3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1...

52
1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures – Properties – Processing – Functions theory Acta Metallurgica (1953-1989) Acta Metallurgica et Materialia (1990-1995) Acta Materialia (1996-present)

Transcript of 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1...

Page 1: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

1

3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy

Structures – Properties – Processing – Functions theory

Acta Metallurgica (1953-1989)Acta Metallurgica et Materialia (1990-1995)

Acta Materialia (1996-present)

Page 2: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

2

Thermomechanical: “Heat and Beat”

Materials Processing

Chemical: alloy chemistry, doping,corrosion, oxidation

Radiation: exposure to light, electron beam, particles, neutrons

During processing, the material is often put in excited states, to achieve structural changes. These structural changes are preserved as the materials “cools down”, and taken advantage of (“properties”) during use. The whole process requires free-energy dissipation & varying degree of out-of-equilibriumness.

Page 3: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

3

Mechanical metallurgy: “Just beat, No heat”

progressivesurface.com/shotpeening.php

Creates compressive residual stress on the surface to delay fatigue crack initiation

Page 4: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

4

Electronic structure: it (x1,x2,…,xN) = H (x1,x2,…,xN)

Atomic structure: FCC, BCC, HCP, diamond cubic, liquid, glass, gas, …

Molecular structure: double stranded helical DNA, protein

Nanostructure: ZnO nanowire, Pt nanoparticle, …

Microstructure: grain boundaries, dislocation tangle, …

Mesostructure: pile of sand, …

Macrostructure: bicycle, Great Wall, …

Structure-property relationship

Page 5: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

"One nanometer (one billionth of a meter) is a magicalpoint on the dimensional scale. Nanostructures are at the confluence of the smallest of human-made devices and the largest molecules of living systems..." - U.S. National Science Foundation, 2001, Nanoscale Sci. & Eng. Center program

"microstructure controls properties” - old-school metallurgists

World of Atoms & Electrons

Erwin SchrödingerNobel Prize in Physics

1933

Paul A.M. DiracNobel Prize in Physics

1933Materials | Chemistry | Life | Energy

Page 6: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

6http://tu-freiberg.de/fakult4/imfd/cms/Multiscale/multiscale.html

Page 7: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

7

Dao et al, "Toward a quantitative understanding of mechanical behavior of nanocrystalline metals," Acta Mater. 55 (2007) 4041: Fig. 1. (a) Grain size dependence of strength of Cu. The strength (or hardness) is plotted vs. d-1/2. Literature data on hardness (solid symbols) and yield strength (multiplied by 3) from compression tests (empty symbols) are included in (a), and tensile yield strength are included in (b). The straight lines represent the H–P relation extrapolated from mc Cu. Note thatmost ultrafine crystalline Cu samples (with d in the submicron regime) exhibit higher hardness and tensile strength than the H–P expectation. The possible reason may be related with the fact that the ufc samples were prepared via severe plastic deformation, in which dense dislocation walls, tangles, cell walls or even subgrain boundaries are formed.

Metallographic Microscope

40× to 1600דmicrostructure”

Page 8: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

8

Microstructural Evolution versus Darwin’s Evolution?“A termite cathedral mound produced by a termite colony: a classic example of emergence in nature.” Fromhttp://en.wikipedia.org/wiki/Emergence

Arakawa et al, “Observation of the One-Dimensional Diffusion of Nanometer-Sized Dislocation Loops,” Science 318 (2007) 956.

bcc-Fe after 2000 keV e-beam radiation. Self-interstitial atoms agglomerated as loops,

vacancies agglomerated as voids.

Page 9: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

9

5800K

Carnot ideal heat engine efficiency:

(T1-T2)/T1

Cosmic radiationbackground: 2.7K

low-quality energy out

In terms of quantity: Ein ≈ EoutBut in terms of quality or free energy,

earth enjoys (spends) huge drop

Page 10: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

10

Free Energy ↔ Microstructure

Page 11: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

11

Residual Stress

Self-equilibrating body· = 0

does not mean (x = 0

Page 12: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

12

PalladiumIridium

austenite ferrite

graphite

ferromagneticCobalt ferromagnetic

Page 13: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

13

Page 14: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

14

Coordination = 8

Coordination = 12

Page 15: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

15

Page 16: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

16

Page 17: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

[112]

[110]

[111]

FCC basal plane

Top plane

Middle plane

Bottom plane

Page 18: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Miller Index for Crystallographic Direction

18

[hkl] ≡ ha1+ka2+la3<hkl> ≡ all symmetrypermutations of [hkl]

Page 19: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Miller Index for Crystallographic Plane

19

(hkl) are planes parallel tothe plane that goes throughthree points h-1a1, k-1a2, l-1a3

{hkl} ≡ all symmetrypermutations of (hkl)

Page 20: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

20

Page 21: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Basal-a Prismatic-a

Pyramidal-a

2nd order Pyramidal-c+aPyramidal-c+a

Balasubramanian, Anand, "Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium," Acta Mater. 50 (2002) 133

Page 22: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

(????)

(????)

(????)(????)

[????]

[????]

Page 23: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties
Page 24: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

http://en.wikipedia.org/wiki/Stereographic_projection

Page 25: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

25

Polar angle “latitude”

Azimuthal angle “longitude”

ey

exm

Page 26: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

26

Page 27: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

27

Page 28: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

28

Page 29: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

29

Page 30: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

30

Page 31: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

31

Page 32: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

32

Polar angle “latitude”

Azimuthal angle “longitude”

ey

exm

Page 33: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

33

Page 34: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

34

Page 35: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

35

diad

triad

tetrad

Page 36: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

36

Page 37: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

37

High index plane in zone of [111];Smaller dmin

Low index plane in zone of [111];Larger dmin

If ZA=[111]then all planeswith indiceson the equatorwill light up(approximately)

Page 38: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Relationship between stereographic projections and diffraction patterns

nstg.nevada.edu/tem/CHEM793_08/Lecture_14_1_CHEM793.pdf

110Ewald sphere center –k[110]

Page 39: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

39

Page 40: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

40

http://en.wikipedia.org/wiki/File:Transformer3d_col3.svg

Page 41: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

1388K1043KCurie temperature

627K

Page 42: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

42

BCC Fe-4wt% Si soft magnet: by a complex rolling / heat treatment procedure, it is possible to produce texture (B)

Rolling Direction(RD)

Transverse Direction (TD)

rolling plane Normal (ND)

Page 43: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

http://en.wikipedia.org/wiki/File:Eulerangles.svg

Three Euler angles (,,)

“random” rotations:: [0,2]

cos: [0,2]

Page 44: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Adams, Wright, Kunze, "Orientation imaging - the emergence of a new microscopy," Metall Trans A 24 (1993) 819.

44

Page 45: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Adams, Wright, Kunze, "Orientation imaging - the emergence of a new microscopy," Metall Trans A 24

(1993) 819.

45

Page 46: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

46

Page 47: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

Adams, Wright, Kunze, "Orientation imaging - the emergence of a new microscopy," Metall Trans A 24

(1993) 819.

Rolling Direction

Transverse Direction

rolling plane normal

47

“cube” texture

Page 48: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties
Page 49: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

49

equilibrium is however yet a bit more subtle:

It is possible to reach equilibrium among a subsetof the degrees of freedom

(all atoms in a shot) or subsystem, while this subsystem is not in equilibrium with

the rest of the system.

This is why engineering &material thermodynamics

are still useful in cars.

Page 50: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

50

Imagine a car going 80 mph on highway: the car is not in equilibrium with the road

the axel is not in equilibrium with the bodythe piston is not in equilibrium with the engine block …

But we may apply material thermodynamics to steel in piston, hydrogen in tank, rubber in tire… because there is a separation of timescales: atoms in condensed phases collide with each other ~ 1012 times per second, so atoms can reach equilibrium with adjacent

atoms before macro scale components reach equilibrium with each other.

Page 51: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

51

In this course, we will mainly study type A non-equilibrium phenomena, where temperature can be locally defined: T(x)

kBT1

atomic velocity

probability

kBT2

atomic velocity

representative volume element

(RVE)

Page 52: 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical ...li.mit.edu/Stuff/PM/Structures.pdf · 1 3.14 Physical Metallurgy 3.40J/22.71J Modern Physical Metallurgy Structures –Properties

52atomic velocity

3 2

3/ 2B B

| |exp(2 / ) 2

d mk T m k T

0v v v

far-from-equilibrium ions in Tokamak plasma:equilibrium Maxwellian distribution

v0

kBT

Probability

bimodal distribution:thus no concept of

temperature!

Equilibrium state → T, Stype B non-equilibrium state: no T, S