3. Noise and Vibration design · 2.1 Noise and Vibration-Management table 2.2 Representative...

56
1 3. Noise and Vibration design 1. Basic of Vibration and Noise 1.1 Vibration 1.2 Noise 2. Automotive Vibration and Noise 2.1 Noise and Vibration-Management table 2.2 Representative examples of automotive noise and vibration 3. Analysis technology and Embodiments 4. Vehicle and Noise (from the standpoint of pollution response) Lecturer: Professor Dr. H.Morimura Tokyo Institute of Technology

Transcript of 3. Noise and Vibration design · 2.1 Noise and Vibration-Management table 2.2 Representative...

  • 1

    3. Noise and Vibration design

    1. Basic of Vibration and Noise

    1.1 Vibration 1.2 Noise 2. Automotive Vibration and Noise

    2.1 Noise and Vibration-Management table 2.2 Representative examples of automotive noise and vibration 3. Analysis technology and Embodiments

    4. Vehicle and Noise (from the standpoint of pollution response)

    Lecturer: Professor Dr. H.Morimura

    Tokyo Institute of Technology

  • 2

    Fig.0-1 Long-term Transition of Development on the interior noise

    (at a speed of 100km/h in top gear)

    ◆ : Data of Motor Fun

    ATZ-Interior noise Zone

    (prediction)

    3dB reduction / 10years(ATZ)

    4dB reduction / 10years(M / Fun)

  • 3 Fig.0-2 Environmental advances in vehicle development

    /www.top500.org/

    1PFlops:2009 1000times / 10 years !!!

    100times / 1 year !!!

    Gfl

    op/s

  • 4

    1.1 Vibration 1.1.1 Free vibration

    0)()()( tkxtxctxm

    Fig.1.1 Single Degree of Freedom Model

    mass

    m

    x

    spring k [N/m]

    damper c [Ns/m] forcerestoringtkx

    dampingViscoustxc

    forceInertiatxm

    ntDisplacemex

    )(

    )(

    )(

  • 5

    Free damped vibration

    ζ=0 :Free vibration

    ζ<1 :Damped vibration

    ζ=1 :Critical vibration

    ζ>1 :Over damping

    - ζ=0

    - ζ=0.2

    - ζ=1

    - ζ=1.5

    fig. 1.2 Vibration shape

    -1

    -0.5

    0

    0.5

    1

    0 0.5 1 1.5 2

    時間 t(s)

    変位

     x(m

    )

    time t (s)

    dis

    pla

    cem

    ent

    x

    (m)

    frequency natural Damped:1

    frequencyangular Natural:/

    ratio Damping:/

    tcoefficien damping Critical:2

    cos

    0)()()(

    2

    0

    nd

    n

    c

    c

    dtn

    mk

    cc

    mkc

    here

    texx

    tkxtxctxm

  • 6

    1.1.2 Forced Vibration

    Fig.1.3frequency response of single degree of freedom system

    (Displacement / excitation Force)

    F0sinωt mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    2

    22 2

    0,0

    0

    1/2arctan

    21/1/

    /,2/

    force staticfor deflection

    sin)()()(

    XsX

    thenmkc

    FXkXF

    tFtkxtxctxm

    n

    ss

    正弦波入力に対する振幅倍率

    0

    1

    2

    3

    0 1 2 3

    周波数比, Hz

    振幅

    倍率

    , |

    X/X

    s|

    ζ =0.01

    ζ =0.2

    ζ =0.5

    ζ =1

    Amplitude ratio of the sine-wave input

    Am

    pli

    tud

    e ra

    tio x/

    xs

    Frequency ratio β

    加振力に対する変位の位相

    -3.14

    -1.57

    0.00

    0 1 2 3

    周波数比 β

    位相

     θ

    , ra

    d

    ζ =0.01

    ζ =0.2

    ζ =0.5

    ζ =1

    the Phase of displacement of Sinusoidal input

    Phas

    e θ

    rad

    Frequency ratio β

  • 7

    the effects of Stiffness

    Fig.1.4 compliance to the effects of Stiffness (spring constant)

    0

    1

    2

    3

    4

    5

    6

    0 0.5 1 1.5 2 2.5 3

    Frequency ratio ω

    Com

    pli

    ance

    |X/F

    k=4

    k=1 k=0.25

    the effect region of increasing Stiffness

    Stiffness Dynamic/Compliance/

    Impedance/Mobility/

    massApparent /eAcceleranc/

    sin)()()(

    00

    00

    00

    0

    ::

    ::

    ::

    xFFx

    xFFx

    xFFx

    tFtkxtxctxm

    F0sinωt mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    Accelerance = Inertance

    Compliance = Receptance, Admittance, Dynamic flexibility

  • 8 Fig. 1.5 compliance to the effects of Mass

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0.5 1 1.5 2 2.5 3 Frequency ratio ω

    Com

    pli

    ance

    |X/F

    0|

    m=4 m=1 m=0.25

    the effect region of increasing Mass

    F0sinωt mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    the effects of Mass

  • 9

    The effect of Damping

    Fig.1.6 compliance to the effects of Damper

    0 0.5 1 1.5 2 2.5 30

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    (ab

    s)

    (rad/sec)

    ー ζ=0.05

    ー ζ=0.1

    ー ζ=0.2

    ー ζ=0.5

    Com

    pli

    ance

    ׀

    x/F

    0 ׀

    Frequency ratio ω

    F0sinωt mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

  • 10

    1.1.3 vibration cutoff

    Transmitted force

    through spring

    Fk=kx

    Ft = Fk + Fc

    Transmitted force

    through damper

    Fc =cx’

    Fig.1.7 transmissibility of force

    Ft / F0 : transmissibility of force

    Fc

    x

    x’

    spring k [N/m]

    damper c [Ns/m]

    F0sinωt mass

    m Ft

    2222220

    20

    4141/

    2121/

    FF

    jjFF

    t

    t

  • 11 Fig.1.8 Force Transmissibility

    0.1

    1

    10

    0 1 2 3 4β =ω /ω 0

    τ=F

    t/F0

    ζ =0.05

    ζ =0.1

    ζ =0.2

    ζ =0.4

    ζ =0.8

    2

    mass

    m

    x

    spring k [N/m]

    damper c

    [Ns/m]

    F0sinωt Ft

    Force transmissibility is reduced

    with β increase and ζ decrease

    Force Transmissibility

  • 12 0 1 2 3 4 5 6 7 8 9 10

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    時間 t (s)

    x0, x

    (m)

    t0=T0 Time t (s)

    0 1 2 3 4 5 6 7 8 9 100

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    時間 t (s)

    x0, x

    (m)

    t0 Time t (s)

    0 1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    時間 t (s)

    x0, x

    (m

    )

    t0 Time t (s)

    0 1 2 3 4 5 6 7 8 9 100

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    時間 t (s)

    x0, x

    (m)

    Period T0 Time t (s) mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    x0

    1.1.4 Transient vibration

    where c =0

    Period Natural:/1

    frequency Natural:2/

    frequencyangular Natural:/

    00

    0

    fT

    f

    mk

    n

    n

    Fig.1.9 Transient vibration

  • 13

    mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    x0

    0 1 2 3 4 5 6 7 8 9 100

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    時間 t (s)

    x0, x

    (m)

    0 1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    2.5

    時間 t (s)

    x0, x

    (m

    )

    0 1 2 3 4 5 6 7 8 9 10-1.5

    -1

    -0.5

    0

    時間 t (s)

    x0, x

    (m

    )

    Time t (s)

    Time t (s)

    Time t (s)

    t0=T0

    Fig.1.10 Transient vibration

  • 14

    mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    x0

    0 1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    時間 t (s)

    x0, x

    (m

    )

    0 1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    時間 t (s)

    x0, x

    (m

    )

    0 1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    時間 t (s)

    x0, x

    (m

    )

    0 1 2 3 4 5 6 7 8 9 100

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    時間 t (s)

    x0, x

    (m

    )

    Cycle time T0

    period T0/2

    Time t (s)

    Time t (s)

    Time t (s)

    Time t (s)

    c=0

    T0=1/f0=1/{ω0/(2π)}

    =cycle time

    Fig.1.11 Transient vibration

  • 15

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 1 2 3 4

    振幅

    比D

    isp

    lace

    men

    t r

    atio

    x/x

    0

    t0 / T0

    x0

    t0

    Fig.1.12 amplitude ratio of transient vibration

    c=0

    T0=1/f0=1/{ω0/(2π)}

    =cycle time

    mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    x0

  • 16

    Displacement

    input of the

    road

    Vibration

    of body

    Engine

    Vibrating

    force

    Engine

    Vibration

    mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    x0

    F0

    mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    Fig.1.13 example of Transient vibration

  • 17

    • Figure is the time limit of

    workers Sitting while

    exposed to vibration.

    Vertical direction :

    • The sensitivity is highest

    when exposed to vibration 4Hz to 8Hz.

    Back and Forth direction :

    • The sensitivity is highest

    when exposed to vibration around the 1 Hz .

    1.1.5 Vibration sensitivity of the human body

    Fig.1.14vertical vibration sensitivity of the human body

  • 18

    1.2 Noise

    Fig.1.15 propagation of sound

    Impulse p⊿t

    Momentum variation

    c⊿t

    Pre

    ssure

    p [

    Pa]

    Time t [s] Atmosphere

    pressure

    Particle velocity u

    Air density

    propagation of sound

    in velocity c

    ρc⊿tu

    p = ρcu

    Wavelength λ c =λf

  • 19

    1.2.1 Definition of noise level

    Sound pressure : ]N[ 2mp

    Particle velocity of sound:

    cppuW

    cpu

    2

    ]m/s[

    Minimum human audible sound pressure

    (Definition of 1000Hz): ao Pp

    5102

    Power for p0 : Wo

    Definition of noise level :

    ]dB[)log(20)log(10)log(10 22 ooo ppppWWSPL

    Sonic power per unit area:

    SPL weighted the frequency characteristics A is “noise level A”.

    and the unit is dB (A) ; decibel-A or Hon.

    Pressure 10times=20dB

    Power 100times =20dB

    Pressure 2times =6dB

    Pressure 1.4times =3dB

    Power 2times =3dB

  • 20

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    0 2 4 6 8 10 12 14 16

    PA=1×sin(ωt)

    PA+PB=2×sin(ωt) , PA +6 dB

    PB=1×sin(ωt)

    PA+PB=0×sin(ωt) -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    0 2 4 6 8 10 12 14 16

    PA+PB=1.4×sin(ωt) , PA +3 dB

    Fig.1.16 propagation of sound 1/2

  • 21

    80dB + 80dB = 83dB

    Fig.1.17 propagation of sound 2/2

  • 22

    1.2.2 Audible range of human and Automotive Noise

    Frequency Hz

    Sound

    pre

    ssure

    dB

    Minimum audible noise

    Brake noise

    Win

    d n

    ois

    e

    Bo

    om

    ing

    no

    ise

    Bo

    om

    ing

    no

    ise

    Bo

    om

    ing

    no

    ise

    Engine noise

    Tire noise

    Gear noise Road noise

    Minimum audible noise of common

    Maximum audible noise

    Fig.1.18 Human audible noise

  • 23

    Frequency Hz

    Fig.1.19 Isopter curve of Fletcher-Munson

    Sound p

    ress

    ure

    d

    B

  • 24

    Frequency Hz

    Fig.1.20 A,B,C curve

  • 25

    1.2.3 Acoustic Isolation

    Wt

    WiTL log10

    図11 遮音壁の透過損失

    0

    20

    40

    60

    80

    100

    120

    140

    0.1 1 10周波数 f [kHz]

    透過

    損失

    TL [

    dB]

    md

    cf

    2

    2

    1

    dcf

    2

    dcf Double-walled

    )2

    log(20c

    mTL

    6)2

    log(40 c

    mTL

    図14

    Tra

    nsm

    issi

    on

    Loss

    T

    L [

    dB

    ]

    Frequency f/f0 [kHz]

    入射 透過

    Face density m [kg/m3]

    d [m]

    Wi Wt

    入射 透過

    Wi Wt

    incident

    incident Transmission

    Transmission

    Fig.1.21 Transmission loss

  • 26

    d

    λ/2

    λ/2 (half-wavelength) multiples Standing wave occurred

    Incident Transmission

    Fig.1.22 Standing Wave

  • 27

    高周波ほど厚いほど吸音する

    図 15

    Frequency [Hz]

    Density

    Thickness

    Aco

    ust

    ic a

    bso

    rpti

    on c

    oef

    fici

    ent

    1.2.4 acoustic absorption Absorption ↑

    ↓ Absorption

    Input

    Transm

    ission

    Reflec

    tion

    acoustic absorption

    coefficient=

    1- Reflection /Input

    =(Absorption +Transmission)/Input

    Fig.1.23 Acoustic absorption coefficient

  • 28

    • particles make a movement in the air between Fibers.

    • thermal energy conversion by the loss of fluid resistance

    •fluid loss is decrease near the

    wall, as air particle velocity

    will decrease.

    Long wavelength λ needs a

    thick layer of acoustical

    absorption material.

    Fig.1.24Effect of acoustic material

    吸音層

    λ/4

    粒子速度

    λ/4

    In the high frequency,

    acoustical equivalent

    of the thick layer

    Wall Absorption

    material

    Particle velocity

  • 29

    Frequency Hz

    Mas

    kin

    g d

    B

    • that the frequency is higher than 400Hz is felt as a small sound by the pure tone of 400Hz.

    • The decline level of sound is defined “masking” .

    • longitudinal axis of the graph shows masking level.

    1.2.5 Masking

    図 17 純音による純音のマスキング Fig.1.25 Masking of pure tone by 400Hz pure tone

  • Temporal Masking

    30 Fig.1.26 Temporal Masking

  • 31

    1.2.6 frequency modulation:

    • Generate a beat tone by overlap

    • frequency modulation 4Hz: 『fluctuation ;変動感』max

    • frequency modulation70Hz:『rough deposits;ざらざら感』Max

    • frequency modulation200Hz:flat/smooth sound; 平坦な音

  • 32

    1.2.6 The sound quality assessment

    • A sense of quality is studied

    with multi-factorial analysis .

    • sound classification such as

    “metal sound” , “light” etc.

    shows characteristics of group

    of sound.

    • This axis representing the

    property as a car sound.

    Fig.1.27 coordinate space representing the sound quality

    Comfort sense factor

    Powerful sense factor Metal sense factor

    Luxury sedan

    Sport car

  • 33

    2. Performance/Functions and Components

    Expected utility Vehicle

    Vehicle

    Performanc

    e

    Performance

    /Functions

    Component

    z

    y

    x

    c

    b

    a

    53

    52

    51

    3

    2

    1

  • 34

    Performance/Functions and Components

    payl

    oad

    & e

    ase o

    flo

    adin

    g

    com

    fort

    &eas

    e o

    fegr

    ess

    /in

    gress

    ope

    rabi

    lity

    field

    of

    visi

    on &

    visi

    bilit

    y

    bala

    nce o

    f ext

    erior

    aero

    dynam

    icchar

    acte

    rist

    ics

    engi

    ne

    perf

    orm

    ance&dr

    iva

    fuel econom

    y &

    em

    issi

    on c

    ontr

    ol

    heat

    resi

    stan

    tpe

    rform

    ance

    brak

    ing

    perf

    orm

    ance

    driv

    ing

    stab

    ility

    park

    ing

    perf

    orm

    ance

    runnin

    g th

    rough

    tpe

    rform

    ance

    collisi

    on s

    afety

    perf

    orm

    ance

    ride

    com

    fort

    vibr

    atio

    n&nois

    e

    air

    condi

    tionin

    gpe

    rform

    ance

    info

    rmat

    ion

    perf

    orm

    ance

    sound

    perf

    orm

    ance

    envi

    ronm

    ent

    com

    patibi

    lity

    mas

    s&in

    ert

    iam

    om

    ent

    relia

    bilit

    y& d

    ura

    bilit

    y

    eas

    e o

    f re

    pair a

    nd

    mai

    nte

    nan

    ce

    recyc

    labi

    lity

    produ

    ctivi

    ty&as

    sem

    bly

    work

    ability

    cost

    1 engine ◎ ○ ◎ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○2 air intake system ◎ ○ ○ ◎ ○ ○ ○ ○ ○ ○3 fuel gauge ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○4 cooling system ◎ ○ ◎ ○ ○ ◎ ○ ○ ○ ○ ○ ○5 exhaust system ◎ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○6 clutch ◎ ◎ ○ ○ ○ ○ ○ ○ ○7 transmission ◎ ◎ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○8 mount of power train ○ ◎ ◎ ○ ○ ○ ○ ○ ○9 propeller shaft ○ ◎ ○ ○ ○ ○ ○ ○10 final drive ◎ ○ ◎ ○ ○ ○ ○ ○ ○11 axle shaft ◎ ○ ○ ○ ○ ○ ○12 drive shaft ◎ ○ ○ ○ ○ ○ ○ ○13 axle ○ ○ ○ ○ ○ ○ ○ ○14 brake system ◎ ○ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○15 parking brake ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○16 wheel ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○17 tire ○ ◎ ○ ◎ ◎ ◎ ○ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○18 steering system ◎ ◎ ◎ ○ ◎ ○ ○ ○ ○ ○ ○ ○19 front suspension ◎ ◎ ◎ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○20 riar suspension ○ ◎ ◎ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○21 manipulation system ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○22 piping ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○23 cable routing ◎ ○ ○ ○ ○ ○ ○ ○24 frame ◎ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○25 body structure ◎ ◎ ◎ ◎ ◎ ○ ◎ ◎ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○26 glass ◎ ◎ ◎ ◎ ○ ◎ ○ ○ ○ ○ ○ ○ ○27 door ◎ ◎ ◎ ◎ ○ ◎ ○ ○ ○ ○ ○ ○ ○ ○28 tailgate ◎ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○29 hood ◎ ◎ ◎ ○ ◎ ○ ○ ○ ○ ○ ○ ○ ○30 bumper ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○31 exterior parts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○32 seat ◎ ○ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○33 seat belt ○ ◎ ○ ○ ○ ○ ○ ○ ○34 passive safety device(air bag) ○ ◎ ○ ○ ○ ○ ○ ○ ○ ○35 trim ○ ○ ○ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○36 sound isolation&acoustic material ◎ ◎ ○ ○ ○ ○ ○ ○37 instrument panel ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○38 air conditioner ○ ○ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○39 defroster ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○40 wiper ◎ ○ ◎ ○ ○ ○ ○ ○ ○ ○41 windshield washer ◎ ○ ○ ○ ○ ○ ○ ○42 rear view mirror(inside&outside) ◎ ◎ ○ ◎ ○ ○ ○ ○ ○ ○ ○43 audio&visual ○ ○ ○ ◎ ◎ ○ ○ ○ ○ ○ ○44 navigation ○ ◎ ○ ○ ◎ ○ ○ ○ ○ ○ ○45 lighting devices ◎ ○ ○ ○ ○ ○ ○ ○ ○46 alternator ○ ○ ○ ○ ○ ○ ○47 battery ○ ○ ○ ○ ○ ○ ○48 wiring harness ○ ○ ○ ○ ○ ○ ○ ○ ○49 layout of interior ◎ ◎ ◎ ◎ ◎ ◎ ○ ◎ ○ ○ ○ ○ ○ ○50 layout of engine room ◎ ◎ ○ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○51 latout of underfloor ◎ ◎ ○ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○52 specification dimention,aerodynamic characteristics ◎ ◎ ◎ ○ ○ ○ ◎ ◎ ○ ○ ○ ○ ○ ○ ○ ○53 mass&inertia moment&center of gravity ◎ ○ ○ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ○ ○ ○

    auxilia

    ry p

    art

    sla

    yout

    vehicle performance are represented with 26 items

    Components are consolidated to 53 units

    pow

    er/

    dri

    ve t

    rain

    chassis

    body

    trim

  • 35

    ○: link point of connection (Targeted value is established)

    •Balancing a lot of targets

    •Deterioration of Growth factor

    (Circular reaction to increase weight

    and cost)

    •Subject:

    Noise and Vibration-Management

    simulation system is necessary.

    Table 1-1 Table of Noise and Vibration in passenger Vehicle

    Idlin

    g vi

    brat

    ion

    Powe

    r Hop

    &Vibr

    atio

    n

    Clut

    ch ju

    dder

    Acce

    lera

    tion

    shoc

    k s

    urge

    Sim

    my

    Shak

    e

    Brak

    e ju

    dder

    Engin

    e no

    ise

    Gea

    r nois

    e

    Drum

    min

    g

    Boom

    ing 

    noise

    Road

     noi

    se

    Win

    d no

    ise

    Unbalance of engine ○ ○ ○Sycle variation of engine torque ○ ○ ○ ○ ○Sycle variation of engine force ○ ○Trangent torque of engine ○ ○ ○ ○Combustion noise ○Exhaust noise ○ ○Clutch ○ ○Rotation of coupling and shaft ○ ○ ○Tire uniformity ○ ○ ○Tire unbalance ○ ○Gear ○ ○Road surface ○ ○Brake ○Turbulance of air ○Power unit ○ ○ ○ ○ ○ ○ ○ ○Flywheel ○ ○ ○Clutch ○ ○ ○Transmission ○ ○ ○Propeller shaft ○ ○ ○Coupling ○ ○ ○ ○ ○Drive shaft ○ ○ ○Differential gear ○ ○ ○Axle shaft ○ ○Steering wheel ○ ○ ○ ○Steering system ○ ○Steering column ○ ○ ○Suspension ○ ○ ○ ○ ○Wheel ○Tire ○ ○ ○ ○ ○ ○ ○ ○Engine mounting ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○Power train mounting ○ ○ ○ ○ ○ ○ ○ ○ ○Body structure ○ ○ ○ ○ ○ ○ ○ ○Interior & exterior ○ ○ ○ ○ ○ ○ ○Sound insulation material ○ ○ ○ ○ ○Cavity ○ ○ ○

    Com

    pone

    nts

    spec

    ifica

    tion

    Exci

    tatio

    n so

    urce

    2. Automotive Vibration and Noise 2.1 Noise and Vibration-Management table

    comparison for

    performance items

    and components

  • 36

    vibration source and transmission system of noise and vibration

    Input from the road 0~500Hz

    Engine rotation 20~300Hz

    P/ Train shaft rotation 0~200Hz

    Tire rotation 0~100Hz

    Engage gear 0~5000Hz

    Transient fluctuation 0~20Hz

    Brake power fluctuation 0~30Hz

    ・・・・ Sound vibrating force・・・・・

    Engine noise ~10kHz

    Disruption in air flow ~4000Hz

    Cooling fan noise ~3000Hz

    Tire noise ~3000Hz

    Tire

    Frame

    Body

    Engine

    Transmission

    Mounting system

    Drive Shaft

    Exhaust system

    Suspension

    Brake

    Steering

    Sheet

    Body vibration

    The vibration of

    operation system

    Vibration of

    Rearview mirror

    ----------------

    Sound pressure of

    interior

    Tone

    Vehicle

    exterior noise

    Vibratory Force source Vibration system,

    Transmission system Evaluation

    partial

    Vibration

    Noise

    Vibration

  • 37

    2.2 Representative examples of automotive noise and vibration

    Fig.2.1 Idle vibration

    15-a

    15-b

    15-c

    15-d d) Vibration of body, steering wheel and seat

    a) Roll Vibration of engine

    b) Vibration of body

    c) Vibration of exhaust system

  • 38

    Engine

    Mass

    m>100kg

    x” mP

    The piston vibrating force

    (Inertia force)

    mPx”

    The piston vibrating force is increasing

    with increasing rotation speed.

    2000cc class 4 cylinders

    About 20 kN !! (at 6000 rpm)

    If 100kg engine units

    200m/s2 (20G)

    Fig.2.2 Force and vibration of 4 cylinders engine

  • 39

    Minimization of transmitted force of engine

    Ⅰ. lower set Eigen value √ k / m ( rigid engine Natural frequency).

    * k lower → but increase in low-frequency vibration of the engine

    * m increase → but increasing weight effect to other adverse

    Ft / F0 : Minimization of Force Transmissibility

    Ⅱ. lower setting of Damper C * C lower → but engine vibration near the natural frequency is increased

    F0sinωt mass

    m

    x

    spring k [N/m]

    damper c [Ns/m]

    Ft

  • 40

    But engine vibration was heavy at 600 rpm idle rotation.

    (Main vibration of 4-cylinder engine is second orders of rotation.

    vibration frequency is f = 20Hz at 600rpm. )

    Hzff

    ff

    f147.0

    22 0

    00

    Necessary conditions to set vibration transmission rate less than

    1 are following.

    ①The natural frequency of rigid engine vibration

    : lower than f0 =10Hz (Low spring mounting)

    ② engine mounting insulator : lower damping ratio

    New Challenges ! The failure of

    low natural frequency

    engine natural frequency was reduced to 20 Hz to minimize

    “transmitted force of engine”.

  • 0.1

    1

    10

    0 1 2 3 4β =ω /ω 0

    τ=F

    t/F0

    ζ =0.05

    ζ =0.1

    ζ =0.2

    ζ =0.4

    ζ =0.8

    41

    Exciting force

    20Hz↓

    ↑ Natural

    frequancy

    14Hz

    ↑ Natural

    frequancy

    10Hz

    ↑ Natural

    frequancy

    20Hz

    F0sinωt mass

    m

    x

    spring k [N/m]

    damper c

    [Ns/m]

    Ft

    Force transmissibility is reduced with

    β increase and ζ decrease

    Fig.2.3 Force Transmissibility of engine

  • 42 Fig.2.4 Car shake

    Excitation Force

    ① tire uniformity (Heterogeneity) ② Eccentricity of Tire and wheel ③ Unbalance of tire (centrifugal force) ④ Displacement input from the road surface irregularity

    about 10 Hz oscillation

    Mounting (spring),

    engine (mass)

    about 10 Hz oscillation of

    the steering wheel and seats

  • 43

    Low damping rubber

    Liquid chamber1

    0.1

    1

    10

    0 1 2 3 4β =ω /ω 0

    τ=F

    t/F0

    ζ =0.05

    ζ =0.1

    ζ =0.2

    ζ =0.4

    ζ =0.8

    Liquid chamber2

    orifice

    diaphragm

    air

    Fig.2.5 solution by engine mounting

  • 44

    • Combustion piston pressure tapping

    • Bending the crankshaft

    • Cylinder block of skirt is

    deformed.

    • After the entire combustion

    damping vibration of engine

    Percussion

    instrument

    Fig.2.6 Mechanism of combustion engine sound generating

  • 45

    • Combustion characteristics of sound is damping vibration happen

    continuously.

    • Like the temple bell hit continuously.

    Fig.2.7 combustion engine noise

    (from consideration of crank shaft bearing vibration)

  • 46

    Fig.2.8 transmission path to a car of engine noise

    Mechanical nose

    Combustion noise Exhaust nose

    Air inlet noise

    Transmission

    by Vibration

    Transmission

    by Noise Fan noise

  • 47 Fig.2.9 mechanism generating Ingressive/Exhaust sound

    • wind

    instrument

    Blow-down

    immediately after

    the opening valve

    extrusion

    by Piston

    Crank angle

    Reflection Damping Reflection Radiation

    tube Resonance

    Engine speed rpm 騒音

    レベ

    ル d

    B

    Nois

    e le

    vel

    dB

    Exhau

    st r

    unoff

  • 48

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

    -0.5

    0

    0.5

    1Time Domain

    Time [s]

    leve

    l

    100

    101

    102

    -400

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0Freq Domain

    Frequency [Hz]

    Pow

    er S

    pect

    rum

    [dB

    ]

    Fig.2.10 FFT of sine curve

  • 49

    0 2 4 6 8 10 12 14 16 18 20-40

    -20

    0

    20

    40

    時間 t (s)変

    位加

    振 

    x0 (

    m)

    0 2 4 6 8 10 12 14 16 18 20-3

    -2

    -1

    0

    1

    2

    3

    時間 t (s)

    応答

    変位

    振幅

     x

    (m)

    10-1

    100

    101

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    50変位加振力のPower Spectum

    Frequency [Hz]

    Pow

    er S

    pect

    um [

    dB]

    Fig.2.11 FFT of sine curve with Blow-down

  • 50

    3. Analysis technology and Embodiments

    systems Method Software Application

    Finite Element Method NASTRANADENAABAQUS,MARC

    Vibration mode analysisacoustic vibration analysisnonlineer analysis

    Boundary element method SYSNOISE

    Sound geometric method RAYNOISE Vehicle interior sound field analysis

    structure mechanism

    Marti-Mody-Dynamics ADAMS,DADS

    Stability AnalysisRide confort analysisEngine excitation analysisDriveability analysis

    Integrated Systems

    Energy methodBond Graph

    Dymola power analysis

    controlModern control theoryAdaptive control theory

    MATLAB/Simlink Control Analysis

    Statistical energy analysis method

    mechanics

    AutoSAE SEAMSEADS

    High frequency vibration analysisHigh frequency vibration analysis

    acoustic

  • 51 Fig.3.1 Finite Element Model

    FIAT :IMAC2005-01-2392 より

    The Effect of Spot Weld Failure of Dynamic Vehicle

    Performance ;LMS International ;IMAC2005より

  • 52

    Fig.3.2 Sound field model

    Frequency Hz

    Simulation result

    simulation

    Experiment Elements

    Nodes

    Vehicle interior sound field model

    trunk Vehicle compartment

  • 53

    m1

    k1 c1

    X1

    m2

    k2 c2

    X2 2nd bending

    mode

    Example of low-frequency vibration of body (from consideration of physical Model)

    1stbending

    mode

    Analytical Model

    (physical Model)

    (2 nodes)

    (3 nodes)

    Fig.3.3 low frequency vibration of car body

  • 54

    Car_3D_step

    Fig.3.4 visual demonstration vibration of car body

  • 55

    全開加速 定常走行

    10m 10m

    7.5

    m

    マイクロホン位置

    地上1.2m

    50 km/h

    2nd or 3rd

    Gear

    図27 加速走行騒音の試験法(日本)

    ISO試験路面

    Full throttle acceleration Constant speed

    Microphone position

    Height 1.2m

    ISO read surface

    4. Vehicle and Noise (from the standpoint of pollution)

    Fig.4.1 Acceleration pass-by noise test (Japan regulation)

  • 56

    4.1 The main source of vehicle exterior noise

    •Most of the noise source is

    approaching saturation point as

    the result of inputting effective

    measures.

    •The engine has been

    significantly improved, but

    further reduction is needed.

    •Tire noise that haves tradeoffs

    with steering and stability, is

    needed more reduction.

    •Exhaust noise is often

    increased by the illegal

    modifications that should be

    checked severely for society.

    •To create a society of silence,

    further noise reduction

    technology is expected.

    図24 加速走行騒音への主要音源の寄与率 %

    エンジン

    タイヤ

    排気

    冷却ファン

    その他

    図28

    Engine

    Tire

    Exhaust

    Cooling Fan

    Others

    Fig.4.2contribution percentage rate of

    the major noise source

    (Acceleration pass-by noise test )