3.1 Symmetry & Coordinate Graphs

Click here to load reader

download 3.1 Symmetry & Coordinate Graphs

of 18

  • date post

    23-Feb-2016
  • Category

    Documents

  • view

    72
  • download

    0

Embed Size (px)

description

3.1 Symmetry & Coordinate Graphs. I. Symmetry. Point symmetry – two distinct points P and P ’ are symmetric with respect to point M if and only is M is the midpoint of - PowerPoint PPT Presentation

Transcript of 3.1 Symmetry & Coordinate Graphs

3.1 Symmetry & Coordinate Graphs

3.1 Symmetry & Coordinate GraphsI. SymmetryPoint symmetry two distinct points P and P are symmetric with respect to point M if and only is M is the midpoint of

When the definition is extended to a set of points, such as a graph of a function, then each point P in the set must have an image point P that is also in the set. A figure that is symmetric with respect to a given point can be rotated 180 degrees about that point and appear unchanged.

A. Symmetry with Respect to the Origin

Symmetry with respect to the originA function has a graph that is symmetric with respect to the origin if and only if f(-x) = -f(x) for all x in the domain of f.A graph will have symmetry about the origin if we get an equivalent equation when all theys are replaced with-yand all thexs are replaced with-x.So for every point (x, y) on the graph, the point (-x, -y) is also on the graph. It is a reflection about both the x- and y-axis.

Ex 1 Is each graph symmetric with respect to the origin? How do you know?

The graph does not appear to be symmetric with respect to the origin. We can verify this algebraically by the following two-step method:

Step 1: find f(-x) and f(x)Step 2: if f(-x) = -f(x), then the graph has symmetry about the origin. If not, then it is not.

If you have an equation instead of a function, you can: Step 1: Replace all xs with x and all ys with y.Step 2: if you get the same equation, then it is equivalent about the origin. No, f(x) = x6 is not symmetric with respect to the origin. Ex 1 Is each graph symmetric with respect to the origin? How do you know?Remember the two steps:

Step 1: find f(-x) and f(x)Step 2: if f(-x) = -f(x), then the graph has symmetry about the origin. If not, then it is not. =

The graph appears to be symmetric about the origin, but lets check algebraically.B. Line symmetryTwo points P and P are symmetric with respect to a line l if and only if l is the perpendicular bisector of A point P is symmetric to itself with respect to line l if and only if P is on l.

Graphs that have line symmetry can be folded along the line of symmetry so that the two halves match exactly. Some graphs, such as the graph of an ellipse, have more than one line of symmetry.

Common lines of symmetry: x-axis, y-axis, y = x and y = -x.

Ex 2: Determine whether the graph of x2 + y = 3 is symmetric with respect to the x-axis, y-axis, the line y = x, the line y = -x, or none of these.You can figure this out without actually graphing the equation. Here is how:Symmetry with respect to the line:TestResultsx-axis(a, b) and (a, -b) should produce equivalent equations. x2 + y = 3 x2 + y = 3a2 + b = 3 a2 - b = 3No, these are not equivalent equations, so it is not symmetric with respect to the x-axis. y-axis(a, b) and (-a, b) should produce equivalent equations. x2 + y = 3 x2 + y = 3a2 + b = 3 a2 + b = 3

Yes, these are equivalent equations, so it is symmetric with respect to the y-axis.

y = x(a, b) and (b, a) should produce equivalent equations. x2 + y = 3 x2 + y = 3a2 + b = 3 b2 + a = 3

No, these are not equivalent equations, so it is not symmetric with respect to the line y = x.

y = -x(a, b) and (-b, -a) should produce equivalent equations. x2 + y = 3 x2 + y = 3a2 + b = 3 b2 - a = 3

No, these are not equivalent equations, so it is not symmetric with respect to the line y = -x.

Answer: y-axisTest both: Answer: BothII. Even, Odd, or Neither FunctionsNot to be confused with End BehaviorTo determine End Behavior, we check to see if the leading degree is even or oddWith Functions, we are determining SYMMETRY (if the entire function is even, odd, or neither)

To determine whether a function is even, odd, or neither, determine whether f(-x) = f(x) (even), f(-x) = -f(x) (odd), or neither. A.Symmetric with respect to the y-axisSymmetric with respect to the origin

Even, Odd or Neither?Ex. 1GraphicallyAlgebraicallyODD

Even, Odd or Neither?

GraphicallyAlgebraicallyEVENEx. 2f(-x)=(-x)2+1f(-x)=x2+1

Even, Odd or Neither?

GraphicallyAlgebraicallyNeitherEx. 3f(-x) = (-x)3-1f(-x) = -x3-1

Even, Odd or Neither?EVEN

ODDEx. 4B. Copy and complete the graph so that it is an even function and then an odd function.

Even: symmetric about the y-axisOdd: Symmetric about the origin