3.052 Nanomechanics of Materials and Biomaterials

13
3.052 Nanomechanics of Materials and Biomaterials Prof. Christine Ortiz DMSE, RM 13-4022 Phone : (617) 452-3084 Email : [email protected] WWW : http://web.mit.edu/cortiz/www LECTURE #17 : ELASTICITY OF SINGLE MACROMOLECULES : The Freely-Jointed Chain (FJC) Model

description

3.052 Nanomechanics of Materials and Biomaterials. LECTURE #17 : ELASTICITY OF SINGLE MACROMOLECULES : The Freely-Jointed Chain (FJC) Model. Prof. Christine Ortiz DMSE, RM 13-4022 Phone : (617) 452-3084 Email : [email protected] WWW : http://web.mit.edu/cortiz/www. - PowerPoint PPT Presentation

Transcript of 3.052 Nanomechanics of Materials and Biomaterials

Page 1: 3.052 Nanomechanics of  Materials and Biomaterials

3.052 Nanomechanics of Materials and Biomaterials

Prof. Christine OrtizDMSE, RM 13-4022

Phone : (617) 452-3084Email : [email protected]

WWW : http://web.mit.edu/cortiz/www

LECTURE #17 : ELASTICITY OF SINGLE MACROMOLECULES :

The Freely-Jointed Chain (FJC) Model

Page 2: 3.052 Nanomechanics of  Materials and Biomaterials

Random Coil Configuration of Polymers

More Disorder Less Disorder

Entropy - a natural law that expresses the driving force towards disorder

<r2>1/2

poly(styrene)

Page 3: 3.052 Nanomechanics of  Materials and Biomaterials

DNA simulation

(*FEBS Lett. 371:279-282)

(*Z. Shao, http://www.people.Virginia.EDU/~js6s/zsfig/figureindex.html)

Random Coil Configuration of Polymers

DNA

Page 4: 3.052 Nanomechanics of  Materials and Biomaterials

The Freely-Jointed Chain (FJC) Model

a1

ran

a2

a3

an-1

an-2

real polymer chain

random walk statistical

representationof real polymer chain

Page 5: 3.052 Nanomechanics of  Materials and Biomaterials

The Freely-Jointed Chain (FJC) Model :

Entropic Elasticity

FrFchain

Fchain

F

consider stretching a single random coil polymer chain :

(*http://align.physik.tu-berlin.de/~ronald/zib.html)

Page 6: 3.052 Nanomechanics of  Materials and Biomaterials

Review : 3.11 : Formulas For Gaussian FJC1. General Statistical Mechanical Formulas :

2. Gaussian Formulas For Stretching a Single FJC :

r1

F1

x

y

z

B

= number of chain conformations

P(r) = probability of finding a free chain end a radial distance, r, away from fixed chain end (origin) ~ Ω

S(r) = configurational entropy = k lnP(r)

A(r) = Helmholtz free ener

B

2

2

gy = U(r) - TS(r) = - Tk lnP(r)

-dA(r)f(r) = entropic elastic force =

dr

dF(r) -d A(r)k(r) = (global) entropic chain stiffness = =

dr dr

0

3 22 2

2

3 22 2

B

2 2B B2

c

B B2

c

B B2

c

4b r 3P(r) exp[ b r ] where b =

2na

4b rS(r) = k ln exp[ b r ]

3k T 3k TA(r) = r = r

2L a2na

3k T 3k Tf(r) = - r = r

L ana

3k T 3k Tk(r) = = cons tan t

L ana

Linear Elasticity(1)

Page 7: 3.052 Nanomechanics of  Materials and Biomaterials

Review : 3.11 : Formulas For NonGaussian FJC

3. Non Gaussian Formulas For Stretching a Single FJC Chain :

r1

F1

x

y

z

contour

3 5

1 a ( ) coth where: x=

r r( ) *( ) where : x= 3

na L

9 297 1539L*(x) = "inverse Langevin function" = 3x+

5 175 875

B

B

fr f x (2)

x k T

k Tf r L x ( )

a

x x

Exact Formula :

Langevin Expansion :

7

1

...

( ) 1B

contour

x

k T rf r

a L

High Stretch Approximation : ( 4)

Page 8: 3.052 Nanomechanics of  Materials and Biomaterials

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 10 20 30 40 50 60 70 80 90 100

Comparison of Inextensible Non-Gaussian FJC Equations (*large force scale)

For

ce (

nN

)

Distance (nm)

FrFelastic Felastic

F

(a)

Page 9: 3.052 Nanomechanics of  Materials and Biomaterials

Comparison of Inextensible Non-Gaussian FJC Equations

(*small force scale)F

orce

(n

N)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 10 20 30 40 50 60 70

Distance (nm)

FrFelastic Felastic

F

(a)

Page 10: 3.052 Nanomechanics of  Materials and Biomaterials

Effect of a and n in FJC

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 50 100 150 200-0.5

-0.4

-0.3

-0.2

-0.1

0

0 100 200 300

(a) Elastic force versus displacement as a function of the statistical segment length, a, for the non-Gaussian FJC model

(Lcontour = 200 nm) and (b) elastic force versus displacement as a function of the number of chain segments, n , for the non-

Gaussian FJC model (a = 0.6 nm)

Fel

astic

(nN

)

r (nm)F

elas

tic (n

N)

r (nm)

n=100 n=200 n=300 n=400 n=500

(a) (b)

a = 0.1 nma = 0.2 nma = 0.3 nma = 0.6 nma = 1.2 nma = 3.0 nm

Effect of Statistical Segment Length Effect of Chain Length

Page 11: 3.052 Nanomechanics of  Materials and Biomaterials

Modification of FJC :Extensibility of Chain Segments

FrFelastic Felastic

F

Page 12: 3.052 Nanomechanics of  Materials and Biomaterials

Comparison of Extensible and Inextensible FJC Models

(a) Schematic of the stretching of an

extensible freely jointed chain and (b) the

elastic force versus displacement for the

extensible compared to non-extensible non-

Gaussian FJC (a = 0.6 nm, n = 100, ksegment =

1 N/m)

(a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 100 200 300 400

Fel

astic

(nN

)

r (nm)

(b)

non-Gaussian

FJC

extensiblenon-

GaussianFJC

FrFelastic Felastic

F

Page 13: 3.052 Nanomechanics of  Materials and Biomaterials

Effect of a and n on Extensible FJC Models

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 50 100 150 200 250 300 350-0.5

-0.4

-0.3

-0.2

-0.1

0

0 100 200 300 400 500

(a) Elastic force versus displacement for the extensible non-Gaussian FJC as a function of the statistical segment length, a

(Lcontour= 200, ksegment = 2.4 N/m) and (b) the elastic force versus displacement for the extensible non-Gaussian FJC as a

function of the number of chain segments, n (a = 0.6 nm, ksegment = 1 N/m)

Fel

astic

(nN

)

r (nm)

n=100 n=200 n=300 n=400 n=500

(a) (b)

Fel

astic

(nN

)r (nm)

a = 0.1 nma = 0.2 nma = 0.3 nma = 0.6 nma = 1.2 nma = 3.0 nm

Effect of Statistical Segment Length Effect of Chain Length