3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall...

14

Transcript of 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall...

Page 1: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 2: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 3: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 4: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of

The electrostatic potential is constant at distance r from a point charge. Lines of equipotential are circles in two dimensions. Broken lines indicate the direction of force and the field E. Figure by MIT OCW.

Page 5: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of

The electrostatic potential is constant at distance r from a point charge. Lines of equipotential are circles in two dimensions. Broken lines indicate the direction of force and the field E.

Figure by MIT OCW.

Page 6: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 7: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 8: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 9: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 10: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 11: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of
Page 12: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of

3.012 Fundamentals of Materials Science Fall 2005

Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05

Materials Design of Other Current Battery and Fuel Cell Technologies Lithium ion batteries

o The basic thermodynamic analysis applied above to explain the voltage obtained in a Daniell cell holds for much more complex batteries of current interest, such as lithium ion batteries:

!

LiCoO2(s)

" Li1#nCoO2(s)

+ ne#

C(s)

+ nLi+

+ ne#"CLi

x

Figure by MIT OCW.

Page 13: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of

3.012 Fundamentals of Materials Science Fall 2005

Lecture 13 – Electrochemical equilibria 13 of 14 11/2/05

Hydrogen fuel cells

5000 psi!

Figure by MIT OCW.

Page 14: 3.012 F05 thermo lect13 class - MIT OpenCourseWare...3.012 Fundamentals of Materials Science Fall 2005 Lecture 13 – Electrochemical equilibria 12 of 14 11/2/05 Materials Design of