3. Pipeline Design-Operation (2)

19
SUBSEA PIPELINE DESIGN CRITERIA OPERATION CONDITION Calculate by: Faridah Zahra 15510049 1. Description This file provides detail calculation for designing subsea pipeline that includes: Wall thickness selection; On-bottom stability analysis; and Free-span analysis Detail calculation here only provides for operation condition, while calculation on other condition has been provided in other file. 2. Design Basis 2.1 Pipeline Design Parameter. Corrosion coating thickness t corr 4mm := Outer diameter D s 24in 609.6 mm = := 2.2 Material Properties Steel density ρ s 490pcf 7.849 10 3 × kg m 3 = := Corrosion coating density ρ corr 80pcf := Concrete coat density ρ cc 190pcf 3.044 10 3 × kg m 3 = := Modulus elasticity E 207000MPa 3.002 10 7 × psi = := Coefficient of thermal expansion α 11.7 10 6 K 1 := Structural damping δ 0.126 := Poisson ratio ν 0.3 := Pipeline material API5L_Gr_X 52 := SMYS 290MPa API5L_Gr_X 42 = if 317MPa API5L_Gr_X 46 = if 359MPa API5L_Gr_X 52 = if 386MPa API5L_Gr_X 56 = if 414MPa API5L_Gr_X 60 = if 448MPa API5L_Gr_X 65 = if 483MPa API5L_Gr_X 70 = if := SMYS 3.59 10 8 × Pa =

description

e

Transcript of 3. Pipeline Design-Operation (2)

  • SUBSEA PIPELINE DESIGN CRITERIAOPERATION CONDITION

    Calculate by: Faridah Zahra

    15510049

    1. Description

    This file provides detail calculation for designing subsea pipeline that includes:

    Wall thickness selection;On-bottom stability analysis; andFree-span analysis

    Detail calculation here only provides for operation condition, while calculation on other condition has been provided in other file.

    2. Design Basis

    2.1 Pipeline Design Parameter.

    Corrosion coating thickness tcorr 4mm:=

    Outer diameter Ds 24in 609.6 mm=:=

    2.2 Material Properties

    Steel density s 490pcf 7.849 103

    kg m3

    =:=

    Corrosion coating density corr 80pcf:=

    Concrete coat density cc 190pcf 3.044 103

    kg m3

    =:=

    Modulus elasticity E 207000MPa 3.002 107

    psi=:=

    Coefficient of thermal expansion 11.7 106

    K1

    :=

    Structural damping 0.126:=

    Poisson ratio 0.3:=

    Pipeline material API5L_Gr_X 52:=

    SMYS 290MPa API5L_Gr_X 42=if

    317MPa API5L_Gr_X 46=if

    359MPa API5L_Gr_X 52=if

    386MPa API5L_Gr_X 56=if

    414MPa API5L_Gr_X 60=if

    448MPa API5L_Gr_X 65=if

    483MPa API5L_Gr_X 70=if

    := SMYS 3.59 108

    Pa=

  • SMTS 414MPa API5L_Gr_X 42=if

    434MPa API5L_Gr_X 46=if

    455MPa API5L_Gr_X 52=if

    490MPa API5L_Gr_X 56=if

    517MPa API5L_Gr_X 60=if

    531MPa API5L_Gr_X 65=if

    565MPa API5L_Gr_X 70=if

    := SMTS 4.55 108

    Pa=

    Manufacturing process Seamless = 1

    UO; TRB; ERW = 2

    UOE = 0.85

    PF 1:=

    2.4 Environmental Parameter

    Pipeline condition Installation = 1

    Hydrotest = 2

    Operation = 3

    PC 3:=

    Highest astronomical tide HAT 0.53m:=

    Lowest astronomical tide LAT 0.61m:=

    Water depth dmax 22.708m HAT+:= dmax 23.238m=

    dmin 14.935m HAT+:= dmin 15.465m=

    Kinematic viscosity of seawater v 1.076 105

    ft2sec

    1:=

    Seawater density sw 64pcf 1.025 103

    kg m3

    =:=

    Gravity( ) g 9.807 m s2

    =

    Current at 90% water depth Ur 0.45m s1

    PC 1= PC 2=if

    0.48m s1

    PC 3=if

    := Ur 0.48m

    s=

    Significant wave height Hs 1.8m PC 1= PC 2=if

    3.6m PC 3=if

    := Hs 3.6m=

    Significant Wave period Ts 6.3s PC 1= PC 2=if

    8.3s PC 3=if

    := Ts 8.3 s=

  • 2.5 Pipeline Operational Data

    Content density cont 0kg m3

    PC 1=if

    1025kg m3

    PC 2=if

    57.522pcf PC 3=if

    :=

    Design pressure Po 0psi PC 1=if

    1350psi PC 3=if

    1.5 1350 psi PC 2=if

    :=

    Design temperature Td 140F:=

    Seabed temperature Tsw 23 C:=

    Corrosion allowance Ca 2.54mm:=

    External pressure Pe.max sw g dmax:= Pe.max 2.336 105

    Pa=

    Pe.min sw g dmin:= Pe.min 1.555 105

    Pa=

    Axial pressure Fa 0N:=

    Bending stress M 72% SMYS:= M 258.48 MPa=

    2.6 Soil Parameter

    Soil type 1 = sand

    2 = clay

    soil 2:=

    Medium density of sand sand 1860kg m3

    :=

    Medium density of clay clay 326.309kg m3

    :=

    Medium density of soil soil sand soil 1=if

    clay soil 2=if

    := soil 326.309kg

    m3

    =

    Undrained shear stress Su 2kPa:=

  • 2.8 Design Factor

    Internal pressure factor design

    ASME B31.4 F1 0.72:=

    API RP 1111 fd 0.72:=

    Weld joint factor

    ASME B31.8 Ee 1:=

    API RP 1111 fe 1:=

    Temperature derating factor

    ASME B31.8 T 1:=

    API RP 1111 ft 1:=

    Collapse factor

    ASME B31.8

    f0 0.7:=API RP 1111

    Ovalitas

    DNV OS F101 fo 0.005:=

    Propagation buckling design factor

    ASME B31.8

    fp 0.8:=API RP 1111

    Local buckling factor

    DNV 1981

    xp 0.72:=Longitudinal stress usage factor

    Hoop stress usage factor yp 0.92:=

    Material resistance factor m 1.15:=

    Incidental factor inc 1.05:=

  • 3. Wall Thickness Selection

    3.1 Internal Pressure Collapse Criteria

    3.1.1 Internal Pressure Contaiment ASME B31.8 Design Criteria

    Initial wall thickness tint.ipc.ASME 11mm:=

    Hoop stress y

    Po Pe.max( )2 tint.ipc.ASME

    Ds:= y 2.514 108

    Pa=

    Internal pressure contaiment criteria IPC_ASME_Criteria "accepted" y F1 SMYSif

    "not accepted" otherwise

    :=

    IPC_ASME_Criteria "accepted"=

    Safety factor SFipc.ASME

    F1 SMYS

    y

    := SFipc.ASME 1.028=

    3.1.2 Internal Pressure Contaiment API RP 1111 Design Criteria

    Initial steel wall thickness on hydrotest condition tint.ipc.API.h 16mm:=

    tint.ipc.API tint.ipc.API.h Ca+:= tint.ipc.API 18.54 mm=Initial steel wall thickness

    3.2 External Pressure Collapse

    External pressure (Pe) on hydrotest condition is smaller than internal pressure (Pi), hence wall thickness selection

    calculation on external pressure collapse criteria isn't done in this condition.

    3.3 Local Buckling Criteria

    External pressure (Pe) on hydrotest condition is smaller than internal pressure (Pi), hence wall thickness selection

    calculation on local buckling criteria isn't done in this condition.

    3.4 Propagation Buckling Criteria

    External pressure (Pe) on hydrotest condition is smaller than internal pressure (Pi), hence wall thickness selection

    calculation on API RP 1111 propagation buckling criteria isn't done in this condition.

  • 3.5 Selected Wall Thickness

    This following t.int.ins is selected wall thickness from hydrotest condition.

    The final selected wall thickness is obtain from comparing this initial wall thickness eith other initial wall thicness

    from installation and operation condition.

    tint.op max tint.ipc.ASME tint.ipc.API, ( ):=

    tint.ins 9mm:= (Obtained from installation condition calculation)

    tint.hyd 17mm:= (Obtained from hydrotest condition calculation)

    tint.op 18.54mm:=

    tcalc max tint.ins tint.hyd, tint.op, ( ):= tcalc 0.73 in=Selected wall thickness from calculation

    Selected wall thickness Pipe OD 6.625" WT 0.75" ts 0.75in:=

  • 4. On Bottom Stability Analysis

    4.1 Vertical Stability

    4.1.1 Pipe Weight Calculation

    Initial concrete coating thickness tint.cc 0mm:=

    Internal diameter ID Ds 2 ts Ca( ) := ID 576.58 mm=Corrosion coating diameter Dcorr Ds 2 tcorr+:= Dcorr 617.6 mm=

    Total outer diameter Dtot Ds 2 tcorr+ 2 tint.cc+:= Dtot 617.6 mm=

    Steel pipe mass / length mst

    4Ds

    2ID

    2

    s:= mst 241.454

    kg

    m=

    Corrosion coating mass / length mcorr

    4Dcorr

    2Ds

    2

    corr:= mcorr 9.881

    kg

    m=

    Concrete coat mass / length mcc

    4Dtot

    2Dcorr

    2

    cc:= mcc 0

    kg

    m=

    Content mass / length mcont

    4ID

    2 cont:= mcont 240.582

    kg

    m=

    Added mass;

    Dicplaced water; Buoyancy / length

    B

    4Dtot

    2sw:= B 307.118

    kg

    m=

    Total pipe mass / length mtot mst mcorr+ mcc+ mcont+ B:=

    mtot 184.8kg

    m=

    Total pipe weight / length Wtot mtot g:= Wtot 1.812 103

    N

    m=

    4.1.2 Vertical Stability Calculation

    Vertical stability VS

    mtot B+( )B

    := VS 1.602=

    Vertical_Stability "accepted" VS 1.1>if

    "not accepted; enlarge concrete coating thickness" VS 1.1if

    :=

    Vertical_Stability "accepted"=

  • 4.2 Lateral Stability

    4.2.1 Hydrodynamics Parameter Calculation

    4.2.1.1 Wave-Induced Particle Velocity

    Spectral peak period Tp 1.05 Ts:= Tp 8.715 s=

    Periode

    referensi

    Tn

    dmin

    g:= Tn 1.256 s=

    Peakedness

    parameter

    Tp

    Hs

    := 4.593s

    m0.5

    =

    5 3.6sec

    m

    if

    1 5sec

    m

    if

    3.3 otherwise

    := 3.3=

    Figure 4.1 Significant water velocity, Us* (DNV RP E305)

    Water particle velocity

    (Wave induced)

    Tn

    Tp

    0.144=

    Us

    0.31 Hs

    Tn

    := Us 0.889m

    s=

  • 4.2.1.2 Zero-Up Crossing Period

    Figure 4.2 Zero-up crossing period, Tu (DNV RP E305)

    Zero-up crossing period Tu 0.95 Tp:= Tu 8.279 s=

    4.2.1.3 Average Velocity on Pipeline

    Velocity on 90% depth Ur 0.48m

    s=

    The amount of current passing through the pipe is affected by the type of seabed soil in which the pipe is laid.

    In terms of the soil is clay soil, the soil roughness is negligible, so in this case UD = Ur

    UD Ur:= UD 0.48m

    s=

    4.2.1.4 Hydrodynamics coefficient

    Reynold's number Re

    UD Us+( )v

    Dtot:= Re 8.456 105

    =

    Wave - current velocity ratio M

    UD

    Us

    := M 0.54=

    Drag coefficient CD 1.2 Re 5 104

  • 4.2.2 Seabed Soil Factor

    Figure 4.4 Recommended friction factors for clay (DNV RP E305)

    ratio

    Dtot Su

    mtot g:= ratio 0.682=

    Soil friction

    factor

    1.3:=

    4.2.3 Hydrodynamics Force

    Wave particle acceleration As 2 Us

    Tu

    := As 0.674m

    s2

    =

    fL. ( )1

    2

    sw

    g Dtot CL Us cos ( ) UD+( )2:=Lift force

    Drag force fD. ( )1

    2

    sw

    g Dtot CD Us cos ( ) UD+( )2:=

    Inertia force fI. ( ) Dtot

    2

    4

    sw

    g CM As sin ( ):=

  • 4.2.4 Lateral Stability Calculation

    4.2.4.1 Calibration Factor

    Figure 4.3 Calibration factor, Fw, as function of K and M (DNV RP E305)

    K

    Us Tu

    Dtot

    := K 11.913=Keulegan-Carpenter number

    Calibration factor Fw 1.15:=

    4.2.4.2 Lateral Stability Check

    i 0 180..:=phase angle range

    i i deg:=

    Required submerged weight ms. ( )fD. ( ) fI. ( )+( ) fL. ( )+

    Fw:=

    mreq. ( ) max ms. ( )( ):=

    mreq. ( ) 89.618kg

    m=

    SFw

    mtot

    mreq. ( ):= SFw 2.062=

    LS "accepted" SFw 1if

    "not accepted, enlarge concrete coating thickness" SFw 1

  • 5. Free Span Analysis

    5.1 Static Analysis

    Static span length Lfr.st 60m:=

    Total pipe weight / length Wtot 1.812 103

    N

    m=

    Drag force FD max fD. ( )( ) g:= FD 415.131N

    m=

    Inertia force FI max fI. ( )( ) g:= FI 310.696N

    m=

    Support type 1 = pinned - pinned

    2 = fixed - pinned

    3 = fixed - fixed

    support 1:=

    End condition constant( ) Cfr.st 8 support 1=if

    10 support 2=if

    12 support 3=if

    := Cfr.st 8=

    Distributed pipe weight Wd Wtot2

    FD2

    FI2

    +

    2

    +:= Wd 1.885 103

    N

    m=

    Area moment of inertia I

    64Ds

    4ID

    4

    := I 1.354 10

    3 m

    4=

    Section modulus ZI

    Ds

    2

    := Z 4.441 103

    m3

    =

    Longitudinal stress l

    Wd Lfr.st2

    Cfr.st Z:= l 1.91 10

    8 Pa=

    Hoop stress y 2.514 108

    Pa=

    Equivalent stress e l2

    y2

    +:= e 3.158 108

    Pa=

    Allowable stress allow 0.72 SMYS( ) PC 1=if

    0.9 SMYS( ) PC 2= PC 3=if

    :=

    allow 3.231 108

    Pa=

    Static span criteria static_span_criteria "Static span length accepted" e allow

  • 5.2 Dynamic Analysis

    5.2.1 Critical Span Length

    5.2.1.1 Stability Parameter

    Effective mass meff mst mcorr+ mcc+ mcont+ B+:=

    meff 799.036kg

    m=

    Stability parameter Ks

    2 meff

    sw Dtot2

    := Ks 0.515=

    5.2.1.2 Reduced Velocity

    Figure 5.1 Reduced velocity for cross-flow oscillations based on the reynolds number.

    Figure 5.2 Reduced velocity for inline oscillations based on the stability parameter

    Reynold's number Re 8.456 105

    =

    Reduced velocity for cross-flow

    oscillation

    Vr.cf 5.9:=

    Reduced velocity for inline oscillation Vr.in 1.4:=

  • 5.2.1.3 Critical Span Length

    End condition constant Cfr.dy 2

    support 1=if

    15.5 support 2=if

    22 support 3=if

    := Cfr.dy 9.87=

    Critical span length for cross-flow

    motion

    Lfr.dy.cf

    Cfr.dy Vr.cf Dtot

    2 Us Ur+( )E I

    meff

    := Lfr.dy.cf 49.764m=

    Critical span length for inline motion Lfr.dy.in

    Cfr.dy Vr.in Dtot

    2 Us Ur+( )E I

    meff

    := Lfr.dy.in 24.241m=

    Critical span selected for dynamic

    analysis criteria

    Lfr.dy min Lfr.dy.cf Lfr.dy.in, ( ):= Lfr.dy 24.241m=

    5.2.2 Dynamic Stress

    5.2.2.1 Vortex Shedding Frequency

    Figure 5.3 Strouhal's number for circular cylinder as function of Reynold's number

    Reynold's number Re 8.456 105

    =

    Strouhal's number St 0.2:=

    Vortex shedding frequency fv

    St Us Ur+( )Dtot

    := fv 0.4431

    s=

    5.2.2.2 Pipeline Natural Frequency

    Pipeline natural frequency fn

    Cfr.dy

    2

    E I

    meff Lfr.dy4

    0.5

    := fn 1.5831

    s=

    Pipe frequency criteria pipe_frequency_check "pipeline critical span accepted" fv 0.7fnif

    "redesign pipe" otherwise

    :=

    pipe_frequency_check "pipeline critical span accepted"=

  • DEFINITION

    pcflb

    ft3

    :=

    year 31536000sec:=C K:=