: Local vessel wall thickness (near opening)Aa: Area available per UG-37, governing conditionAr: Area required per UG-37, governing conditionCorr: Corrosion allowance on nozzle wall* Head minimum thickness after forming

4/345

Page 6: 341-V90

Pressure Summary

Pressure Summary for Chamber bounded by Ellipsoidal Head #1 and Ellipsoidal Head #2

IdentifierP

Design( psi)

T

Design( °F)

MAWP( psi)

MAP( psi)

MDMT( °F)

MDMTExemption

ImpactTested

Ellipsoidal Head #2 150 300 252,58 252,58 -20 Note 1 No

Straight Flange on Ellipsoidal Head #2 150 300 160,77 160,77 -20 Note 2 No

Cylinder #1 150 300 257,73 257,73 -44,5 Note 3 No

Straight Flange on Ellipsoidal Head #1 150 300 160,77 160,77 -20 Note 2 No

Ellipsoidal Head #1 150 300 252,58 252,58 -20 Note 4 No

Saddle #2 150 300 160,77 N/A N/A N/A N/A

Nozzle #1 (N1) 150 300 222,47 222,47 -55 Note 5 No

Nozzle #10 (N10) 150 300 230 257,73 -55 Note 5 No

Nozzle #11 (N11) 150 300 230 257,73 -55 Note 5 No

Nozzle #12 (N12) 150 300 252,58 252,58 -155 Note 6 No

Nozzle #13 (N13) 150 300 193,98 193,98 -55 Note 5 No

Nozzle #14 (N14) 150 300 188,68 188,68 -55 Note 5 No

Nozzle #2 (N2) 150 300 164,51 164,51 -55 Note 5 No

Nozzle #3 (N3) 150 300 164,27 164,27 -55 Note 5 No

Nozzle #4 (N4) 150 300 230 257,73 -55 Note 5 No

Nozzle #5 (N5) 150 300 223,83 223,83 -51,05 Note 7 No

Nozzle #6 (N6) 150 300 257,73 257,73 -155 Note 8 No

Nozzle #7 (N7) 150 300 257,73 257,73 -155 Note 9 No

Nozzle #8 (N8) 150 300 257,73 257,73 -155 Note 10 No

Nozzle #9 (N9) 150 300 257,73 257,73 -155 Note 10 No

Chamber design MDMT is -20 °FChamber rated MDMT is -20 °F @ 160,77 psi

Chamber MAWP hot & corroded is 160,77 psi @ 300 °F

Chamber MAP cold & new is 160,77 psi @ 70 °F

This pressure chamber is not designed for external pressure.

Notes for MDMT Rating:

Note # Exemption Details

1. Straight Flange governs MDMT

2. Material is impact test exempt per UG-20(f) UCS-66 governing thickness = 0,3125 in

3. Material impact test exemption temperature from Fig UCS-66 Curve B = -7 °FFig UCS-66.1 MDMT reduction = 37,5 °F, (coincident ratio = 0,625) UCS-66 governing thickness = 0,5 in

4. Straight Flange governs MDMT

5. Flange rating governs: UCS-66(b)(1)(b)

6. Nozzle is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0,01212).

7. Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -8,25 °FFig UCS-66.1 MDMT reduction = 42,8 °F, (coincident ratio = 0,5801) UCS-66 governing thickness = 0,487 in.

5/345

Page 7: 341-V90

8. Nozzle is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0,00948).

9. Nozzle is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0,01375).

10. Nozzle is impact test exempt to -155 °F per UCS-66(b)(3) (coincident ratio = 0,01621).

Design notes are available on the Settings Summary page.

6/345

Page 8: 341-V90

Revision History

No. Date Operator Notes

0 2/12/2013 carlosalvarez New vessel created ASME Section VIII Division 1 [COMPRESS Build 7110]

7/345

Page 9: 341-V90

Settings Summary

COMPRESS Build 7110

Units: U.S. Customary

Datum Line Location: 0,00" from right seam

Design

ASME Section VIII Division 1, 2010 Edition

Design or Rating: Get Thickness from PressureMinimum thickness: 0,0625" per UG-16(b)Design for cold shut down only: NoDesign for lethal service (full radiography required): NoDesign nozzles for: Design P, find nozzle MAWP and MAPCorrosion weight loss: 100% of theoretical lossUG-23 Stress Increase: 1,20Skirt/legs stress increase: 1,0Minimum nozzle projection: 6"Juncture calculations for α > 30 only: YesPreheat P-No 1 Materials > 1,25&#34 and <= 1,50" thick: NoUG-37(a) shell tr calculation considers longitudinal stress: NoButt welds are tapered per Figure UCS-66.3(a).

Hydro/Pneumatic Test

Shop Hydrotest Pressure: 1,3 times vesselMAWP

Test liquid specific gravity: 1,00Maximum stress during test: 90% of yield

Required Marking - UG-116

UG-116(e) Radiography: RT1UG-116(f) Postweld heat treatment: None

Code Cases\Interpretations

Use Code Case 2547: NoApply interpretation VIII-1-83-66: YesApply interpretation VIII-1-86-175: YesApply interpretation VIII-1-83-115: YesApply interpretation VIII-1-01-37: YesNo UCS-66.1 MDMT reduction: NoNo UCS-68(c) MDMT reduction: NoDisallow UG-20(f) exemptions: No

8/345

Page 10: 341-V90

UG-22 Loadings

UG-22(a) Internal or External Design Pressure : YesUG-22(b) Weight of the vessel and normal contents under operating or test conditions: YesUG-22(c) Superimposed static reactions from weight of attached equipment (external loads): NoUG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs: YesUG-22(f) Wind reactions: NoUG-22(f) Seismic reactions: NoUG-22(j) Test pressure and coincident static head acting during the test: NoNote: UG-22(b),(c) and (f) loads only considered when supports are present.

9/345

Page 11: 341-V90

Thickness Summary

ComponentIdentifier

Material Diameter(in)

Length(in)

Nominal t(in)

Design t(in)

Total Corrosion(in)

JointE

Load

Ellipsoidal Head #2 SA-516 70 78 OD 19,7435 0,487* 0,2906 0 1,00 Internal

Straight Flange on Ellipsoidal Head #2 SA-516 70 78 OD 2 0,3125 0,2917 0 1,00 Internal

Cylinder #1 SA-516 70 78 OD 240 0,5 0,2917 0 1,00 Internal

Straight Flange on Ellipsoidal Head #1 SA-516 70 78 OD 2 0,3125 0,2917 0 1,00 Internal

Ellipsoidal Head #1 SA-516 70 78 OD 19,7435 0,487* 0,2906 0 1,00 Internal

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

* Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

10/345

Page 12: 341-V90

Weight Summary

ComponentWeight ( lb) Contributed by Vessel Elements

MetalNew*

Metal

Corroded*Insulation &

Supports Lining Piping+ Liquid

OperatingLiquid

TestLiquid

Ellipsoidal Head #2 964 964 0 0 0 0 2.505,1

Cylinder #1 8.250,8 8.250,8 0 0 0 0 40.353,7

Ellipsoidal Head #1 992 992 0 0 0 0 2.505,3

Saddle #2 1.052 1.052 0 0 0 0 0

TOTAL: 11.258,9 11.258,9 0 0 0 0 45.364,1

* Shells with attached nozzles have weight reduced by material cut out for opening.

Component

Weight ( lb) Contributed by Attachments

Body Flanges Nozzles &Flanges Packed

BedsTrays &

SupportsRings &

ClipsVerticalLoads

New Corroded New Corroded

Ellipsoidal Head #2 0 0 483,3 483,3 0 0 0 0

Cylinder #1 0 0 188,2 188,2 0 0 0 0

Ellipsoidal Head #1 0 0 62,6 62,6 0 0 0 0

TOTAL: 0 0 734,2 734,2 0 0 0 0

Vessel operating weight, Corroded: 11.993 lbVessel operating weight, New: 11.993 lbVessel empty weight, Corroded: 11.993 lbVessel empty weight, New: 11.993 lbVessel test weight, New: 57.357 lb

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New: 11.993 lbCenter of Gravity: 124,242"

Vessel Capacity

Vessel Capacity** (New): 5.437 US galVessel Capacity** (Corroded): 5.437 US gal**The vessel capacity does not include volume of nozzle, piping or other attachments.

11/345

Page 13: 341-V90

Hydrostatic Test

Shop test pressure determination for Chamber bounded by Ellipsoidal Head #1 and Ellipsoidal Head #2 basedon MAWP per UG-99(b)

Shop hydrostatic test gauge pressure is 209,003 psi at 70 °F (the chamber MAWP = 160,772 psi)

The shop test is performed with the vessel in the horizontal position.

IdentifierLocal testpressure

psi

Test liquidstatic head

psi

UG-99stressratio

UG-99pressure

factor

Ellipsoidal Head #2 (1) 212,09 3,087 1 1,30

Straight Flange on Ellipsoidal Head #2 212,096 3,093 1 1,30

Cylinder #1 212,09 3,086 1 1,30

Straight Flange on Ellipsoidal Head #1 212,096 3,093 1 1,30

Ellipsoidal Head #1 212,09 3,087 1 1,30

Nozzle #1 (N1) 210,837 1,834 1 1,30

Nozzle #10 (N10) 209,292 0,289 1 1,30

Nozzle #11 (N11) 212,324 3,321 1 1,30

Nozzle #12 (N12) 209,455 0,452 1 1,30

Nozzle #13 (N13) 211,998 2,995 1 1,30

Nozzle #14 (N14) 210,837 1,834 1 1,30

Nozzle #2 (N2) 212,324 3,321 1 1,30

Nozzle #3 (N3) 209,292 0,289 1 1,30

Nozzle #4 (N4) 209,292 0,289 1 1,30

Nozzle #5 (N5) 210,989 1,985 1 1,30

Nozzle #6 (N6) 210,712 1,709 1 1,30

Nozzle #7 (N7) 209,292 0,289 1 1,30

Nozzle #8 (N8) 209,292 0,289 1 1,30

Nozzle #9 (N9) 212,324 3,321 1 1,30

Notes:(1) Ellipsoidal Head #2 limits the UG-99 stress ratio.(2) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-mostflange.

The field test condition has not been investigated for the Chamber bounded by Ellipsoidal Head #1 and EllipsoidalHead #2.

The test temperature of 70 °F is warmer than the minimum recommended temperature of 10 °F so the brittle fractureprovision of UG-99(h) has been met.

12/345

Page 14: 341-V90

Cylinder #1

ASME Section VIII Division 1, 2010 Edition

Component: CylinderMaterial specification: SA-516 70 (II-D p. 18, ln. 19)Material impact test exemption temperature from Fig UCS-66 Curve B = -7 °FFig UCS-66.1 MDMT reduction = 37,5 °F, (coincident ratio = 0,625)UCS-66 governing thickness = 0,5 in

Internal design pressure: P = 150 psi @ 300 °F

Static liquid head:

Pth = 3,09 psi (SG = 1, Hs = 85,5", Horizontal testhead)

Corrosion allowance Inner C = 0" Outer C = 0"

Design MDMT = -20 °F No impact test performedRated MDMT = -44,5 °F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Full UW-11(a) Type 1Left circumferential joint - Full UW-11(a) Type 1Right circumferential joint - Full UW-11(a) Type 1

Estimated weight New = 8.250,8 lb corr = 8.250,8 lbCapacity New = 4.838,05 US gal corr = 4.838,05 US gal

OD = 78"LengthLc

= 240"

t = 0,5"

Design thickness, (at 300 °F) Appendix 1-1

t = P*Ro / (S*E + 0,40*P) + Corrosion= 150*39 / (20.000*1,00 + 0,40*150) + 0= 0,2917"

Maximum allowable working pressure, (at 300 °F) Appendix 1-1

P = S*E*t / (Ro - 0,40*t) - Ps= 20.000*1,00*0,5 / (39 - 0,40*0,5) - 0= 257,73 psi

Maximum allowable pressure, (at 70 °F) Appendix 1-1

P = S*E*t / (Ro - 0,40*t)= 20.000*1,00*0,5 / (39 - 0,40*0,5)= 257,73 psi

13/345

Page 15: 341-V90

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*0,5 / 38,75)*(1 - 38,75 / ∞)= 0,6452%

The extreme fiber elongation does not exceed 5%.

14/345

Page 16: 341-V90

Ellipsoidal Head #2

ASME Section VIII, Division 1, 2010 Edition

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D p.18, ln. 19)Straight Flange governs MDMT

Internal design pressure: P = 150 psi @ 300 °F

Static liquid head:

Ps= 0 psi (SG=1, Hs=0" Operating head)Pth= 3,0868 psi (SG=1, Hs=85,513" Horizontal test head)

Corrosion allowance: Inner C = 0" Outer C = 0"

Design MDMT = -20°F No impact test performedRated MDMT = -20°F Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 964 lb corr = 964 lbCapacity*: new = 299,7 US gal corr = 299,7 US gal* includes straight flange

Outer diameter = 78"Minimum head thickness = 0,487"Head ratio D/2h = 2 (new)Head ratio D/2h = 2 (corroded)Straight flange length Lsf = 2"Nominal straight flange thickness tsf = 0,3125"Results Summary

The governing condition is internal pressure.Minimum thickness per UG-16 = 0,0625" + 0" = 0,0625"Design thickness due to internal pressure (t) = 0,2906"Maximum allowable working pressure (MAWP) = 252,58 psiMaximum allowable pressure (MAP) = 252,58 psi

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (77,026 / (2*19,2565))2]=1

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (77,026 / (2*19,2565))2]=1

15/345

Page 17: 341-V90

Design thickness for internal pressure, (Corroded at 300 °F) Appendix 1-4(c)

t = P*Do*K / (2*S*E + 2*P*(K - 0,1)) + Corrosion= 150*78*1 / (2*20.000*1 + 2*150*(1 - 0,1)) + 0= 0,2905"

The head internal pressure design thickness is 0,2906".

Maximum allowable working pressure, (Corroded at 300 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0,1)) - Ps= 2*20.000*1*0,487 / (1*78 - 2*0,487*(1 - 0,1)) - 0= 252,58 psi

The maximum allowable working pressure (MAWP) is 252,58 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0,1)) - Ps= 2*20.000*1*0,487 / (1*78 - 2*0,487*(1 - 0,1)) - 0= 252,58 psi

The maximum allowable pressure (MAP) is 252,58 psi.

% Extreme fiber elongation - UCS-79(d)

EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*0,3125 / 13,2507)*(1 - 13,2507 / ∞)= 1,7688%

The extreme fiber elongation does not exceed 5%.

16/345

Page 18: 341-V90

Straight Flange on Ellipsoidal Head #2

ASME Section VIII Division 1, 2010 Edition

Component: Straight FlangeMaterial specification: SA-516 70 (II-D p. 18, ln. 19)Material is impact test exempt per UG-20(f)UCS-66 governing thickness = 0,3125 in

Internal design pressure: P = 150 psi @ 300 °F

Static liquid head:

Pth = 3,09 psi (SG = 1, Hs = 85,6875", Horizontal testhead)

Corrosion allowance Inner C = 0" Outer C = 0"

Design MDMT = -20 °F No impact test performedRated MDMT = -20 °F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight New = 43,2 lb corr = 43,2 lbCapacity New = 40,71 US gal corr = 40,71 US gal

OD = 78"LengthLc

= 2"

t = 0,3125"

Design thickness, (at 300 °F) Appendix 1-1

t = P*Ro / (S*E + 0,40*P) + Corrosion= 150*39 / (20.000*1,00 + 0,40*150) + 0= 0,2917"

Maximum allowable working pressure, (at 300 °F) Appendix 1-1

P = S*E*t / (Ro - 0,40*t) - Ps= 20.000*1,00*0,3125 / (39 - 0,40*0,3125) - 0= 160,77 psi

Maximum allowable pressure, (at 70 °F) Appendix 1-1

P = S*E*t / (Ro - 0,40*t)= 20.000*1,00*0,3125 / (39 - 0,40*0,3125)= 160,77 psi

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*0,3125 / 38,8438)*(1 - 38,8438 / ∞)

17/345

Page 19: 341-V90

= 0,4023%

The extreme fiber elongation does not exceed 5%.

18/345

Page 20: 341-V90

Straight Flange on Ellipsoidal Head #1

ASME Section VIII Division 1, 2010 Edition

Component: Straight FlangeMaterial specification: SA-516 70 (II-D p. 18, ln. 19)Material is impact test exempt per UG-20(f)UCS-66 governing thickness = 0,3125 in

Internal design pressure: P = 150 psi @ 300 °F

Static liquid head:

Pth = 3,09 psi (SG = 1, Hs = 85,6875", Horizontal testhead)

Corrosion allowance Inner C = 0" Outer C = 0"

Design MDMT = -20 °F No impact test performedRated MDMT = -20 °F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight New = 43,2 lb corr = 43,2 lbCapacity New = 40,71 US gal corr = 40,71 US gal

OD = 78"LengthLc

= 2"

t = 0,3125"

Design thickness, (at 300 °F) Appendix 1-1

t = P*Ro / (S*E + 0,40*P) + Corrosion= 150*39 / (20.000*1,00 + 0,40*150) + 0= 0,2917"

Maximum allowable working pressure, (at 300 °F) Appendix 1-1

P = S*E*t / (Ro - 0,40*t) - Ps= 20.000*1,00*0,3125 / (39 - 0,40*0,3125) - 0= 160,77 psi

Maximum allowable pressure, (at 70 °F) Appendix 1-1

P = S*E*t / (Ro - 0,40*t)= 20.000*1,00*0,3125 / (39 - 0,40*0,3125)= 160,77 psi

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*0,3125 / 38,8438)*(1 - 38,8438 / ∞)

19/345

Page 21: 341-V90

= 0,4023%

The extreme fiber elongation does not exceed 5%.

20/345

Page 22: 341-V90

Ellipsoidal Head #1

ASME Section VIII, Division 1, 2010 Edition

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D p.18, ln. 19)Straight Flange governs MDMT

Internal design pressure: P = 150 psi @ 300 °F

Static liquid head:

Ps= 0 psi (SG=1, Hs=0" Operating head)Pth= 3,0868 psi (SG=1, Hs=85,513" Horizontal test head)

Corrosion allowance: Inner C = 0" Outer C = 0"

Design MDMT = -20°F No impact test performedRated MDMT = -20°F Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 992 lb corr = 992 lbCapacity*: new = 299,7 US gal corr = 299,7 US gal* includes straight flange

Outer diameter = 78"Minimum head thickness = 0,487"Head ratio D/2h = 2 (new)Head ratio D/2h = 2 (corroded)Straight flange length Lsf = 2"Nominal straight flange thickness tsf = 0,3125"Results Summary

The governing condition is internal pressure.Minimum thickness per UG-16 = 0,0625" + 0" = 0,0625"Design thickness due to internal pressure (t) = 0,2906"Maximum allowable working pressure (MAWP) = 252,58 psiMaximum allowable pressure (MAP) = 252,58 psi

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (77,026 / (2*19,2565))2]=1

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (77,026 / (2*19,2565))2]=1

21/345

Page 23: 341-V90

Design thickness for internal pressure, (Corroded at 300 °F) Appendix 1-4(c)

t = P*Do*K / (2*S*E + 2*P*(K - 0,1)) + Corrosion= 150*78*1 / (2*20.000*1 + 2*150*(1 - 0,1)) + 0= 0,2905"

The head internal pressure design thickness is 0,2906".

Maximum allowable working pressure, (Corroded at 300 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0,1)) - Ps= 2*20.000*1*0,487 / (1*78 - 2*0,487*(1 - 0,1)) - 0= 252,58 psi

The maximum allowable working pressure (MAWP) is 252,58 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0,1)) - Ps= 2*20.000*1*0,487 / (1*78 - 2*0,487*(1 - 0,1)) - 0= 252,58 psi

The maximum allowable pressure (MAP) is 252,58 psi.

% Extreme fiber elongation - UCS-79(d)

EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*0,3125 / 13,2507)*(1 - 13,2507 / ∞)= 1,7688%

The extreme fiber elongation does not exceed 5%.

22/345

Page 24: 341-V90

Nozzle #1 (N1)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0 inLeg41 = 0,375 inLeg43 = 0,5 inhnew = 2 in

Note: round inside edges per UG-76(c)

Located on: Ellipsoidal Head #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 8 Sch 80 (XS)Flange description: 8 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 0°Calculated as hillside: NoLocal vessel minimum thickness: 0,487 inEnd of nozzle to datum line: -29,6722 inNozzle inside diameter, new: 7,625 inNozzle nominal wall thickness: 0,5 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 4,0498 inInternal projection, hnew: 2 inProjection available outside vessel to flange face, Lf: 8,0498 inDistance to head center, R: 0 in

23/345

Page 25: 341-V90

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 222,47 psi @ 300 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

3,0338 3,0341 0,7222 0,9369 1,041 -- 0,334 0,2818 0,4375

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

47.882,94 21.142 118.954,77 54.564,95 99.329,73

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,3462 0,35(corroded)

weld size is adequate

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 222,47 psi @ 70 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

3,0338 3,0341 0,7222 0,9369 1,041 -- 0,334 0,2818 0,4375

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

47.882,94 21.142 118.954,77 54.564,95 99.329,73

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

24/345

Page 26: 341-V90

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,3462 0,35(corroded)

weld size is adequate

25/345

Page 27: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:24:31 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Elliptical Head

Parent Outside Diameter : 78.000 in.Thickness : 0.487 in.Ellipse Ratio : 2.000Straight Flange Length : 2.000 in.Attached Shell Length : 240.000 in.Attached Shell Thick : 0.487 in.Shell Transition Length: 0.039 in.Shell Transition SCF : 0.000 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 8.625 in.Thickness : 0.438 in.

26/345

Page 28: 341-V90

Length : 8.172 in.Nozzle Weld Length : 0.375 in.Insert Length : 2.365 in.Insert Thickness : 0.438 in.Location perpendicularto the head centerline : 0.000 in.

Nozzle Tilt Angle : 0.000 deg.

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector: 0.000 0.000 -1.000Nozzle Centerline Vector: 0.000 0.000 -1.000Zero Degree Orientation Vector: 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

27/345

Page 29: 341-V90

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1Loads from (Thermal Only)

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

28/345

Page 30: 341-V90

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 1392Number of Nodes = 3853Number of Elements = 1296Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -9051. 0.2 0. -9051. -707930.3 0. 0. 0.4 0. -9051. -707930.5 0. 0. -225059.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 0. -707930.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

29/345

Page 31: 341-V90

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Shell Next to Nozzle 1

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.

30/345

Page 32: 341-V90

Stress Concentration ..... 1.350

Nozzle 1 Next to Shell

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

Shell Next to Nozzle 1 Pad

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

31/345

Page 33: 341-V90

NOT USED

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

Nozzle 1 Pad Weld Area

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

32/345

Page 34: 341-V90

Shell In Nozzle 1 Vicinity

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.000

Nozzle 1 Transition Area

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

Barrel Section of Nozzle 1

33/345

Page 35: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.000

Nozzle 1

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.000

Pad at Nozzle 1

34/345

Page 36: 341-V90

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Shell Next to Nozzle 1

Pl 1.5(k)Smh Primary Membrane Load Case 214,903 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:49% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Nozzle 1 Next to Shell

Pl 1.5(k)Smh Primary Membrane Load Case 214,339 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:55% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

35/345

Page 37: 341-V90

Shell In Nozzle 1 Vicinity

Pl 1.5(k)Smh Primary Membrane Load Case 213,385 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:44% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Nozzle 1

Pl 1.5(k)Smh Primary Membrane Load Case 215,434 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:60% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Shell Next to Nozzle 1

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 416,358 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:27% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Nozzle 1 Next to Shell

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 419,238 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:37% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Shell In Nozzle 1 Vicinity

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 414,703 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:24% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Nozzle 1

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 431,828 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

36/345

Page 38: 341-V90

Plot Reference:62% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Table of Contents

Highest Fatigue Stress Ratios

Shell Next to Nozzle 1

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 511,027 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 7,658,056.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3,526,298.WRC 474 99% Probability Cycles = 819,207.WRC 474 95% Probability Cycles = 1,137,381.BS5500 Allowed Cycles(Curve F) = 484,888.Membrane-to-Bending Ratio = 3.204Bending-to-PL+PB+Q Ratio = 0.238Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Nozzle 1 Next to Shell

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 512,977 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 595,108.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1,223,304.WRC 474 99% Probability Cycles = 284,190.WRC 474 95% Probability Cycles = 394,568.BS5500 Allowed Cycles(Curve F) = 252,600.Membrane-to-Bending Ratio = 2.502Bending-to-PL+PB+Q Ratio = 0.286Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Shell In Nozzle 1 Vicinity

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 57,345 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 2.7222E100% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 4,850,926.WRC 474 99% Probability Cycles = 1,126,936.

37/345

Page 39: 341-V90

WRC 474 95% Probability Cycles = 1,564,630.BS5500 Allowed Cycles(Curve F) = 666,839.Membrane-to-Bending Ratio = 7.066Bending-to-PL+PB+Q Ratio = 0.124Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Nozzle 1

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 515,912 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 215,241.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 518,449.WRC 474 99% Probability Cycles = 120,443.WRC 474 95% Probability Cycles = 167,222.BS5500 Allowed Cycles(Curve F) = 65,595.Membrane-to-Bending Ratio = 0.680Bending-to-PL+PB+Q Ratio = 0.595Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 10.129 5.383 15.006Inplane : 7.162 2.868 10.611Outplane: 7.162 2.867 10.611Torsion : 0.716 0.997 1.061Pressure: 1.325 1.285 2.649

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 8.625 in.Pipe Thk: 0.438 in.Z approx: 23.034 cu.in.Z exact : 21.928 cu.in.

38/345

Page 40: 341-V90

B31.3Peak Stress Sif .... 0.000 Axial11.444 Inplane14.959 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial7.692 Inplane7.692 Outplane7.692 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial5.192 Inplane5.192 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 44994. 10914. 16372.Inplane Moment (in. lb.) 123992. 21268. 45116.Outplane Moment (in. lb.) 123996. 21268. 45117.Torsional Moment (in. lb.) 1060540. 150028. 225041.Pressure (psi ) 241.81 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 53621. 7886. 11829.Inplane Moment (in. lb.) 196140. 20398. 43271.Outplane Moment (in. lb.) 196166. 20401. 43276.Torsional Moment (in. lb.) 564023. 74901. 112351.Pressure (psi ) 249.33 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. A

39/345

Page 41: 341-V90

more realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 8.625 in.Wall Thickness = 0.438 in.

Axial Translational Stiffness = 566269. lb./in.Inplane Rotational Stiffness = 256645. in.lb./degOutplane Rotational Stiffness = 256645. in.lb./degTorsional Rotational Stiffness = 8064298. in.lb./deg

Table of Contents

40/345

Page 42: 341-V90

Finite Element Model

Finite Element Model•

Discontinuity at Center Nozzle

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

41/345

Page 43: 341-V90

42/345

Page 44: 341-V90

43/345

Page 45: 341-V90

44/345

Page 46: 341-V90

45/345

Page 47: 341-V90

46/345

Page 48: 341-V90

47/345

Page 49: 341-V90

48/345

Page 50: 341-V90

49/345

Page 51: 341-V90

50/345

Page 52: 341-V90

Nozzle #10 (N10)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 inLeg43 = 0,375 inhnew = 1 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 A Smls pipe (II-D p. 6, ln. 22)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 1 Sch 80 (XS)Flange description: 1 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 0°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 237 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 0,957 inNozzle nominal wall thickness: 0,179 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 3,81 inInternal projection, hnew: 1 inProjection available outside vessel to flange face, Lf: 6 in

51/345

Page 53: 341-V90

Reinforcement Calculations for Internal Pressure

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-37 Area Calculation Summary(in2)

For P = 230 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1164 0,1566

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,1253 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,1253 0,2625(corroded)

weld size is adequate

Nozzle to shell groove (Lower) 0,1253 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1164 0,1566

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

52/345

Page 54: 341-V90

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,1253 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,1253 0,2625(corroded)

weld size is adequate

Nozzle to shell groove (Lower) 0,1253 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

53/345

Page 55: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:22:53 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 1.315 in.Thickness : 0.157 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Insert Length : 1.256 in.Insert Thickness : 0.157 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 3.000 in.

54/345

Page 56: 341-V90

Distance from Bottom : 237.000 in.

Nozzle PropertiesCold Allowable : 13700.0 psiHot Allowable : 13700.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 48000.0 psiYield Strength (Amb) : 30000.0 psiYield Strength (Hot) : 26500.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

The cylinder length or nozzle/branch location was adjustedso that a better mesh could be generated at each end of thecylinder. The nozzle is now located 5.43 in.down the length of the cylinder and the total cylinder lengthis 240.00 in.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratcheting

55/345

Page 57: 341-V90

calculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7

56/345

Page 58: 341-V90

Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 960Number of Nodes = 3612Number of Elements = 1164Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -441. 0.2 0. 462874. 37097.3 0. 0. 0.4 0. 462874. 37097.5 0. 2127. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 463315. 37097.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

57/345

Page 59: 341-V90

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psi

58/345

Page 60: 341-V90

Case 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

Cold Allowable ........... 13700. psiHot Allowable @ 300 deg .. 13700. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 13700. psiHot Allowable @ 300 deg .. 13700. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8

59/345

Page 61: 341-V90

Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 13700. psiHot Allowable @ 300 deg .. 13700. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psi

60/345

Page 62: 341-V90

Pressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 212,147 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:40% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 210,515 20,550 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:51% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 2670 20,550 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:3% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

61/345

Page 63: 341-V90

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 211,670 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:38% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 2697 20,550 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:3% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 514,270 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:23% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 518,067 41,100 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:43% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 5744 41,100 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:1% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 511,880 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:

62/345

Page 64: 341-V90

19% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 5830 41,100 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:2% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 59,632 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.1514E80% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3,076,001.WRC 474 99% Probability Cycles = 714,597.WRC 474 95% Probability Cycles = 992,142.BS5500 Allowed Cycles(Curve F) = 610,744.Membrane-to-Bending Ratio = 2.307Bending-to-PL+PB+Q Ratio = 0.302Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 512,195 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1,100,396.0% "B31" Fatigue Stress Allowable = 34250.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 5,830,184.WRC 474 99% Probability Cycles = 1,354,430.WRC 474 95% Probability Cycles = 1,880,483.BS5500 Allowed Cycles(Curve F) = 358,496.Membrane-to-Bending Ratio = 1.086Bending-to-PL+PB+Q Ratio = 0.479Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

63/345

Page 65: 341-V90

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 5502 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 34250.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1.2006E11WRC 474 99% Probability Cycles = 2.7891E10WRC 474 95% Probability Cycles = 3.8724E10BS5500 Allowed Cycles(Curve F) = 3.3400E11Membrane-to-Bending Ratio = 3.498Bending-to-PL+PB+Q Ratio = 0.222Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 55,940 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9,203,925.WRC 474 99% Probability Cycles = 2,138,196.WRC 474 95% Probability Cycles = 2,968,658.BS5500 Allowed Cycles(Curve F) = 1,260,782.Membrane-to-Bending Ratio = 28.753Bending-to-PL+PB+Q Ratio = 0.034Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5415 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 34250.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9.1929E10WRC 474 99% Probability Cycles = 2.1356E10WRC 474 95% Probability Cycles = 2.9651E10BS5500 Allowed Cycles(Curve F) = 1.9357E11Membrane-to-Bending Ratio = 1.089Bending-to-PL+PB+Q Ratio = 0.479Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

64/345

Page 66: 341-V90

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 1.848 1.046 2.738Inplane : 0.919 0.892 1.362Outplane: 0.914 0.892 1.354Torsion : 0.678 0.889 1.004Pressure: 1.042 1.039 1.544

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 1.315 in.Pipe Thk: 0.157 in.Z approx: 0.165 cu.in.Z exact : 0.148 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial3.921 Inplane5.124 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.000 Inplane1.000 Outplane1.000 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 11736. 2311. 3466.Inplane Moment (in. lb.) 4467. 622. 1319.Outplane Moment (in. lb.) 4495. 626. 1328.Torsional Moment (in. lb.) 6059. 1193. 1789.Pressure (psi ) 341.23 150.00 150.00

65/345

Page 67: 341-V90

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 11195. 1820. 2731.Inplane Moment (in. lb.) 3411. 396. 839.Outplane Moment (in. lb.) 3411. 397. 841.Torsional Moment (in. lb.) 3422. 556. 835.Pressure (psi ) 292.86 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 1.315 in.Wall Thickness = 0.157 in.

Axial Translational Stiffness = 533075. lb./in.Inplane Rotational Stiffness = 153135. in.lb./degOutplane Rotational Stiffness = 61138. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element model

66/345

Page 68: 341-V90

is stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

67/345

Page 69: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

68/345

Page 70: 341-V90

69/345

Page 71: 341-V90

70/345

Page 72: 341-V90

71/345

Page 73: 341-V90

72/345

Page 74: 341-V90

73/345

Page 75: 341-V90

74/345

Page 76: 341-V90

75/345

Page 77: 341-V90

76/345

Page 78: 341-V90

77/345

Page 79: 341-V90

Nozzle #11 (N11)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 inLeg43 = 0,375 inhnew = 1 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 1 Sch 80 (XS)Flange description: 2 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 180°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 237 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 0,957 inNozzle nominal wall thickness: 0,179 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 3,5 inInternal projection, hnew: 1 inProjection available outside vessel to flange face, Lf: 6 in

78/345

Page 80: 341-V90

Reinforcement Calculations for Internal Pressure

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-37 Area Calculation Summary(in2)

For P = 230 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1164 0,1566

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,1253 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,1253 0,2625(corroded)

weld size is adequate

Nozzle to shell groove (Lower) 0,1253 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1164 0,1566

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

79/345

Page 81: 341-V90

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,1253 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,1253 0,2625(corroded)

weld size is adequate

Nozzle to shell groove (Lower) 0,1253 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

80/345

Page 82: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:23:23 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 1.315 in.Thickness : 0.157 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Insert Length : 1.256 in.Insert Thickness : 0.157 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 3.000 in.

81/345

Page 83: 341-V90

Distance from Bottom : 237.000 in.

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

The cylinder length or nozzle/branch location was adjustedso that a better mesh could be generated at each end of thecylinder. The nozzle is now located 5.43 in.down the length of the cylinder and the total cylinder lengthis 240.00 in.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 -1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratcheting

82/345

Page 84: 341-V90

calculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7

83/345

Page 85: 341-V90

Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 960Number of Nodes = 3612Number of Elements = 1164Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -441. 0.2 -1. -463755. 37097.3 0. 0. 0.4 -1. -463755. 37097.5 0. -2127. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 -1. -463315. 37097.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

84/345

Page 86: 341-V90

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psi

85/345

Page 87: 341-V90

Case 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8

86/345

Page 88: 341-V90

Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 3732. psi

87/345

Page 89: 341-V90

Pressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 14366. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.157 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 212,174 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:40% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 210,536 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:41% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 2668 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

88/345

Page 90: 341-V90

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 211,695 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:38% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 2695 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 414,279 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:23% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 418,090 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:35% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 4744 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:1% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 411,891 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:

89/345

Page 91: 341-V90

19% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 4832 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:1% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 59,632 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.1514E80% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3,076,007.WRC 474 99% Probability Cycles = 714,598.WRC 474 95% Probability Cycles = 992,144.BS5500 Allowed Cycles(Curve F) = 610,743.Membrane-to-Bending Ratio = 2.306Bending-to-PL+PB+Q Ratio = 0.302Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 512,195 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1,100,447.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 5,830,221.WRC 474 99% Probability Cycles = 1,354,439.WRC 474 95% Probability Cycles = 1,880,495.BS5500 Allowed Cycles(Curve F) = 358,498.Membrane-to-Bending Ratio = 1.086Bending-to-PL+PB+Q Ratio = 0.479Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

90/345

Page 92: 341-V90

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 5502 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1.2006E11WRC 474 99% Probability Cycles = 2.7892E10WRC 474 95% Probability Cycles = 3.8726E10BS5500 Allowed Cycles(Curve F) = 3.3402E11Membrane-to-Bending Ratio = 3.498Bending-to-PL+PB+Q Ratio = 0.222Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 55,940 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9,202,534.WRC 474 99% Probability Cycles = 2,137,873.WRC 474 95% Probability Cycles = 2,968,209.BS5500 Allowed Cycles(Curve F) = 1,260,600.Membrane-to-Bending Ratio = 28.752Bending-to-PL+PB+Q Ratio = 0.034Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5415 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9.1944E10WRC 474 99% Probability Cycles = 2.1360E10WRC 474 95% Probability Cycles = 2.9656E10BS5500 Allowed Cycles(Curve F) = 1.9362E11Membrane-to-Bending Ratio = 1.088Bending-to-PL+PB+Q Ratio = 0.479Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

91/345

Page 93: 341-V90

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 1.849 1.046 2.740Inplane : 0.920 0.892 1.362Outplane: 0.914 0.892 1.354Torsion : 0.678 0.889 1.004Pressure: 1.042 1.039 1.544

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 1.315 in.Pipe Thk: 0.157 in.Z approx: 0.165 cu.in.Z exact : 0.148 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial3.921 Inplane5.124 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.000 Inplane1.000 Outplane1.000 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 12481. 3276. 4914.Inplane Moment (in. lb.) 5575. 883. 1873.Outplane Moment (in. lb.) 5611. 889. 1885.Torsional Moment (in. lb.) 7562. 1694. 2541.Pressure (psi ) 425.92 150.00 150.00

92/345

Page 94: 341-V90

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 13973. 2746. 4120.Inplane Moment (in. lb.) 4258. 597. 1266.Outplane Moment (in. lb.) 4258. 598. 1269.Torsional Moment (in. lb.) 4272. 840. 1259.Pressure (psi ) 365.55 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 1.315 in.Wall Thickness = 0.157 in.

Axial Translational Stiffness = 533070. lb./in.Inplane Rotational Stiffness = 152688. in.lb./degOutplane Rotational Stiffness = 61130. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element model

93/345

Page 95: 341-V90

is stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

94/345

Page 96: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

95/345

Page 97: 341-V90

96/345

Page 98: 341-V90

97/345

Page 99: 341-V90

98/345

Page 100: 341-V90

99/345

Page 101: 341-V90

100/345

Page 102: 341-V90

101/345

Page 103: 341-V90

102/345

Page 104: 341-V90

103/345

Page 105: 341-V90

104/345

Page 106: 341-V90

Nozzle #12 (N12)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Ellipsoidal Head #2Liquid static head included: 0 psiNozzle material specification: SA-105 (II-D p. 18, ln. 5)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 0,75 Class 6000 - threadedNozzle orientation: 0°Calculated as hillside: YesLocal vessel minimum thickness: 0,487 inEnd of nozzle to datum line: 258,0562 inNozzle inside diameter, new: 1,05 inNozzle nominal wall thickness: 0,35 inNozzle corrosion allowance: 0 inOpening chord length: 1,5075 inProjection available outside vessel, Lpr: 6,4979 inDistance to head center, R: 35 inReinforcement Calculations for Internal Pressure

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 252,58 psi @ 300 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

105/345

Page 107: 341-V90

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,35

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,245 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,245 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 252,58 psi @ 70 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,35

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,245 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,245 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

106/345

Page 108: 341-V90

Nozzle #13 (N13)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0 inLeg41 = 0,375 inLeg43 = 0,375 inhnew = 1 in

Note: round inside edges per UG-76(c)

Located on: Ellipsoidal Head #2Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 2 Sch 80 (XS)Flange description: 2 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 180°Calculated as hillside: YesLocal vessel minimum thickness: 0,487 inEnd of nozzle to datum line: 258,3231 inNozzle inside diameter, new: 1,939 inNozzle nominal wall thickness: 0,218 inNozzle corrosion allowance: 0 inOpening chord length: 2,7926 inProjection available outside vessel, Lpr: 3,9843 inInternal projection, hnew: 1 inProjection available outside vessel to flange face, Lf: 6,4843 inDistance to head center, R: 35 in

107/345

Page 109: 341-V90

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 193,98 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1348 0,1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,1526 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,1526 0,2625(corroded)

weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 193,98 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1348 0,1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

108/345

Page 110: 341-V90

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,1526 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,1526 0,2625(corroded)

weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

109/345

Page 111: 341-V90

Nozzle #14 (N14)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0 inLeg41 = 0,375 inLeg43 = 0,5625 inhnew = 0,5625 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 8 Sch 80 (XS)Flange description: 8 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 90°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 12 inEnd of nozzle to shell center: 47 inNozzle inside diameter, new: 7,625 inNozzle nominal wall thickness: 0,5 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 4 inInternal projection, hnew: 0,5625 inProjection available outside vessel to flange face, Lf: 8 in

110/345

Page 112: 341-V90

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 188,68 psi @ 300 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

2,8481 2,8481 0,9982 0,9783 0,4809 -- 0,3907 0,2818 0,4375

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

39.279,87 21.970 118.954,77 45.548,75 106.424,7

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,3625 0,3938(corroded)

weld size is adequate

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 188,68 psi @ 70 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

2,8481 2,8481 0,9982 0,9783 0,4809 -- 0,3907 0,2818 0,4375

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

39.279,87 21.970 118.954,77 45.548,75 106.424,7

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

111/345

Page 113: 341-V90

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,3625 0,3938(corroded)

weld size is adequate

112/345

Page 114: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:23:04 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 8.625 in.Thickness : 0.438 in.Length : 8.250 in.Nozzle Weld Length : 0.375 in.Insert Length : 1.055 in.Insert Thickness : 0.438 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 228.000 in.

113/345

Page 115: 341-V90

Distance from Bottom : 12.000 in.

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 1.000 0.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

114/345

Page 116: 341-V90

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8

115/345

Page 117: 341-V90

Loads from (Outplane)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 1032Number of Nodes = 4063Number of Elements = 1328Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -8295. 0.2 -890. -8295. 698509.3 0. 0. 0.4 -890. -8295. 698509.5 255615. 0. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 -890. 0. 698509.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

116/345

Page 118: 341-V90

7) Bending < User (OPE,Bending) Case 4

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 22715. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

117/345

Page 119: 341-V90

Branch Next to Header Weld

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 22715. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 22715. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 10

118/345

Page 120: 341-V90

Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 22715. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 22715. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11657. psi

119/345

Page 121: 341-V90

Pressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11657. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.438 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 215,983 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:53% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 217,378 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:67% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

S1+S2+S3 4S Part 5 (5.3.2) Load Case 29,197 68,400 Plot Reference:psi psi 3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

13%

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 214,193 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1

120/345

Page 122: 341-V90

Plot Reference:47% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 416,991 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:28% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 434,184 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:66% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 45,285 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:10% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 414,443 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:24% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 511,463 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 3,683,533.0% "B31" Fatigue Stress Allowable = 50000.0

121/345

Page 123: 341-V90

Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1,759,287.WRC 474 99% Probability Cycles = 408,706.WRC 474 95% Probability Cycles = 567,445.BS5500 Allowed Cycles(Curve F) = 362,392.Membrane-to-Bending Ratio = 6.808Bending-to-PL+PB+Q Ratio = 0.128Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 523,050 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 46,679.1% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 405,383.WRC 474 99% Probability Cycles = 94,176.WRC 474 95% Probability Cycles = 130,753.BS5500 Allowed Cycles(Curve F) = 53,089.Membrane-to-Bending Ratio = 0.801Bending-to-PL+PB+Q Ratio = 0.555Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 53,565 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1.3575E8WRC 474 99% Probability Cycles = 31,535,548.WRC 474 95% Probability Cycles = 43,783,760.BS5500 Allowed Cycles(Curve F) = 18,520,082.Membrane-to-Bending Ratio = 0.778Bending-to-PL+PB+Q Ratio = 0.562Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 57,209 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 3.8872E100% "B31" Fatigue Stress Allowable = 50000.0

122/345

Page 124: 341-V90

Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 5,027,957.WRC 474 99% Probability Cycles = 1,168,062.WRC 474 95% Probability Cycles = 1,621,730.BS5500 Allowed Cycles(Curve F) = 705,345.Membrane-to-Bending Ratio = 22.854Bending-to-PL+PB+Q Ratio = 0.042Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 13.585 6.630 20.125Inplane : 6.090 2.653 9.023Outplane: 8.816 3.409 13.061Torsion : 0.717 1.001 1.062Pressure: 1.970 1.485 2.919

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 8.625 in.Pipe Thk: 0.438 in.Z approx: 23.034 cu.in.Z exact : 21.928 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial10.955 Inplane14.315 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial7.361 Inplane7.361 Outplane7.361 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial4.969 Inplane4.969 Outplane1.000 Torsional

123/345

Page 125: 341-V90

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 33550. 4406. 6609.Inplane Moment (in. lb.) 145817. 14517. 30796.Outplane Moment (in. lb.) 100736. 9825. 20842.Torsional Moment (in. lb.) 1058975. 118522. 177783.Pressure (psi ) 225.34 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 50924. 5770. 8655.Inplane Moment (in. lb.) 212045. 16136. 34230.Outplane Moment (in. lb.) 191008. 14535. 30834.Torsional Moment (in. lb.) 562106. 60825. 91238.Pressure (psi ) 221.52 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,

124/345

Page 126: 341-V90

"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 8.625 in.Wall Thickness = 0.438 in.

Axial Translational Stiffness = 525314. lb./in.Inplane Rotational Stiffness = 351803. in.lb./degOutplane Rotational Stiffness = 176913. in.lb./degTorsional Rotational Stiffness = 472092864. in.lb./deg

Table of Contents

125/345

Page 127: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

126/345

Page 128: 341-V90

127/345

Page 129: 341-V90

128/345

Page 130: 341-V90

129/345

Page 131: 341-V90

130/345

Page 132: 341-V90

131/345

Page 133: 341-V90

132/345

Page 134: 341-V90

133/345

Page 135: 341-V90

134/345

Page 136: 341-V90

135/345

Page 137: 341-V90

Nozzle #2 (N2)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,5 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 6 Sch 80 (XS)Flange description: 6 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 180°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 226 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 5,761 inNozzle nominal wall thickness: 0,432 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 2,5 inProjection available outside vessel to flange face, Lf: 6 in

136/345

Page 138: 341-V90

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 164,51 psi @ 300 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

1,8821 1,8823 1,0158 0,7463 -- -- 0,1202 0,245 0,378

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 164,51 psi @ 70 °F

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

1,8821 1,8823 1,0158 0,7463 -- -- 0,1202 0,245 0,378

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(1)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

137/345

Page 139: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:21:30 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 6.625 in.Thickness : 0.378 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 14.000 in.Distance from Bottom : 226.000 in.

138/345

Page 140: 341-V90

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 -1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

139/345

Page 141: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

140/345

Page 142: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 828Number of Nodes = 2638Number of Elements = 840Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -1773. 0.2 -4. -1732054. 148790.3 0. 0. 0.4 -4. -1732054. 148790.5 0. -130303. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 -4. -1730281. 148790.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

141/345

Page 143: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 17565. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.378 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

142/345

Page 144: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 17565. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.378 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 17565. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

143/345

Page 145: 341-V90

Smallest Thickness ....... 0.378 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 17565. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.378 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 17565. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 9

144/345

Page 146: 341-V90

Nominal Stress (M/Z) ... 11884. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.378 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 218,698 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:62% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 218,425 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:71% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 23,067 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:11% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 214,527 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:48% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

145/345

Page 147: 341-V90

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 423,504 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:39% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 425,447 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:49% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 44,528 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:8% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 514,998 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:24% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 515,853 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 218,896.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 649,388.

146/345

Page 148: 341-V90

WRC 474 99% Probability Cycles = 150,862.WRC 474 95% Probability Cycles = 209,455.BS5500 Allowed Cycles(Curve F) = 136,986.Membrane-to-Bending Ratio = 2.469Bending-to-PL+PB+Q Ratio = 0.288Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 517,154 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 161,648.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1,058,903.WRC 474 99% Probability Cycles = 245,997.WRC 474 95% Probability Cycles = 341,541.BS5500 Allowed Cycles(Curve F) = 128,805.Membrane-to-Bending Ratio = 2.402Bending-to-PL+PB+Q Ratio = 0.294Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 53,052 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2.4356E8WRC 474 99% Probability Cycles = 56,582,940.WRC 474 95% Probability Cycles = 78,559,416.BS5500 Allowed Cycles(Curve F) = 40,288,588.Membrane-to-Bending Ratio = 0.857Bending-to-PL+PB+Q Ratio = 0.538Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 57,499 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.8346E100% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 4,460,972.

147/345

Page 149: 341-V90

WRC 474 99% Probability Cycles = 1,036,344.WRC 474 95% Probability Cycles = 1,438,854.BS5500 Allowed Cycles(Curve F) = 626,634.Membrane-to-Bending Ratio = 8.298Bending-to-PL+PB+Q Ratio = 0.108Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 13.304 6.875 19.710Inplane : 4.277 2.393 6.336Outplane: 6.165 2.824 9.133Torsion : 0.717 0.993 1.062Pressure: 1.466 1.596 2.172

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 6.625 in.Pipe Thk: 0.378 in.Z approx: 11.586 cu.in.Z exact : 10.965 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial9.465 Inplane12.368 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial5.518 Inplane5.518 Outplane5.518 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial3.725 Inplane3.725 Outplane1.000 Torsional

Table of Contents

148/345

Page 150: 341-V90

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 22583. 4062. 6094.Inplane Moment (in. lb.) 96365. 12330. 26155.Outplane Moment (in. lb.) 65979. 8899. 18878.Torsional Moment (in. lb.) 529817. 99878. 149817.Pressure (psi ) 302.79 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 27676. 2606. 3910.Inplane Moment (in. lb.) 117521. 7826. 16602.Outplane Moment (in. lb.) 99574. 6631. 14066.Torsional Moment (in. lb.) 283263. 26695. 40043.Pressure (psi ) 209.07 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of the

149/345

Page 151: 341-V90

branch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 6.625 in.Wall Thickness = 0.378 in.

Axial Translational Stiffness = 290833. lb./in.Inplane Rotational Stiffness = 208029. in.lb./degOutplane Rotational Stiffness = 105345. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

150/345

Page 152: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

151/345

Page 153: 341-V90

152/345

Page 154: 341-V90

153/345

Page 155: 341-V90

154/345

Page 156: 341-V90

155/345

Page 157: 341-V90

156/345

Page 158: 341-V90

157/345

Page 159: 341-V90

158/345

Page 160: 341-V90

159/345

Page 161: 341-V90

160/345

Page 162: 341-V90

Nozzle #3 (N3)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 4 Sch 80 (XS)Flange description: 4 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 0°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 226 inEnd of nozzle to shell center: 46 inNozzle inside diameter, new: 3,826 inNozzle nominal wall thickness: 0,337 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 4 inProjection available outside vessel to flange face, Lf: 7 in

161/345

Page 163: 341-V90

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 164,27 psi @ 300 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

1,2528 1,2529 0,6738 0,4589 -- -- 0,1202 0,2074 0,2949

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

13.662,24 11.582 48.588,89 17.344,7 61.441,01

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,2359 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,2359 0,375 weld size is adequate

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 164,27 psi @ 70 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

1,2528 1,2529 0,6738 0,4589 -- -- 0,1202 0,2074 0,2949

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

13.662,24 11.582 48.588,89 17.344,7 61.441,01

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,2359 0,2625 weld size is adequate

162/345

Page 164: 341-V90

Nozzle to shell groove (Lower) 0,2359 0,375 weld size is adequate

163/345

Page 165: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:21:35 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 4.500 in.Thickness : 0.295 in.Length : 7.250 in.Nozzle Weld Length : 0.375 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 14.000 in.Distance from Bottom : 226.000 in.

164/345

Page 166: 341-V90

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

165/345

Page 167: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

166/345

Page 168: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 828Number of Nodes = 2782Number of Elements = 888Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -1372. 0.2 0. 1380492. 115234.3 0. 0. 0.4 0. 1380492. 115234.5 0. 46902. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 1381864. 115234.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

167/345

Page 169: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 12039. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.295 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

168/345

Page 170: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 12039. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.295 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 12039. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

169/345

Page 171: 341-V90

Smallest Thickness ....... 0.295 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 12039. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.295 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 12039. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 9

170/345

Page 172: 341-V90

Nominal Stress (M/Z) ... 12195. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.295 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 216,788 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:55% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 216,220 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:63% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 21,865 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:7% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 213,193 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:43% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

171/345

Page 173: 341-V90

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 22,078 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:8% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 523,033 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:38% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 524,656 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:48% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 52,607 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:5% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 413,987 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:23% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 53,089 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

172/345

Page 174: 341-V90

Plot Reference:6% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 515,547 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 239,282.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 692,947.WRC 474 99% Probability Cycles = 160,981.WRC 474 95% Probability Cycles = 223,505.BS5500 Allowed Cycles(Curve F) = 145,239.Membrane-to-Bending Ratio = 2.069Bending-to-PL+PB+Q Ratio = 0.326Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 516,643 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 180,261.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1,392,213.WRC 474 99% Probability Cycles = 323,430.WRC 474 95% Probability Cycles = 449,048.BS5500 Allowed Cycles(Curve F) = 141,039.Membrane-to-Bending Ratio = 1.855Bending-to-PL+PB+Q Ratio = 0.350Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 51,760 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1.5503E9WRC 474 99% Probability Cycles = 3.6016E8

173/345

Page 175: 341-V90

WRC 474 95% Probability Cycles = 5.0004E8BS5500 Allowed Cycles(Curve F) = 6.3162E8Membrane-to-Bending Ratio = 2.286Bending-to-PL+PB+Q Ratio = 0.304Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 56,993 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 6.9466E100% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 5,548,528.WRC 474 99% Probability Cycles = 1,288,998.WRC 474 95% Probability Cycles = 1,789,637.BS5500 Allowed Cycles(Curve F) = 772,922.Membrane-to-Bending Ratio = 8.579Bending-to-PL+PB+Q Ratio = 0.104Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 51,545 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9.3176E8WRC 474 99% Probability Cycles = 2.1646E8WRC 474 95% Probability Cycles = 3.0053E8BS5500 Allowed Cycles(Curve F) = 2.7062E8Membrane-to-Bending Ratio = 1.228Bending-to-PL+PB+Q Ratio = 0.449Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 9.197 5.481 13.626Inplane : 2.799 1.721 4.146

174/345

Page 176: 341-V90

Outplane: 3.395 1.909 5.030Torsion : 0.718 0.962 1.064Pressure: 1.422 1.436 2.107

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 4.500 in.Pipe Thk: 0.295 in.Z approx: 4.096 cu.in.Z exact : 3.846 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial7.384 Inplane9.649 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial3.501 Inplane3.501 Outplane3.501 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial2.363 Inplane2.363 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 15932. 3120. 4680.Inplane Moment (in. lb.) 47586. 7163. 15194.Outplane Moment (in. lb.) 39223. 6015. 12759.Torsional Moment (in. lb.) 185471. 37675. 56512.Pressure (psi ) 312.09 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 18233. 2230. 3344.Inplane Moment (in. lb.) 57324. 4957. 10515.Outplane Moment (in. lb.) 51667. 4467. 9477.Torsional Moment (in. lb.) 102501. 12534. 18801.

175/345

Page 177: 341-V90

Pressure (psi ) 236.91 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 4.500 in.Wall Thickness = 0.295 in.

Axial Translational Stiffness = 239701. lb./in.Inplane Rotational Stiffness = 122811. in.lb./degOutplane Rotational Stiffness = 73369. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

176/345

Page 178: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

177/345

Page 179: 341-V90

178/345

Page 180: 341-V90

179/345

Page 181: 341-V90

180/345

Page 182: 341-V90

181/345

Page 183: 341-V90

182/345

Page 184: 341-V90

183/345

Page 185: 341-V90

184/345

Page 186: 341-V90

185/345

Page 187: 341-V90

186/345

Page 188: 341-V90

Nozzle #4 (N4)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,1875 inLeg41 = 0,25 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 2 Sch 80 (XS)Flange description: 2 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 0°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 12 inEnd of nozzle to shell center: 47 inNozzle inside diameter, new: 1,939 inNozzle nominal wall thickness: 0,218 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 5,5 inProjection available outside vessel to flange face, Lf: 8 in

187/345

Page 189: 341-V90

Reinforcement Calculations for Internal Pressure

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-37 Area Calculation Summary(in2)

For P = 230 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1348 0,1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,1526 0,175 weld size is adequate

Nozzle to shell groove (Lower) 0,1526 0,1875 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,1348 0,1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

188/345

Page 190: 341-V90

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,1526 0,175 weld size is adequate

Nozzle to shell groove (Lower) 0,1526 0,1875 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

189/345

Page 191: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:21:36 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.250 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 2.375 in.Thickness : 0.191 in.Length : 8.250 in.Nozzle Weld Length : 0.250 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 228.000 in.Distance from Bottom : 12.000 in.

190/345

Page 192: 341-V90

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

191/345

Page 193: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

192/345

Page 194: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 888Number of Nodes = 3218Number of Elements = 1032Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -731. 0.2 0. 760927. 61485.3 0. 0. 0.4 0. 760927. 61485.5 0. 8448. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 761658. 61485.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

193/345

Page 195: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 6456. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.191 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

194/345

Page 196: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 6456. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.191 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 6456. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

195/345

Page 197: 341-V90

Smallest Thickness ....... 0.191 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 6456. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.191 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 6456. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 9

196/345

Page 198: 341-V90

Nominal Stress (M/Z) ... 12757. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.191 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 215,859 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:52% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 215,225 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:59% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 21,311 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:5% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 212,303 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:41% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

197/345

Page 199: 341-V90

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 21,397 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:5% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 522,939 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:38% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 525,621 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:49% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 51,907 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:3% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 513,182 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:21% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 52,500 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

198/345

Page 200: 341-V90

Plot Reference:4% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 515,484 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 243,813.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 782,793.WRC 474 99% Probability Cycles = 181,853.WRC 474 95% Probability Cycles = 252,484.BS5500 Allowed Cycles(Curve F) = 165,062.Membrane-to-Bending Ratio = 1.884Bending-to-PL+PB+Q Ratio = 0.347Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 517,294 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 156,975.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1,687,447.WRC 474 99% Probability Cycles = 392,017.WRC 474 95% Probability Cycles = 544,274.BS5500 Allowed Cycles(Curve F) = 125,697.Membrane-to-Bending Ratio = 1.407Bending-to-PL+PB+Q Ratio = 0.416Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 51,287 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 5.5935E9WRC 474 99% Probability Cycles = 1.2994E9

199/345

Page 201: 341-V90

WRC 474 95% Probability Cycles = 1.8041E9BS5500 Allowed Cycles(Curve F) = 3.0187E9Membrane-to-Bending Ratio = 2.061Bending-to-PL+PB+Q Ratio = 0.327Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 56,591 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 6,669,916.WRC 474 99% Probability Cycles = 1,549,512.WRC 474 95% Probability Cycles = 2,151,332.BS5500 Allowed Cycles(Curve F) = 922,894.Membrane-to-Bending Ratio = 9.541Bending-to-PL+PB+Q Ratio = 0.095Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 51,250 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2.4896E9WRC 474 99% Probability Cycles = 5.7836E8WRC 474 95% Probability Cycles = 8.0300E8BS5500 Allowed Cycles(Curve F) = 7.7868E8Membrane-to-Bending Ratio = 0.840Bending-to-PL+PB+Q Ratio = 0.543Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 4.754 3.106 7.043Inplane : 1.718 0.973 2.546

200/345

Page 202: 341-V90

Outplane: 1.780 0.991 2.637Torsion : 0.705 0.932 1.044Pressure: 1.478 1.357 2.190

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 2.375 in.Pipe Thk: 0.191 in.Z approx: 0.715 cu.in.Z exact : 0.662 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial4.775 Inplane6.240 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.606 Inplane1.606 Outplane1.606 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 9531. 1942. 2913.Inplane Moment (in. lb.) 13346. 2605. 5526.Outplane Moment (in. lb.) 12885. 2515. 5335.Torsional Moment (in. lb.) 32536. 6574. 9862.Pressure (psi ) 300.33 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 10807. 1461. 2192.Inplane Moment (in. lb.) 17459. 1669. 3541.Outplane Moment (in. lb.) 17140. 1639. 3477.Torsional Moment (in. lb.) 18218. 2464. 3695.

201/345

Page 203: 341-V90

Pressure (psi ) 252.39 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 2.375 in.Wall Thickness = 0.191 in.

Axial Translational Stiffness = 350358. lb./in.Inplane Rotational Stiffness = 64192. in.lb./degOutplane Rotational Stiffness = 46954. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

202/345

Page 204: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

203/345

Page 205: 341-V90

204/345

Page 206: 341-V90

205/345

Page 207: 341-V90

206/345

Page 208: 341-V90

207/345

Page 209: 341-V90

208/345

Page 210: 341-V90

209/345

Page 211: 341-V90

210/345

Page 212: 341-V90

211/345

Page 213: 341-V90

212/345

Page 214: 341-V90

Nozzle #5 (N5)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0 inLeg41 = 0,375 inLeg43 = 1 inhnew = 3 in

Note: round inside edges per UG-76(c)

Located on: Ellipsoidal Head #2Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 18 Sch 1,000Flange description: 18 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Flange rated MDMT: -55°F(UCS-66(b)(1)(b))Liquid static head on flange: 0 psiASME B16.5 flange rating MAWP: 230 psi @ 300°FASME B16.5 flange rating MAP: 285 psi @ 70°FASME B16.5 flange hydro test: 450 psi @ 70°FPWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1Nozzle orientation: 0°Calculated as hillside: NoLocal vessel minimum thickness: 0,487 inEnd of nozzle to datum line: 268 inNozzle inside diameter, new: 16 inNozzle nominal wall thickness: 1 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 1,2894 inInternal projection, hnew: 3 inProjection available outside vessel to flange face, Lf: 6,7894 inDistance to head center, R: 0 in

213/345

Page 215: 341-V90

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 223,83 psi @ 300 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

6,3989 6,3991 1,4797 1,8623 2,0819 -- 0,9752 0,1055 0,875

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

101.604,8 39.650 408.482,84 115.043,9 325.752,13

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,3462 0,7(corroded)

weld size is adequate

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)For P = 223,83 psi @ 70 °F

The opening is adequately reinforced

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

6,3989 6,3991 1,4797 1,8623 2,0819 -- 0,9752 0,1055 0,875

UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

101.604,8 39.650 408.482,84 115.043,9 325.752,13

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

214/345

Page 216: 341-V90

Nozzle to shell fillet (Leg41) 0,25 0,2625 weld size is adequate

Nozzle to inside shell fillet (Leg43) 0,3462 0,7(corroded)

weld size is adequate

215/345

Page 217: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:21:09 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Elliptical Head

Parent Outside Diameter : 78.000 in.Thickness : 0.487 in.Ellipse Ratio : 2.000Straight Flange Length : 2.000 in.Attached Shell Length : 240.000 in.Attached Shell Thick : 0.487 in.Shell Transition Length: 0.039 in.Shell Transition SCF : 0.000 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 18.000 in.Thickness : 0.875 in.

216/345

Page 218: 341-V90

Length : 6.500 in.Nozzle Weld Length : 0.375 in.Insert Length : 3.776 in.Insert Thickness : 0.875 in.Location perpendicularto the head centerline : 0.000 in.

Nozzle Tilt Angle : 0.000 deg.

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector: 0.000 0.000 1.000Nozzle Centerline Vector: 0.000 0.000 1.000Zero Degree Orientation Vector: 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

217/345

Page 219: 341-V90

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1Loads from (Thermal Only)

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

218/345

Page 220: 341-V90

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 1392Number of Nodes = 3853Number of Elements = 1296Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -9139. 0.2 0. -9139. 707902.3 0. 0. 0.4 0. -9139. 707902.5 0. 0. 941468.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 0. 707902.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

219/345

Page 221: 341-V90

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Shell Next to Nozzle 1

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.

220/345

Page 222: 341-V90

Stress Concentration ..... 1.350

Nozzle 1 Next to Shell

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.350

Shell Next to Nozzle 1 Pad

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.350

221/345

Page 223: 341-V90

NOT USED

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.350

Nozzle 1 Pad Weld Area

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.350

222/345

Page 224: 341-V90

Shell In Nozzle 1 Vicinity

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.000

Nozzle 1 Transition Area

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.350

Barrel Section of Nozzle 1

223/345

Page 225: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.000

Nozzle 1

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.000

Pad at Nozzle 1

224/345

Page 226: 341-V90

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 12012. psiCase 6Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20000. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 12012. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.875 in.Stress Concentration ..... 1.350

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Shell Next to Nozzle 1

Pl 1.5(k)Smh Primary Membrane Load Case 213,207 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:44% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Nozzle 1 Next to Shell

Pl 1.5(k)Smh Primary Membrane Load Case 211,511 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:44% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

225/345

Page 227: 341-V90

Shell In Nozzle 1 Vicinity

Pl 1.5(k)Smh Primary Membrane Load Case 212,311 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:41% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Nozzle 1

Pl 1.5(k)Smh Primary Membrane Load Case 211,912 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:46% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Shell Next to Nozzle 1

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 415,441 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:25% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Nozzle 1 Next to Shell

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 417,615 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:34% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Shell In Nozzle 1 Vicinity

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 413,507 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:22% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Nozzle 1

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 423,959 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

226/345

Page 228: 341-V90

Plot Reference:46% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Table of Contents

Highest Fatigue Stress Ratios

Shell Next to Nozzle 1

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 510,409 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 23,030,240.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 4,232,365.WRC 474 99% Probability Cycles = 983,235.WRC 474 95% Probability Cycles = 1,365,118.BS5500 Allowed Cycles(Curve F) = 576,520.Membrane-to-Bending Ratio = 2.815Bending-to-PL+PB+Q Ratio = 0.262Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Nozzle 1 Next to Shell

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 511,887 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1,899,477.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1,952,002.WRC 474 99% Probability Cycles = 453,476.WRC 474 95% Probability Cycles = 629,604.BS5500 Allowed Cycles(Curve F) = 384,187.Membrane-to-Bending Ratio = 1.079Bending-to-PL+PB+Q Ratio = 0.481Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Shell In Nozzle 1 Vicinity

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 56,753 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 6,315,883.WRC 474 99% Probability Cycles = 1,467,265.

227/345

Page 229: 341-V90

WRC 474 95% Probability Cycles = 2,037,142.BS5500 Allowed Cycles(Curve F) = 857,999.Membrane-to-Bending Ratio = 6.068Bending-to-PL+PB+Q Ratio = 0.141Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Nozzle 1

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 511,978 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1,614,597.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 774,155.WRC 474 99% Probability Cycles = 179,847.WRC 474 95% Probability Cycles = 249,698.BS5500 Allowed Cycles(Curve F) = 152,619.Membrane-to-Bending Ratio = 0.712Bending-to-PL+PB+Q Ratio = 0.584Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 18.810 6.539 27.866Inplane : 17.765 6.847 26.319Outplane: 17.765 6.851 26.318Torsion : 0.969 1.435 1.435Pressure: 0.997 1.099 1.994

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 18.000 in.Pipe Thk: 0.875 in.Z approx: 201.539 cu.in.Z exact : 192.242 cu.in.

228/345

Page 230: 341-V90

B31.3Peak Stress Sif .... 0.000 Axial22.888 Inplane29.918 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial22.298 Inplane22.298 Outplane22.298 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial15.051 Inplane15.051 Outplane3.325 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 101359. 25103. 37654.Inplane Moment (in. lb.) 438261. 76750. 162811.Outplane Moment (in. lb.) 438274. 76752. 162816.Torsional Moment (in. lb.) 8036165. 1832154. 2748232.Pressure (psi ) 321.22 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 196558. 36119. 54179.Inplane Moment (in. lb.) 842261. 111131. 235745.Outplane Moment (in. lb.) 841783. 111068. 235611.Torsional Moment (in. lb.) 4018774. 749890. 1124836.Pressure (psi ) 323.03 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. A

229/345

Page 231: 341-V90

more realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 18.000 in.Wall Thickness = 0.875 in.

Axial Translational Stiffness = 1275837. lb./in.Inplane Rotational Stiffness = 1517246. in.lb./degOutplane Rotational Stiffness = 1517247. in.lb./degTorsional Rotational Stiffness = 48777128. in.lb./deg

Table of Contents

230/345

Page 232: 341-V90

Finite Element Model

Finite Element Model•

Discontinuity at Center Nozzle

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

231/345

Page 233: 341-V90

232/345

Page 234: 341-V90

233/345

Page 235: 341-V90

234/345

Page 236: 341-V90

235/345

Page 237: 341-V90

236/345

Page 238: 341-V90

237/345

Page 239: 341-V90

238/345

Page 240: 341-V90

239/345

Page 241: 341-V90

240/345

Page 242: 341-V90

Nozzle #6 (N6)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-105 (II-D p. 18, ln. 5)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 0,375 Class 6000 - threadedNozzle orientation: 270°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 144 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 0,675 inNozzle nominal wall thickness: 0,2875 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 6 inReinforcement Calculations for Internal Pressure

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,2875

241/345

Page 243: 341-V90

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,2012 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,2013 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,2875

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,2012 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,2013 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

242/345

Page 244: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:22:49 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 1.250 in.Thickness : 0.287 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 96.000 in.Distance from Bottom : 144.000 in.

243/345

Page 245: 341-V90

Nozzle PropertiesCold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 36000.0 psiYield Strength (Hot) : 31800.0 psiElastic Modulus (Amb) : 29200000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : -1.000 0.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

244/345

Page 246: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

245/345

Page 247: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 900Number of Nodes = 4240Number of Elements = 1356Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -422. 0.2 -443556. -422. 35502.3 0. 0. 0.4 -443556. -422. 35502.5 -3528. 0. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 -443556. 0. 35502.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

246/345

Page 248: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4058. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.287 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

247/345

Page 249: 341-V90

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4058. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.287 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4058. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

248/345

Page 250: 341-V90

Smallest Thickness ....... 0.287 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4058. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.287 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4058. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 9

249/345

Page 251: 341-V90

Nominal Stress (M/Z) ... 20110. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.287 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 212,197 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:40% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 29,050 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:30% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 2352 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:1% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 211,760 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:39% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

250/345

Page 252: 341-V90

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 2419 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:1% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 413,535 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:22% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 517,987 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:29% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 4486 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:0% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 411,799 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:19% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 4491 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

251/345

Page 253: 341-V90

Plot Reference:0% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 59,136 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 3.2381E80% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3,624,190.WRC 474 99% Probability Cycles = 841,948.WRC 474 95% Probability Cycles = 1,168,956.BS5500 Allowed Cycles(Curve F) = 715,768.Membrane-to-Bending Ratio = 2.418Bending-to-PL+PB+Q Ratio = 0.293Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 512,141 1,786,975 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1,046,077.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3,810,786.WRC 474 99% Probability Cycles = 885,297.WRC 474 95% Probability Cycles = 1,229,141.BS5500 Allowed Cycles(Curve F) = 370,831.Membrane-to-Bending Ratio = 1.002Bending-to-PL+PB+Q Ratio = 0.499Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 5325 1,786,975 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3.0434E11WRC 474 99% Probability Cycles = 7.0702E10

252/345

Page 254: 341-V90

WRC 474 95% Probability Cycles = 9.8162E10BS5500 Allowed Cycles(Curve F) = 3.0617E12Membrane-to-Bending Ratio = 2.237Bending-to-PL+PB+Q Ratio = 0.309Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 55,900 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 9,403,123.WRC 474 99% Probability Cycles = 2,184,472.WRC 474 95% Probability Cycles = 3,032,908.BS5500 Allowed Cycles(Curve F) = 1,287,048.Membrane-to-Bending Ratio = 30.241Bending-to-PL+PB+Q Ratio = 0.032Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 5240 1,786,975 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3.0383E11WRC 474 99% Probability Cycles = 7.0585E10WRC 474 95% Probability Cycles = 9.8000E10BS5500 Allowed Cycles(Curve F) = 3.0762E12Membrane-to-Bending Ratio = 2.886Bending-to-PL+PB+Q Ratio = 0.257Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 2.791 1.178 4.135Inplane : 0.862 0.779 1.277

253/345

Page 255: 341-V90

Outplane: 0.860 0.779 1.274Torsion : 0.691 0.790 1.024Pressure: 1.038 1.042 1.537

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 1.250 in.Pipe Thk: 0.287 in.Z approx: 0.209 cu.in.Z exact : 0.175 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial7.199 Inplane9.407 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.345 Inplane1.345 Outplane1.345 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 12613. 3302. 4953.Inplane Moment (in. lb.) 8244. 1788. 3794.Outplane Moment (in. lb.) 8265. 1793. 3803.Torsional Moment (in. lb.) 10275. 3152. 4729.Pressure (psi ) 500.37 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 22135. 4379. 6568.Inplane Moment (in. lb.) 6755. 1131. 2399.Outplane Moment (in. lb.) 6756. 1131. 2400.Torsional Moment (in. lb.) 6665. 1564. 2346.

254/345

Page 256: 341-V90

Pressure (psi ) 369.00 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 1.250 in.Wall Thickness = 0.287 in.

Axial Translational Stiffness = 580188. lb./in.Inplane Rotational Stiffness = 120031. in.lb./degOutplane Rotational Stiffness = 39951. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

255/345

Page 257: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

256/345

Page 258: 341-V90

257/345

Page 259: 341-V90

258/345

Page 260: 341-V90

259/345

Page 261: 341-V90

260/345

Page 262: 341-V90

261/345

Page 263: 341-V90

262/345

Page 264: 341-V90

263/345

Page 265: 341-V90

264/345

Page 266: 341-V90

265/345

Page 267: 341-V90

Nozzle #7 (N7)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 0,5 Class 6000 - threadedNozzle orientation: 0°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 132 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 0,84 inNozzle nominal wall thickness: 0,33 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 6 inReinforcement Calculations for Internal Pressure

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,2888

266/345

Page 268: 341-V90

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,231 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,231 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,2888

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,231 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,231 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

267/345

Page 269: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:22:31 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 1.500 in.Thickness : 0.289 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 108.000 in.Distance from Bottom : 132.000 in.

268/345

Page 270: 341-V90

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

269/345

Page 271: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

270/345

Page 272: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 900Number of Nodes = 4096Number of Elements = 1308Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -495. 0.2 0. 518840. 41635.3 0. 0. 0.4 0. 518840. 41635.5 0. 5102. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 519335. 41635.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

271/345

Page 273: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4644. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.289 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

272/345

Page 274: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4644. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.289 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4644. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

273/345

Page 275: 341-V90

Smallest Thickness ....... 0.289 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4644. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.289 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 4644. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 9

274/345

Page 276: 341-V90

Nominal Stress (M/Z) ... 17969. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.289 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 212,098 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:40% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 29,976 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:38% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 2497 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:1% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 211,652 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:38% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

275/345

Page 277: 341-V90

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 2530 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 515,136 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:25% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 518,752 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:36% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 4548 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:1% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 511,978 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:19% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 5740 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

276/345

Page 278: 341-V90

Plot Reference:1% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 510,217 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 32,921,626.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2,562,633.WRC 474 99% Probability Cycles = 595,334.WRC 474 95% Probability Cycles = 826,559.BS5500 Allowed Cycles(Curve F) = 511,837.Membrane-to-Bending Ratio = 2.168Bending-to-PL+PB+Q Ratio = 0.316Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 512,658 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 744,660.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 3,387,799.WRC 474 99% Probability Cycles = 787,031.WRC 474 95% Probability Cycles = 1,092,709.BS5500 Allowed Cycles(Curve F) = 320,616.Membrane-to-Bending Ratio = 1.127Bending-to-PL+PB+Q Ratio = 0.470Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 5369 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2.0518E11WRC 474 99% Probability Cycles = 4.7666E10

277/345

Page 279: 341-V90

WRC 474 95% Probability Cycles = 6.6179E10BS5500 Allowed Cycles(Curve F) = 1.5564E12Membrane-to-Bending Ratio = 4.350Bending-to-PL+PB+Q Ratio = 0.187Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 55,989 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 8,975,190.WRC 474 99% Probability Cycles = 2,085,058.WRC 474 95% Probability Cycles = 2,894,881.BS5500 Allowed Cycles(Curve F) = 1,230,195.Membrane-to-Bending Ratio = 21.870Bending-to-PL+PB+Q Ratio = 0.044Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5370 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 8.3280E10WRC 474 99% Probability Cycles = 1.9347E10WRC 474 95% Probability Cycles = 2.6861E10BS5500 Allowed Cycles(Curve F) = 3.4257E11Membrane-to-Bending Ratio = 1.163Bending-to-PL+PB+Q Ratio = 0.462Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 3.510 1.320 5.200Inplane : 0.931 0.817 1.379

278/345

Page 280: 341-V90

Outplane: 0.931 0.817 1.379Torsion : 0.697 0.818 1.033Pressure: 1.082 1.035 1.603

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 1.500 in.Pipe Thk: 0.289 in.Z approx: 0.333 cu.in.Z exact : 0.284 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial7.229 Inplane9.446 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.589 Inplane1.589 Outplane1.589 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 12678. 3337. 5005.Inplane Moment (in. lb.) 10562. 2250. 4773.Outplane Moment (in. lb.) 10560. 2250. 4773.Torsional Moment (in. lb.) 14099. 4248. 6372.Pressure (psi ) 410.35 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 21354. 4346. 6520.Inplane Moment (in. lb.) 8910. 1299. 2756.Outplane Moment (in. lb.) 8911. 1300. 2759.Torsional Moment (in. lb.) 8900. 1816. 2724.

279/345

Page 281: 341-V90

Pressure (psi ) 371.54 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 1.500 in.Wall Thickness = 0.289 in.

Axial Translational Stiffness = 550315. lb./in.Inplane Rotational Stiffness = 81225. in.lb./degOutplane Rotational Stiffness = 34619. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

280/345

Page 282: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

281/345

Page 283: 341-V90

282/345

Page 284: 341-V90

283/345

Page 285: 341-V90

284/345

Page 286: 341-V90

285/345

Page 287: 341-V90

286/345

Page 288: 341-V90

287/345

Page 289: 341-V90

288/345

Page 290: 341-V90

289/345

Page 291: 341-V90

290/345

Page 292: 341-V90

Nozzle #8 (N8)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,375 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 0,75 Class 6000 - threadedNozzle orientation: 0°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 144 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 1,05 inNozzle nominal wall thickness: 0,35 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 6 inReinforcement Calculations for Internal Pressure

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,3063

291/345

Page 293: 341-V90

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,245 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,245 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,3063

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,245 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,245 0,375 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

292/345

Page 294: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:23:23 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 1.750 in.Thickness : 0.306 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 96.000 in.Distance from Bottom : 144.000 in.

293/345

Page 295: 341-V90

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

294/345

Page 296: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

295/345

Page 297: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 900Number of Nodes = 4024Number of Elements = 1284Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -568. 0.2 0. 594145. 47767.3 0. 0. 0.4 0. 594145. 47767.5 0. 7367. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 0. 594713. 47767.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

296/345

Page 298: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

297/345

Page 299: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

298/345

Page 300: 341-V90

Smallest Thickness ....... 0.306 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9

299/345

Page 301: 341-V90

Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 212,158 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:40% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 210,701 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:41% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 2599 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 211,583 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:38% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

300/345

Page 302: 341-V90

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 2608 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 516,249 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:27% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 519,479 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:37% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 5668 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:1% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 512,182 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:20% 13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 51,017 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

301/345

Page 303: 341-V90

Plot Reference:1% 14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 510,968 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 8,509,863.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2,055,679.WRC 474 99% Probability Cycles = 477,562.WRC 474 95% Probability Cycles = 663,044.BS5500 Allowed Cycles(Curve F) = 413,678.Membrane-to-Bending Ratio = 2.066Bending-to-PL+PB+Q Ratio = 0.326Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 513,149 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 528,560.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2,877,451.WRC 474 99% Probability Cycles = 668,471.WRC 474 95% Probability Cycles = 928,101.BS5500 Allowed Cycles(Curve F) = 286,022.Membrane-to-Bending Ratio = 1.209Bending-to-PL+PB+Q Ratio = 0.453Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5451 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1.0890E11WRC 474 99% Probability Cycles = 2.5299E10

302/345

Page 304: 341-V90

WRC 474 95% Probability Cycles = 3.5124E10BS5500 Allowed Cycles(Curve F) = 5.7063E11Membrane-to-Bending Ratio = 1.304Bending-to-PL+PB+Q Ratio = 0.434Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 56,091 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 8,519,013.WRC 474 99% Probability Cycles = 1,979,082.WRC 474 95% Probability Cycles = 2,747,745.BS5500 Allowed Cycles(Curve F) = 1,169,486.Membrane-to-Bending Ratio = 16.704Bending-to-PL+PB+Q Ratio = 0.056Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5509 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2.9781E10WRC 474 99% Probability Cycles = 6.9186E9WRC 474 95% Probability Cycles = 9.6057E9BS5500 Allowed Cycles(Curve F) = 6.9891E10Membrane-to-Bending Ratio = 1.076Bending-to-PL+PB+Q Ratio = 0.482Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 4.425 1.710 6.555Inplane : 1.018 0.834 1.509

303/345

Page 305: 341-V90

Outplane: 1.024 0.834 1.517Torsion : 0.703 0.834 1.042Pressure: 1.124 1.040 1.665

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 1.750 in.Pipe Thk: 0.306 in.Z approx: 0.501 cu.in.Z exact : 0.432 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial7.670 Inplane10.022 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.881 Inplane1.881 Outplane1.881 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 12716. 3362. 5042.Inplane Moment (in. lb.) 14700. 3102. 6580.Outplane Moment (in. lb.) 14615. 3084. 6541.Torsional Moment (in. lb.) 21289. 6263. 9394.Pressure (psi ) 395.03 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 20840. 4045. 6068.Inplane Moment (in. lb.) 13292. 1842. 3908.Outplane Moment (in. lb.) 13295. 1844. 3912.Torsional Moment (in. lb.) 13293. 2582. 3873.

304/345

Page 306: 341-V90

Pressure (psi ) 359.11 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 1.750 in.Wall Thickness = 0.306 in.

Axial Translational Stiffness = 499580. lb./in.Inplane Rotational Stiffness = 75877. in.lb./degOutplane Rotational Stiffness = 34380. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

305/345

Page 307: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

306/345

Page 308: 341-V90

307/345

Page 309: 341-V90

308/345

Page 310: 341-V90

309/345

Page 311: 341-V90

310/345

Page 312: 341-V90

311/345

Page 313: 341-V90

312/345

Page 314: 341-V90

313/345

Page 315: 341-V90

314/345

Page 316: 341-V90

315/345

Page 317: 341-V90

Nozzle #9 (N9)

ASME Section VIII Division 1, 2010 Edition

tw(lower) = 0,25 inLeg41 = 0,375 in

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 psiNozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Nozzle longitudinal joint efficiency: 1Nozzle description: NPS 0,75 Class 6000 - threadedNozzle orientation: 180°Local vessel minimum thickness: 0,5 inNozzle center line offset to datum line: 144 inEnd of nozzle to shell center: 45 inNozzle inside diameter, new: 1,05 inNozzle nominal wall thickness: 0,35 inNozzle corrosion allowance: 0 inProjection available outside vessel, Lpr: 6 inReinforcement Calculations for Internal Pressure

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 300 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,3063

316/345

Page 318: 341-V90

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,245 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,245 0,25 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 257,73 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0,0625 0,3063

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (in)

Actual weldsize (in) Status

Nozzle to shell fillet (Leg41) 0,245 0,2625 weld size is adequate

Nozzle to shell groove (Lower) 0,245 0,25 weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

317/345

Page 319: 341-V90

Tabular Results

Results were generated with the finite element program FE/Pipe&#174. Stress results are post-processed inaccordance with the rules specified in ASME Section III and ASME Section VIII, Division 2.

Analysis Time Stamp: Wed Feb 13 13:23:33 2013.

Model Notes• Load Case Report• Solution Data• ASME Code Stress Output Plots• Region Data• ASME Overstressed Areas• Highest Primary Stress Ratios• Highest Secondary Stress Ratios• Highest Fatigue Stress Ratios• Stress Intensification Factors• Allowable Loads• Flexibilities• Graphical Results•

Model Notes

Input Echo:

Model Type : Cylindrical Shell

Parent Outside Diameter : 78.000 in.Thickness : 0.500 in.Fillet Along Shell : 0.375 in.

Parent Properties:Cold Allowable : 20000.0 psiHot Allowable : 20000.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 70000.0 psiYield Strength (Amb) : 38000.0 psiYield Strength (Hot) : 33600.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in.(NOT USED)

Nozzle Outside Diameter : 1.750 in.Thickness : 0.306 in.Length : 6.250 in.Nozzle Weld Length : 0.375 in.Nozzle Tilt Angle : 0.000 deg.Distance from Top : 96.000 in.Distance from Bottom : 144.000 in.

318/345

Page 320: 341-V90

Nozzle PropertiesCold Allowable : 17100.0 psiHot Allowable : 17100.0 psiMaterial ID #2 : Low Alloy SteelUltimate Tensile (Amb) : 60000.0 psiYield Strength (Amb) : 35000.0 psiYield Strength (Hot) : 31000.0 psiElastic Modulus (Amb) : 29400000.0 psiPoissons Ratio : 0.300Weight Density : 0.2830E+00 lb./cu.in. (NOT USED)

Design Operating Cycles : 0.Ambient Temperature (Deg.) : 70.00

The following temperatures have been specified for the analysis:

Nozzle Inside Temperature : 300.00 deg.Nozzle Outside Temperature : 300.00 deg.Vessel Inside Temperature : 300.00 deg.Vessel Outside Temperature : 300.00 deg.Nozzle Pressure : 150.0 psiVessel Pressure : 150.0 psi

No external forces or bending moments were included in this analysis.

Both ends of the model are "fixed," except that one endis free axially so that longitudinal pressure stressesmay be developed in the geometry.

Stresses will be calculated in the weld elements surroundingthe junction of the nozzle with the parent shell. This istypically done to get accurate values for the pressurestresses on the inside surface of the nozzle in thelongitudinal plane. The effect of any external loads willoveremphasized (too conservative) in this run.

Stresses are NOT averaged.

Vessel Centerline Vector : 0.000 0.000 1.000Nozzle Orientation Vector : 0.000 -1.000 0.000

Table of Contents

Load Case ReportInner and outer element temperatures are the samethroughout the model. No thermal ratchetingcalculations will be performed.

THE 10 LOAD CASES ANALYZED ARE:

1 WEIGHT ONLY

Weight ONLY case run to get the stress rangebetween the installed and the operating states.

319/345

Page 321: 341-V90

/-------- Loads in Case 1Loads due to Weight

2 SUSTAINED

Sustained case run to satisfy local primarymembrane and bending stress limits.

/-------- Loads in Case 2Loads due to WeightPressure Case 1

3 Thermal ONLY

Thermal ONLY case run in the event expansionstresses exceed the secondary stress allowable.

/-------- Loads in Case 3Temperature Case 1

4 OPERATING

Case run to compute the operating stresses used insecondary, peak and range calculations as needed.

/-------- Loads in Case 4Pressure Case 1Temperature Case 1Loads from (Operating)

5 EXPANSION (Fatigue Calc Performed)

Expansion case run to get the RANGE of stresses.

/-------- Combinations in Expansion Case 5Plus Stress Results from CASE 4Minus Stress Results from CASE 1

6 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 6Loads from (Axial)

7 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 7Loads from (Inplane)

8 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 8Loads from (Outplane)

320/345

Page 322: 341-V90

9 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 9Loads from (Torsion)

10 Program Generated -- Force Only

Case run to compute sif's and flexibilities./-------- Loads in Case 10Pressure Case 1

Table of Contents

Solution Data

Maximum Solution Row Size = 900Number of Nodes = 4024Number of Elements = 1284Number of Solution Cases = 9

Summation of Loads per Case

Case # FX FY FZ

1 0. -568. 0.2 -1. -595282. 47767.3 0. 0. 0.4 -1. -595282. 47767.5 0. -7367. 0.6 0. 0. 0.7 0. 0. 0.8 0. 0. 0.9 -1. -594713. 47767.

Table of Contents

ASME Code Stress Output Plots

1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

2) Qb < 3(Smh) (SUS,Bending) Case 2

3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 2

4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

6) Membrane < User (OPE,Membrane) Case 4

7) Bending < User (OPE,Bending) Case 4

321/345

Page 323: 341-V90

8) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

9) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 9

12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 10

13) Pl+Pb+Q < 3(Smavg) (EXP,Inside) Case 5

14) Pl+Pb+Q < 3(Smavg) (EXP,Outside) Case 5

15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Region Data

Header Next to Nozzle Weld

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.350

Branch Next to Header Weld

322/345

Page 324: 341-V90

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.350

Branch Transition

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psi

323/345

Page 325: 341-V90

Smallest Thickness ....... 0.306 in.Stress Concentration ..... 1.350

Header away from Junction

Cold Allowable ........... 20000. psiHot Allowable @ 300 deg .. 20000. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.000

Branch away from Junction

Cold Allowable ........... 17100. psiHot Allowable @ 300 deg .. 17100. psiCase 2Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 4Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 5Nominal Stress (M/Z) ... 0. psiPressure Stress (Pd/2t) .. 11700. psiCase 6Nominal Stress (M/Z) ... 5303. psiPressure Stress (Pd/2t) .. 0. psiCase 7Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 8Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 9

324/345

Page 326: 341-V90

Nominal Stress (M/Z) ... 17044. psiPressure Stress (Pd/2t) .. 0. psiCase 10Nominal Stress (M/Z) ... 11700. psiPressure Stress (Pd/2t) .. 0. psiSmallest Thickness ....... 0.306 in.Stress Concentration ..... 1.000

Table of Contents

ASME Overstressed Areas

*** NO OVERSTRESSED NODES IN THIS MODEL ***

Table of Contents

Highest Primary Stress Ratios

Header Next to Nozzle Weld

Pl 1.5(k)Smh Primary Membrane Load Case 212,186 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:40% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Next to Header Weld

Pl 1.5(k)Smh Primary Membrane Load Case 210,727 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:41% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Branch Transition

Pl 1.5(k)Smh Primary Membrane Load Case 2598 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Header away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 211,607 30,000 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:38% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

325/345

Page 327: 341-V90

Branch away from Junction

Pl 1.5(k)Smh Primary Membrane Load Case 2607 25,650 Sect VIII Ref: AD-140, 4-112(i), 4-133,psi psi Fig. 4-130.1, Table 4-120.1Plot Reference:2% 1) Pl < 1.5(k)Smh (SUS,Membrane) Case 2

Table of Contents

Highest Secondary Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 416,258 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:27% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Next to Header Weld

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 419,505 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:38% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch Transition

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 4671 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:1% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Header away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Inner) Load Case 412,189 60,000 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)Plot Reference:20% 4) Pl+Pb+Q < 3(Smavg) (OPE,Inside) Case 4

Branch away from Junction

Pl+Pb+Q 3(Smavg) Primary+Secondary (Outer) Load Case 41,020 51,300 Sect VIII Ref: 4-120(b)(4),4-134,4-136.6,psi psi Fig. 4-130.1(Note 1)

326/345

Page 328: 341-V90

Plot Reference:1% 5) Pl+Pb+Q < 3(Smavg) (OPE,Outside) Case 4

Table of Contents

Highest Fatigue Stress Ratios

Header Next to Nozzle Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 510,968 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 8,511,470.0% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2,055,766.WRC 474 99% Probability Cycles = 477,582.WRC 474 95% Probability Cycles = 663,072.BS5500 Allowed Cycles(Curve F) = 413,690.Membrane-to-Bending Ratio = 2.065Bending-to-PL+PB+Q Ratio = 0.326Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Next to Header Weld

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 513,149 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 528,553.0% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2,877,438.WRC 474 99% Probability Cycles = 668,468.WRC 474 95% Probability Cycles = 928,096.BS5500 Allowed Cycles(Curve F) = 286,021.Membrane-to-Bending Ratio = 1.209Bending-to-PL+PB+Q Ratio = 0.453Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch Transition

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5451 1,799,215 Stress Concentration Factor = 1.350psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 1.0890E11WRC 474 99% Probability Cycles = 2.5299E10

327/345

Page 329: 341-V90

WRC 474 95% Probability Cycles = 3.5125E10BS5500 Allowed Cycles(Curve F) = 5.7063E11Membrane-to-Bending Ratio = 1.304Bending-to-PL+PB+Q Ratio = 0.434Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Header away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Inner) Load Case 56,091 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 50000.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 8,519,488.WRC 474 99% Probability Cycles = 1,979,192.WRC 474 95% Probability Cycles = 2,747,898.BS5500 Allowed Cycles(Curve F) = 1,169,552.Membrane-to-Bending Ratio = 16.722Bending-to-PL+PB+Q Ratio = 0.056Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:15) Pl+Pb+Q+F < Sa (EXP,Inside) Case 5

Branch away from Junction

Pl+Pb+Q+F Sa Primary+Secondary+Peak (Outer) Load Case 5509 1,799,215 Stress Concentration Factor = 1.000psi psi Strain Concentration Factor = 1.000Cycles Allowed for this Stress = 1.0000E110% "B31" Fatigue Stress Allowable = 42750.0Markl Fatigue Stress Allowable = 245000.0WRC 474 Mean Cycles to Failure = 2.9781E10WRC 474 99% Probability Cycles = 6.9184E9WRC 474 95% Probability Cycles = 9.6055E9BS5500 Allowed Cycles(Curve F) = 6.9888E10Membrane-to-Bending Ratio = 1.076Bending-to-PL+PB+Q Ratio = 0.482Sect VIII Ref: 4-112(l)(2),Fig.4-130.1,4-135Plot Reference:16) Pl+Pb+Q+F < Sa (EXP,Outside) Case 5

Table of Contents

Stress Intensification Factors

Branch/Nozzle Sif Summary

Peak Primary SecondaryAxial : 4.425 1.710 6.555Inplane : 1.018 0.834 1.509

328/345

Page 330: 341-V90

Outplane: 1.024 0.834 1.517Torsion : 0.703 0.834 1.042Pressure: 1.124 1.040 1.665

The above stress intensification factors are to be usedin a beam-type analysis of the piping system. Inplane,Outplane and Torsional sif's should be used with thematching branch pipe whose diameter and thickness is givenbelow. The axial sif should be used to intensify theaxial stress in the branch pipe calculated by F/A. Thepressure sif should be used to intensify the nominalpressure stress in the PARENT or HEADER, calculatedfrom PD/2T.

Pipe OD : 1.750 in.Pipe Thk: 0.306 in.Z approx: 0.501 cu.in.Z exact : 0.432 cu.in.

B31.3Peak Stress Sif .... 0.000 Axial7.670 Inplane10.022 Outplane1.000 TorsionalB31.1Peak Stress Sif .... 0.000 Axial1.881 Inplane1.881 Outplane1.881 TorsionalWRC 330Peak Stress Sif .... 0.000 Axial1.500 Inplane1.500 Outplane1.000 Torsional

Table of Contents

Allowable Loads

SECONDARY Maximum Conservative RealisticLoad Type (Range): Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 12715. 3361. 5042.Inplane Moment (in. lb.) 14700. 3102. 6580.Outplane Moment (in. lb.) 14616. 3084. 6542.Torsional Moment (in. lb.) 21289. 6263. 9394.Pressure (psi ) 395.03 150.00 150.00

PRIMARY Maximum Conservative RealisticLoad Type: Individual Simultaneous SimultaneousOccuring Occuring OccuringAxial Force (lb. ) 20839. 4045. 6067.Inplane Moment (in. lb.) 13292. 1842. 3908.Outplane Moment (in. lb.) 13295. 1844. 3912.Torsional Moment (in. lb.) 13293. 2582. 3873.

329/345

Page 331: 341-V90

Pressure (psi ) 359.11 150.00 150.00

NOTES:

1) Maximum Individual Occuring Loads are the maximumallowed values of the respective loads if all otherload components are zero, i.e. the listed axial forcemay be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

2) The Conservative Allowable Simultaneous loads arethe maximum loads that can be applied simultaneously.A conservative stress combination equation is usedthat typically produces stresses within 50-70% of theallowable stress.

3) The Realistic Allowable Simultaneous loads are themaximum loads that can be applied simultaneously. Amore realistic stress combination equation is usedbased on experience at Paulin Research. Stresses aretypically produced within 80-105% of the allowable.

4) Secondary allowable loads are limits for expansionand operating piping loads.

5) Primary allowable loads are limits for weight,primary and sustained type piping loads.

Table of Contents

Flexibilities

The following stiffnesses should be used in a piping,"beam-type" analysis of the intersection. The stiff-nesses should be inserted at the surface of thebranch/header or nozzle/vessel junction. The generalcharacteristics used for the branch pipe should be:

Outside Diameter = 1.750 in.Wall Thickness = 0.306 in.

Axial Translational Stiffness = 499578. lb./in.Inplane Rotational Stiffness = 75863. in.lb./degOutplane Rotational Stiffness = 34384. in.lb./deg

The following stiffness(es) were not generated becauseof errors in input or because the finite element modelis stiffer than the piping model.

Torsional Rotational Stiffness

Table of Contents

330/345

Page 332: 341-V90

Finite Element Model

Finite Element Model•

Elements at Discontinuity

1) Pl < 1.5(k)Smh (SUS Membrane) Case 2• 2) Qb < 3(Smh) (SUS Bending) Case 2• 3) S1+S2+S3 < 4S (SUS S1+S2+S3) Case 2• 4) Pl+Pb+Q < 3(Smavg) (OPE Inside) Case 4• 5) Pl+Pb+Q < 3(Smavg) (OPE Outside) Case 4• 6) Membrane < User (OPE Membrane) Case 4• 7) Bending < User (OPE Bending) Case 4• 13) Pl+Pb+Q < 3(Smavg) (EXP Inside) Case 5• 14) Pl+Pb+Q < 3(Smavg) (EXP Outside) Case 5• 15) Pl+Pb+Q+F < Sa (EXP Inside) Case 5• 16) Pl+Pb+Q+F < Sa (EXP Outside) Case 5• 8) Pl+Pb+Q+F < Sa (SIF Outside) Case 6• 9) Pl+Pb+Q+F < Sa (SIF Outside) Case 7• 10) Pl+Pb+Q+F < Sa (SIF Outside) Case 8• 11) Pl+Pb+Q+F < Sa (SIF Outside) Case 9• 12) Pl+Pb+Q+F < Sa (SIF Outside) Case 10•

Tabular Results

331/345

Page 333: 341-V90

332/345

Page 334: 341-V90

333/345

Page 335: 341-V90

334/345

Page 336: 341-V90

335/345

Page 337: 341-V90

336/345

Page 338: 341-V90

337/345

Page 339: 341-V90

338/345

Page 340: 341-V90

339/345

Page 341: 341-V90

340/345

Page 342: 341-V90

Saddle #2

Saddle material: A-36

Saddle construction is: Web at edge ofrib

Saddle allowable stress: Ss = 20.000 psiSaddle yield stress: Sy = 38.000 psiSaddle distance to datum: 36 inTangent to tangent length: L = 244 inSaddle separation: Ls = 168 inVessel radius: R = 39 inTangent distance left: Al = 38 inTangent distance right: Ar = 38 inSaddle height: Hs = 57 inSaddle contact angle: θ = 120 °Wear plate thickness: tp = 0,375 inWear plate width: Wp = 10 inWear plate contact angle: θw = 130 °Web plate thickness: ts = 0,5 inBase plate length: E = 69 inBase plate width: F = 8 inBase plate thickness: tb = 0,5625 inNumber of stiffener ribs: n = 4Largest stiffener rib spacing: di = 22,5 inStiffener rib thickness: tw = 0,5 inSaddle width: B = 8 in

Anchor bolt size & type: 1 inch series 8threaded

Anchor bolt material:Anchor bolt allowable shear: 15.000 psiAnchor bolt corrosion allowance: 0 inAnchor bolts per saddle: 2Base coefficient of friction: µ = 0,45

Weight on left saddle: operating corr =5.768 lb, test new =28.445 lbWeight on right saddle: operating corr =5.173 lb, test new =27.861 lbWeight of saddle pair =1.052 lb

341/345

Page 343: 341-V90

Notes:(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels onTwo Saddle Supports" by L.P. Zick.

Load Vesselcondition

Bending + pressurebetween saddles

(psi)

Bending + pressure atthe saddle

(psi)

S1(+)

allow(+)

S1(-)

allow(-)

S2(+)

allow(+)

S2(-)

allow(-)

Weight Operating 6.237 20.000 47 14.078 6.341 20.000 151 14.078

Weight Test 8.396 34.200 231 14.078 8.944 34.200 778 14.078

Load Vesselcondition

Tangentialshear (psi)

Circumferentialstress (psi)

Stressover

saddle(psi)

Splitting(psi)

S3 allow S4(horns)

allow(+/-) S5 allow S6 allow

Weight Operating 223 16.000 -2.427 30.000 521 16.800 115 13.333

Weight Test 1.075 27.360 -11.970 34.200 2.571 34.200 565 34.200

Longitudinal stress between saddles (Weight ,Operating, left saddle loading and geometry govern)

S1 = +- 3*K1*Q*(L / 12) / (π*R2*t)= 3*0,314*5.768*(244 / 12) / (π*38,752*0,5)= 47 psi

Sp = P*R / (2*t)= 160,77*38,5 / (2*0,5)= 6.190 psi

Maximum tensile stress S1t = S1 + Sp = 6.237 psiMaximum compressive stress (shut down) S1c = S1 = 47 psi

Tensile stress is acceptable (<=1*S*E = 20.000 psi)Compressive stress is acceptable (<=1*Sc = 14.078 psi)

Longitudinal stress at the left saddle (Weight ,Operating)

Le = 2*(Left head depth) / 3 + L + 2*(Right head depth) / 3= 2*19,7435 / 3 + 244 + 2*19,7435 / 3= 270,3247 in

w = Wt / Le = 10.941 / 270,3247 = 40,47 lbf/in

Bending moment at the left saddle:

Mq = w*(2*H*Al / 3 + Al2 / 2 - (R2 - H2) / 4)

342/345

Page 344: 341-V90

= 40,47*(2*19,7435*38 / 3 + 382 / 2 - (392 - 19,74352) / 4)= 38.019,6 lbf-in

S2 = +- Mq*K1' / (π*R2*t)= 38.019,6*9,3799 / (π*38,752*0,5)= 151 psi

Sp = P*R / (2*t)= 160,77*38,5 / (2*0,5)= 6.190 psi

Maximum tensile stress S2t = S2 + Sp = 6.341 psiMaximum compressive stress (shut down) S2c = S2 = 151 psi

Tensile stress is acceptable (<=1*S = 20.000 psi)Compressive stress is acceptable (<=1*Sc = 14.078 psi)

Tangential shear stress in the shell (left saddle, Weight ,Operating)

Qshear = Q - w*(a + 2*H / 3)= 5.768 - 40,47*(38 + 2*19,7435 / 3)= 3.697,28 lbf

S3 = K2,2*Qshear / (R*t)= K2,2*3.697,28 / (38,75*0,5)= 223 psi

Tangential shear stress is acceptable (<= 0.8*S = 16.000 psi)

Circumferential stress at the left saddle horns (Weight ,Operating)

S4 = -Q / (4*t*(b+1,56*Sqr(Ro*t))) - 12*K3*Q*R / (L*t2)= -5.768 / (4*0,5*(8+1,56*Sqr(39*0,5))) - 12*0,0508*5.768*38,75 / (244*0,52)= -2.427 psi

Circumferential stress at saddle horns is acceptable (<=1,5*Sa = 30.000 psi)The wear plate was not considered in the calculation of S4 because the wear plate contact angle did not exceed thesaddle contact angle by at least 11,46° and the wear plate width is not at least {B + 1,56*(Rotc)0,5} =14,8888 in

Ring compression in shell over left saddle (Weight ,Operating)

S5 = K5*Q / ((t + tp)*(ts + 1,56*Sqr(Ro*tc)))= 0,7603*5.768 / ((0,5 + 0,375)*(0,5 + 1,56*Sqr(39*0,875)))= 521 psi

Ring compression in shell is acceptable (<= 0,5*Sy = 16.800 psi)

Saddle splitting load (left, Weight ,Operating)

Area resisting splitting force = Web area + wear plate area

Ae = Heff*ts + tp*Wp= 13*0,5 + 0,375*10= 10,25 in2

S6 = K8*Q / Ae= 0,2035*5.768 / 10,25

343/345

Page 345: 341-V90

= 115 psi

Stress in saddle is acceptable (<= (2 / 3)*Ss = 13.333 psi)

Shear stress in anchor bolting, one end slotted

Maximum seismic or wind base shear = 0 lbf

Thermal expansion base shear = W*µ = 6.294*0,45 = 2.832,3 lbf

Corroded root area for a 1 inch series 8 threaded bolt = 0,551 in2 ( 2 per saddle )

Bolt shear stress = 2.832,3 / (0,551*2) = 2.570 psi

Anchor bolt stress is acceptable (<= 15.000 psi)

Web plate buckling check (Escoe pg 251)

Allowable compressive stress Sc is the lesser of 20.000 or 16.568 psi: (16.568)

Sc = Ki*π2*E / (12*(1 - 0,32)*(di / ts)2)= 1,28*π2*29E+06 / (12*(1 - 0,32)*(22,5 / 0,5)2)= 16.568 psi

Allowable compressive load on the saddle

be = di*ts / (di*ts + 2*tw*(b - 1))= 22,5*0,5 / (22,5*0,5 + 2*0,5*(8 - 1))= 0,6164

Fb = n*(As + 2*be*ts)*Sc= 4*(3,75 + 2*0,6164*0,5)*16.568= 289.365,91 lbf

Saddle loading of 28.971 lbf is <= Fb; satisfactory.

Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)σb = V*(Hs - xo)*y / I + Q / A= 0*(57 - 32,2527)*5,4423 / 172,08 + 5.768 / 48,775= 118 psi

The primary bending + axial stress in the saddle <= 20.000 psi; satisfactory.

Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes onesaddle slotted)σb = V*(Hs - xo)*y / I + Q / A= 2.832,3*(57 - 32,2527)*5,4423 / 172,08 + 5.768 / 48,775= 2.335 psi

The secondary bending + axial stress in the saddle < 2*Sy= 76.000 psi; satisfactory.

Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where a = 22,5, b = 7,5 in

tb = (β1*q*b2 / (1,5*Sa))0,5

= (2,45*52*7,52 / (1,5*20.000))0,5

344/345

Page 346: 341-V90

= 0,491 in

The base plate thickness of 0,5625 in is adequate.

Foundation bearing check

Sf = Qmax / (F*E)= 28.971 / (8*69)= 52 psi

Concrete bearing stress ≤ 1.658 psi ; satisfactory.

345/345