3. Conductors

30
23 3 Conductors Lauri J. Hiivala and Carl C. Landinger CONTENTS 3.1 Introduction .................................................................................................... 24 3.2 Material Considerations.................................................................................. 24 3.2.1 Direct Current Resistance................................................................... 25 3.2.2 Weight ................................................................................................. 25 3.2.3 Ampacity ............................................................................................ 25 3.2.4 Voltage Regulation.............................................................................. 25 3.2.5 Short Circuits ...................................................................................... 25 3.2.6 Other Important Factors ..................................................................... 25 3.3 Conductor Sizes .............................................................................................. 26 3.3.1 American Wire Gauge (AWG)............................................................ 26 3.3.1.1 Shortcuts for Estimations ..................................................... 26 3.4 Circular Mil Sizes ........................................................................................... 27 3.5 Metric Designations ........................................................................................ 36 3.6 Stranding......................................................................................................... 40 3.6.1 Concentric Stranding .......................................................................... 40 3.6.2 Compressed Stranding ........................................................................ 41 3.6.3 Compact Stranding ............................................................................. 42 3.6.4 Bunch Stranding ................................................................................. 42 3.6.5 Rope Stranding ................................................................................... 42 3.6.6 Sector Conductors ............................................................................... 43 3.6.7 Segmental Conductors ........................................................................ 44 3.6.8 Annular Conductors............................................................................ 45 3.6.9 Unilay Conductors .............................................................................. 46 3.7 Physical and Mechanical Properties ............................................................... 46 3.7.1 Conductor Properties .......................................................................... 46 3.7.1.1 Copper .................................................................................. 46 3.7.1.2 Aluminum ............................................................................ 46 3.7.1.3 Comparative Properties, Copper versus Aluminum ............ 47 3.7.2 Temper ................................................................................................ 47 3.7.2.1 Copper .................................................................................. 47 3.7.2.2 Aluminum ............................................................................ 47 3.8 Strand Blocking .............................................................................................. 48 3.9 Electrical Calculations .................................................................................... 48 3.9.1 Conductor DC Resistance ................................................................... 48 3.9.2 Conductor AC Resistance ................................................................... 49

description

Lauri J. Hiivala and Carl C. Landinger

Transcript of 3. Conductors

  • 23

    3 ConductorsLauri J. Hiivala and Carl C. Landinger

    CONTENTS

    3.1 Introduction....................................................................................................243.2 MaterialConsiderations..................................................................................24

    3.2.1 DirectCurrentResistance...................................................................253.2.2 Weight.................................................................................................253.2.3 Ampacity............................................................................................253.2.4 VoltageRegulation..............................................................................253.2.5 ShortCircuits......................................................................................253.2.6 OtherImportantFactors.....................................................................25

    3.3 ConductorSizes..............................................................................................263.3.1 AmericanWireGauge(AWG)............................................................26

    3.3.1.1 ShortcutsforEstimations.....................................................263.4 CircularMilSizes...........................................................................................273.5 MetricDesignations........................................................................................363.6 Stranding.........................................................................................................40

    3.6.1 ConcentricStranding..........................................................................403.6.2 CompressedStranding........................................................................ 413.6.3 CompactStranding............................................................................. 423.6.4 BunchStranding................................................................................. 423.6.5 RopeStranding................................................................................... 423.6.6 SectorConductors............................................................................... 433.6.7 SegmentalConductors........................................................................443.6.8 AnnularConductors............................................................................ 453.6.9 UnilayConductors..............................................................................46

    3.7 PhysicalandMechanicalProperties...............................................................463.7.1 ConductorProperties..........................................................................46

    3.7.1.1 Copper..................................................................................463.7.1.2 Aluminum............................................................................463.7.1.3 ComparativeProperties,CopperversusAluminum............ 47

    3.7.2 Temper................................................................................................ 473.7.2.1 Copper.................................................................................. 473.7.2.2 Aluminum............................................................................ 47

    3.8 StrandBlocking..............................................................................................483.9 ElectricalCalculations....................................................................................48

    3.9.1 ConductorDCResistance...................................................................483.9.2 ConductorACResistance................................................................... 49

  • 24 Electrical Power Cable Engineering

    3.1 INTRODUCTION

    Thefundamentalconcernofpowercableengineeringistotransmitelectricalcurrent(power)economicallyandefficiently.Thechoiceoftheconductormaterial,size,anddesignmusttakeintoconsiderationsuchitemsas:

    Ampacity(currentcarryingcapacity) Voltagestressattheconductor Voltageregulation Conductorlosses Bendingradiusandflexibility Overalleconomics Materialconsiderations Mechanicalproperties

    3.2 MATERIALCONSIDERATIONS

    Thereareseverallowresistivity(orhighconductivity)metalsthatmaybeusedasconductorsforpowercables.Examplesoftheseasrankedinorderofincreasedresis-tivityat20CareshowninTable3.1[1].

    Consideringtheseresistivityfiguresandthecostofeachofthesematerials,copperandaluminumbecomethelogicalchoices.Assuch,theyarethedominantmetalsusedinthepowercableindustrytoday.

    Whenchoosingbetweencopperandaluminumconductors,oneshouldcarefullycomparethepropertiesofthetwometals,aseachhasadvantagesthatmayoutweigh

    3.9.3 SkinEffect.......................................................................................... 493.9.4 ProximityEffect.................................................................................503.9.5 CablesinMagneticMetallicConduit.................................................503.9.6 ResistanceatHigherFrequencies.......................................................50

    References................................................................................................................ 51

    TABLE3.1ResistivityofMetalsat20CMetal Ohm-mm2/m108 Ohm-cmil/ft106

    Silver 1.629 9.80

    Copper,annealed 1.724 10.371

    Copper,harddrawn 1.777 10.69

    Copper,tinned 1.7411.814 10.4710.91

    Aluminum,soft,61.2%cond. 2.803 16.82

    Aluminum,1/2hardtofullhard 2.828 16.946

    Sodium 4.3 25.87

    Nickel 7.8 46.9

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 25Conductors

    theotherundercertainconditions.Thepropertiesmostimportanttothecabledesignerareshowninthefollowingsections.

    3.2.1 Directcurrentresistance

    Theconductivityofaluminumisabout61.2%to62.0%ofthatofcopper.Therefore,analuminumconductormusthaveacross-sectionalareaabout1.6timesthatofacopperconductor tohave theequivalentDCresistance.Thisdifference inarea isapproximatelyequaltotwoAmericanwiregauge(AWG)sizes.

    3.2.2 Weight

    Oneofthemostimportantadvantagesofaluminum,otherthaneconomics,isitslowdensity.Aunitlengthofbarealuminumwireweighsonly48%asmuchasthesamelength of copper wire having an equivalent DC resistance. However, some of thisweightadvantageislostwhentheconductorisinsulated,becausemoreinsulationvol-umeisrequiredovertheequivalentaluminumwiretocoverthegreatercircumference.

    3.2.3 ampacity

    Thecurrentcarryingcapacity(ampacity)ofaluminumversuscopperconductorscanbecomparedbyreferringtomanydocuments.SeeChapter14fordetailsandrefer-ences,butobviouslyalargeraluminumcross-sectionalareaisrequiredtocarrythesamecurrentasacopperconductorascanbeseenfromTable3.1.

    3.2.4 Voltageregulation

    In alternating current (AC) circuits having small conductors (up to #2/0 AWG),andinallDCcircuits,theeffectofreactanceisnegligible.Equivalentvoltagedropresultswithanaluminumconductorthathasabout1.6timesthecross-sectionalareaofacopperconductor.

    In AC circuits having larger conductors, however, skin and proximity effectsinfluencetheresistancevalue(ACtoDCratio,laterwrittenasAC/DCratio),andtheeffectofreactancebecomesimportant.Undertheseconditions,theconversionfactordropsslightly,reachingavalueofapproximately1.4.

    3.2.5 shortcircuits

    Considerationshouldalsobegiventopossibleshortcircuitconditions,sincecopperconductorshavehighercapabilitiesinshortcircuitoperation.However,whenmak-ingthiscomparison,thethermallimitsofthematerialsincontactwiththeconductor(e.g.,shields,insulation,coverings,jackets,etc.)mustbeconsidered.

    3.2.6 otherimportantFactors

    Additionalcaremustbetakenwhenmakingconnectionswithaluminumconduc-tors. Not only does the metal tend to creep, but it also oxidizes rapidly. When

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 26 Electrical Power Cable Engineering

    aluminum is exposed to air, a thin, corrosion-resistant, high dielectric strengthfilmquicklyforms.

    When copper and aluminum conductors are connected together, special tech-niquesarerequiredinordertomakeasatisfactoryconnection.SeethediscussioninChapter13.

    Aluminumisnotusedextensivelyingeneratingstation,substation,orportablecablesbecausethelowerbendinglifeofsmallstrandsofaluminumdoesnotalwaysmeetthemechanicalrequirementsofthosecables.Spaceisfrequentlyaconsider-ationatsuchlocationsalso.However,aluminumistheoverwhelmingchoiceforaer-ialconductorsbecauseofitshighconductivity-to-weightratioandforundergrounddistributionforeconomywherespaceisnotaconsideration.

    The 8000 series aluminum alloys have found good acceptance in large com-mercial,institutional,andsomeindustrialapplications.Thesealloysofferreducedcoldflowandimprovedcreepresistance.Thisoffersgreaterretentionoftorqueatscrewdownterminalscommonlyusedinindoorplant.IntheUS,theNationalElectricalCode(NEC)callsfortheuseofthesealloysifaluminumistobeusedinanumberofwiretypesrecognizedbytheNEC.

    Economicsofthecostofthetwometalsmust,ofcourse,beconsidered,butalwaysweighedafterthecostoftheoverlyingmaterialsisadded.

    3.3 CONDUCTORSIZES

    3.3.1 americanWiregauge(aWg)

    Justasinanyindustry,astandardunitmustbeestablishedformeasuringthecon-ductorsizes.IntheUSandCanada,electricalconductorsaresizedusingtheAWGsystem.Thissystemisbasedonthefollowingdefinitions:

    Thediameterofsize#0000AWG(usuallywritten#4/0AWGandsaidasfourought)is0.4600inchesforasolidconductor.

    Thediameterofsize#36AWGis0.0050inches. Thereare38intermediatesizesgovernedbyageometricprogression.

    Theratioofanydiametertothatofthenextsmallersizeis:

    0 46000 0050

    1 12293239 ..

    .=

    (3.1)

    3.3.1.1 ShortcutsforEstimationsThesquareoftheaboveratio(theratioofdiametersofsuccessivesizes)is1.2610.Thus, an increase of one AWG size yields a 12.3% increase in diameter and anincreaseof26.1%inarea.AnincreaseoftwoAWGsizesresultsinachangeof1.261(or26.1%)indiameterand59%increaseinarea.

    Thesixthpowerof1.122932 is2.0050orverynearly2.Therefore,changingsixAWGsizeswill approximatelydouble (orhalve) thediameter.Anotheruse-ful shortcut is that a #10 AWG wire has a diameter of approximately 0.1 inch,

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 27Conductors

    forcopperaresistanceof1ohmper1,000feetandaweightofabout10or31.4poundsper1,000feet.

    Another convenient rule is basedon the fact that the tenthpowerof1.2610 is10.164orapproximately10.Thus,foreveryincreaseordecreaseof10gaugenum-bers(startinganywhereinthetable),thecross-sectionalarea,resistance,andweightaredividedormultipliedbyabout10.

    Fromamanufacturingstandpoint,theAWGsizeshavetheconvenientpropertythatsuccessivesizesrepresentapproximatelyonereductionindiesizeinthewiredrawingoperation.

    TheAWGsizeswereoriginallyknownastheBrownandSharpegage(B&S).TheBirminghamwiregage(BWG)isusedforsteelarmorwires.InBritain,wiresizeswerespecifiedbythestandardwiregage(SWG),andwerealsoknownasthenewBritishstandard(NBS).

    3.4 CIRCULARMILSIZES

    Sizeslargerthan#4/0AWGarespecifiedintermsofthetotalcross-sectionalareaoftheconductorandareexpressedincircularmils.Thismethodusesanarbitraryareaofaconductorthatisachievedbysquaring the diameterofasolidconductor.Thisdropsthe/4multiplierrequiredfortheactualareaofaroundconductor.Acircularmilisaunitofareaequaltotheareaofacirclehavingadiameterof1mil(1mil=0.001inch).Suchacirclehasanareaof0.7854(or/4)squaremils.Thus,awire10milsindiameterhasacross-sectionalareaof100circularmils.Likewise,1squareinch=4/times1,000,000=1,273,000circularmils.Forconvenience,thisisusuallyexpressedinthousandsofcircularmilsandabbreviatedkcmil.Thus,anareaof1squareinch=1,273kcmil.

    A r= pi2

    (3.2)

    whereA=areaincircularmils;=3.1416;r=radiusin1/1,000ofaninch.TheabbreviationusedinthepastforthousandcircularmilswasMCM.The

    SIabbreviationsformillion,M,andforcoulombs,C,areeasilyconfusedwiththisolderterm.Thus,thepreferredabbreviationiskcmilforthousandcircularmils.

    The AWG/kcmil system is prevalent in North America (population over425million)andisalsousedtosomeextentinover65countriesintheworld.Themarketshareofcableproductssizedwiththissystemisestimatedatover30%($17.3billion)oftheworldmarketforpowerandcontrolwiresandcables.TheAWG/kcmilsystemisalsothereferencesizingsystemforallelectricalproductsandinstallationsinNorthAmerica.Assuchitrepresentsabasicelementoftheinfrastructure.Whenconsideredinconjunctionwithwiringdevices,connectors,andotherrelatedproducts,themarketaffectedbytheAWG/kcmilsystemissub-stantiallylarger[7].

    Tables3.2and3.3providenominalDCresistanceandnominaldiametervaluesforsolidandconcentric-lay-strandedcopperandaluminumconductors.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 28Electrical Po

    wer C

    able En

    gineerin

    g

    TABLE3.2ANominalDCResistanceinOhmsper1,000Feetat25CofSolidandConcentric-Lay-StrandedConductor

    ConductorSizeAWGorkcmil

    Solid Concentric-Lay-Stranded*

    Aluminum Copper Aluminum Copper

    Uncoated Coated ClassB,C,D

    Uncoated Coated

    ClassB,C,D ClassB ClassC ClassD

    87654

    1.050.8330.6610.5240.415

    0.6400.5080.4030.3190.253

    0.6590.5220.4140.3290.261

    1.070.8510.6750.5340.424

    0.6520.5190.4110.3250.258

    0.6780.5380.4270.3380.269

    0.6780.5380.4270.3390.269

    0.6800.5380.4270.3390.269

    3211/02/0

    0.3290.2610.2070.1640.130

    0.2010.1590.1260.1000.0794

    0.2070.1640.1300.1020.0813

    0.3340.2660.2110.1680.133

    0.2050.1620.1290.1020.0810

    0.2130.1690.1340.1060.0842

    0.2130.1690.1340.1060.0842

    0.2130.1690.1340.1060.0842

    3/04/0250300350

    0.1030.08190.06940.05780.0495

    0.06300.0500

    0.06450.0511

    0.1050.08360.07070.05900.0505

    0.06420.05100.04310.03600.0308

    0.06670.05240.04480.03740.0320

    0.06690.05300.04480.03740.0320

    0.06690.05300.04480.03740.0320

    400450500550600

    0.04330.03850.0347

    0.04420.03930.03540.03210.0295

    0.02690.02400.02160.01960.0180

    0.02770.02460.02220.02040.0187

    0.02800.02490.02240.02040.0187

    0.02800.02490.02240.02040.0187

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 29C

    on

    du

    ctors

    650700750800900

    0.02720.02530.02360.02210.0196

    0.01660.01540.01440.01350.0120

    0.01710.01590.01480.01390.0123

    0.01720.01600.01490.01400.0126

    0.01730.01600.01500.01400.0126

    1,0001,1001,2001,2501,300

    0.01770.01610.01470.01410.0136

    0.01080.009810.008990.008630.00830

    0.01110.01010.009250.008880.00854

    0.01110.01020.009340.008970.00861

    0.01120.01020.009340.008970.00862

    1,4001,5001,6001,7001,750

    0.01260.01180.01110.01040.0101

    0.007710.007190.006740.006340.00616

    0.007930.007400.006940.006530.00634

    0.007930.007400.007000.006590.00640

    0.008010.007470.007000.006590.00640

    1,8001,9002,0002,5003,000

    0.009820.009310.008850.007150.00596

    0.005990.005680.005390.004360.00363

    0.006160.005840.005550.004480.00374

    0.006160.005840.00555

    0.006220.005890.00560

    Source: ANSI/ICEAS-94-649,StandardforConcentricNeutralCablesRated5,00046,000Volts,2004.* Concentric-lay-strandedincludescompressedandcompactconductors.

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 30Electrical Po

    wer C

    able En

    gineerin

    g

    TABLE3.2B(METRIC)NominalDCResistanceinMilliohmsperMeterat25CofSolidandConcentric-Lay-StrandedConductor

    ConductorSize

    Solid Concentric-Lay-Stranded*

    Aluminum Copper Aluminum Copper

    AWGorkcmil mm2 Uncoated Coated ClassB,C,D

    Uncoated Coated

    ClassB,C,D ClassB ClassC ClassD

    87654

    8.3710.613.316.821.1

    3.442.732.171.721.36

    2.101.671.321.050.830

    2.161.711.361.080.856

    3.512.792.211.751.39

    2.141.701.351.070.846

    2.221.761.401.110.882

    2.221.761.401.110.882

    2.231.761.401.110.882

    3211/02/0

    26.733.642.453.567.4

    1.080.8560.6790.5380.426

    0.6590.5220.4130.3280.260

    0.6790.5380.4260.3350.267

    1.100.8720.6920.5510.436

    0.6720.5310.4230.3350.266

    0.6990.5540.4400.3480.276

    0.6990.5540.4400.3480.276

    0.6990.5540.4400.3480.276

    3/04/0250300350

    85.0107127152177

    0.3380.2690.2280.1900.162

    0.2070.164

    0.2120.168

    0.3440.2740.2320.1940.166

    0.2110.1670.1410.1180.101

    0.2190.1720.1470.1230.105

    0.2190.1740.1470.1230.105

    0.2190.1740.1470.1230.105

    400450500550600

    203228253279304

    0.1420.1260.114

    0.1450.1290.1160.1050.0968

    0.08820.07870.07080.06430.0590

    0.09090.08070.07280.06690.0613

    0.09180.08170.07350.06690.0613

    0.09180.08170.07350.06690.0613

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 31C

    on

    du

    ctors

    650700750800900

    329355380405456

    0.08920.08300.07740.07250.0643

    0.05440.05050.04720.04430.0394

    0.05610.05220.04850.04560.0403

    0.05640.05250.04890.04590.0413

    0.05670.05250.04920.04590.0413

    1,0001,1001,2001,2501,300

    507557608633659

    0.05810.05280.04820.04620.0446

    0.03540.03220.02950.02830.0272

    0.03640.03310.03030.02910.0280

    0.03640.03350.03060.02940.0282

    0.03670.03350.03060.02940.0283

    1,4001,5001,6001,7001,750

    709760811861887

    0.04130.03870.03640.03410.0331

    0.02530.02360.02210.02080.0202

    0.02600.02430.02280.02140.0208

    0.02600.02430.02300.02160.0210

    0.02630.02450.02300.02160.0210

    1,8001,9002,0002,5003,000

    9129631,0131,2661,520

    0.03220.03050.02900.02350.0195

    0.01960.01860.01770.01430.0119

    0.02020.01920.01820.01470.0123

    0.02020.01920.0182

    0.02040.01930.0184

    Source: ANSI/ICEAS-94-649,StandardforConcentricNeutralCablesRated5,00046,000Volts,2004.* Concentric-lay-strandedincludescompressedandcompactconductors.

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 32Electrical Po

    wer C

    able En

    gineerin

    g

    TABLE3.3ANominalDiametersforCopperandAluminumConductors

    ConductorSize NominalDiameters(Inches)

    AWG kcmil Solid

    Concentric-Lay-StrandedCombination

    UnilayUnilay

    CompressedCompact* Compressed ClassB** ClassC ClassD

    87654

    16.5120.8226.2433.0941.74

    0.12850.14430.16200.18190.2043

    0.134

    0.169

    0.213

    0.1410.1580.1780.2000.225

    0.1460.1640.1840.2060.232

    0.1480.1660.1860.2080.234

    0.1480.1660.1860.2080.235

    0.1430.1600.1790.2020.226

    3211/02/0

    52.6266.3683.69105.6133.1

    0.22940.25760.28930.32490.3648

    0.2380.2680.2990.3360.376

    0.2520.2830.3220.3620.406

    0.2600.2920.3320.3730.419

    0.2630.2960.3330.3740.420

    0.2640.2970.3330.3740.420

    0.2540.2860.3210.3600.404

    0.3130.3520.395

    3/04/0

    167.8211.6250300350

    0.40960.46000.50000.54770.5916

    0.4230.4750.5200.5700.616

    0.4560.5120.5580.6110.661

    0.4700.5280.5750.6300.681

    0.4710.5290.5760.6310.681

    0.4720.5300.5760.6310.682

    0.4540.5100.5540.6070.656

    0.4430.4980.5420.5940.641

    400450500550600

    0.63250.67080.7071

    0.6590.7000.7360.7750.813

    0.7060.7490.7890.8290.866

    0.7280.7720.8130.8550.893

    0.7290.7730.8140.8550.893

    0.7290.7730.8150.8550.893

    0.7010.7440.784

    0.6850.7270.7660.8040.840

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 33C

    on

    du

    ctors

    650700750800900

    0.8450.8770.9080.9380.999

    0.9010.9350.9681.0001.061

    0.9290.9640.9981.0311.094

    0.9300.9650.9991.0321.093

    0.9300.9650.9981.0321.095

    0.8740.9070.9390.9691.028

    1,0001,1001,2001,2501,300

    1.060

    1.1171.1731.2251.2511.276

    1.1521.2091.2631.2891.315

    1.1531.2101.2641.2901.316

    1.1531.2111.2641.2901.316

    1.0841.1371.1871.2121.236

    1,4001,5001,6001,7001,750

    1.3231.3701.4151.4591.480

    1.3641.4121.4591.5041.526

    1.3651.4131.4601.5041.527

    1.3651.4131.4601.5041.527

    1.2821.3271.3711.4131.434

    1,8001,9002,0002,5003,000

    1.5021.5421.5831.7691.938

    1.5481.5901.6321.8241.998

    1.5481.5901.6321.8241.999

    1.5491.5911.6321.8241.999

    1.4541.4941.533

    Source: ANSI/ICEAS-94-649,StandardforConcentricNeutralCablesRated5,00046,000Volts,2004.* Diametersshownareforcompactround,compactmodifiedconcentric,andcompactsingleinputwire.** Diametersshownareforconcentricroundandmodifiedconcentric.

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 34Electrical Po

    wer C

    able En

    gineerin

    g

    TABLE3.3B(METRIC)NominalDiametersforCopperandAluminumConductors

    ConductorSize NominalDiameters(mm)

    AWGorkcmil mm2 Solid

    Concentric-Lay-StrandedCombination

    UnilayUnilay

    CompressedCompact* Compressed ClassB** ClassC ClassD

    87654

    8.3710.613.316.821.1

    3.263.674.114.625.19

    3.40

    4.29

    5.41

    3.584.014.525.085.72

    3.714.174.675.235.89

    3.764.224.725.285.94

    3.764.224.725.315.97

    3.634.064.555.135.74

    3211/02/0

    26.733.642.453.567.4

    5.836.547.358.259.27

    6.056.817.598.539.55

    6.407.198.189.1910.3

    6.607.428.439.4710.6

    6.687.528.469.5010.7

    6.717.548.469.5010.7

    6.457.268.159.1410.3

    7.958.9410.0

    3/04/0250300350

    85.0107127152177

    10.411.712.713.915.0

    10.712.113.214.515.6

    11.613.014.215.516.8

    11.913.414.616.017.3

    12.013.414.616.017.3

    12.013.514.616.017.3

    11.312.613.815.116.3

    400450500550600

    203228253279304

    16.117.018.0

    16.717.818.719.720.7

    17.919.020.021.122.0

    18.519.620.721.722.7

    18.519.620.721.722.7

    18.519.620.721.722.7

    17.418.519.520.421.3

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 35C

    on

    du

    ctors

    650700750800900

    329355380405456

    21.522.323.123.825.4

    22.923.724.625.426.9

    23.624.525.326.227.8

    23.624.525.426.227.8

    23.624.525.326.227.8

    22.223.023.924.626.1

    1,0001,1001,2001,2501,300

    507557608633659

    26.9

    28.429.831.131.832.4

    29.330.732.132.733.4

    29.330.732.132.833.4

    29.330.832.132.833.4

    27.528.930.130.831.4

    1,4001,5001,6001,7001,750

    709760811861887

    33.634.835.937.137.6

    34.635.937.138.238.8

    34.735.937.138.238.8

    34.735.937.138.238.8

    32.633.734.835.936.4

    1,8001,9002,0002,5003,000

    912963

    1,0131,2661,520

    38.239.240.244.949.2

    39.340.441.546.350.7

    39.340.441.546.350.8

    39.340.441.546.350.8

    36.937.938.9

    Source: ANSI/ICEAS-94-649,StandardforConcentricNeutralCablesRated5,00046,000Volts,2004.* Diametersshownareforcompactround,compactmodifiedconcentric,andcompactsingleinputwire.**Diametersshownareforconcentricroundandmodifiedconcentric.

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 36 Electrical Power Cable Engineering

    3.5 METRICDESIGNATIONS

    Except as noted above, most of the world uses the SI unit of square millimeters(mm2)todesignateconductorsize.TheInternationalElectrotechnicalCommissionhasadoptedIEC60228[8]todefinethesesizes.Animportantconsiderationisthatthesearenotprecisesizes.Forinstance,their50mm2conductorisactually47mm2.Toaccommodateeveryone,theIECstandardallowsasmuchasa20%variationinconductorareafromthesizedesignated.

    InCanada,metricdesignationsareusedforallcabledimensionsexceptfortheconductorsize.ThevariationsinthetwosystemsaretoogreattouseanyoftheSIsizesasadirectsubstituteforstandardsizes.

    ConductorsdescribedinIEC60228arespecifiedinmetricsizes.NorthAmericaandcertainotherregionsatpresentuseconductorsizesandcharacteristicsaccordingtotheAWGsystem,andthousandsofcircularmilsforlargersizes.TheuseofthesesizesiscurrentlyprescribedacrossNorthAmericaandelsewhereforinstallationsbysubnationalregulations.IECTC20cableproductstandardsdonotprescribecableswithAWG/kcmilconductors.

    IECTC20recognizestheneedtoproduceasingle,harmonizedstandardforcon-ductorsthatistrulyinternational.Harmonization,inthisrespect,isunderstoodasthemergingofAWG-basedandmetric-basedsizestoproduceonerationalizedrangeofconductorsizesforpowercables.TC20alsorecognizesthatthedevelopmentofsuchaharmonizedstandardisalong-termproject.

    Athree-stageapproach,whichwillculminateinasingleInternationalStandardforconductors,hasbeenagreed.

    StageoneoftheapproachistoproduceatechnicalreportthatdefinestherangeofAWG/kcmilsizesthataretobeconsideredintheharmonizationprocess.

    Stagetwooftheprocessistodevelopthistechnicalreportbystartingtheratio-nalizationprocess.ThetestmethodsandrequirementsinthistechnicalreportaretobealignedwiththoseinIEC60228.

    The thirdandfinal stagewillbe toproduceaharmonized standard,basedonIEC60228andtheworkofthefirsttwostages,withasingle,rationalizedrangeofconductorsizes.Thepresentexpectationisthatthethirdstagewillnotbeachievedbefore2020.

    IEC Technical Report 62602 provides resistance and dimensional details forAWGandthousandsofcircularmilssizesaswellasapproximateequivalentmetricnominalcross-sectionalareas[9].

    Table3.4providesmaximumresistancevaluesforsolidClass1circular,annealedcopperandcircularorshapedaluminumandaluminumalloyconductorsforuseinsingle-coreandmulticorecables.Suchconductorsareavailable innominalcross-sectionalareasupto1,200mm2.

    Likewise,Table3.5providesmaximumresistancevaluesforstrandedClass2circular,circularcompactedandshapedannealedcopperandaluminumandalumi-numalloyconductorsforuseinsingle-coreandmulticorecables.

    It should be noted that maximum or minimum diameter requirements are notspecifiedinIEC60228.Instead,itgivesguidanceondimensionallimitsforthefol-lowingtypesofconductors,whichareincludedinthisstandard:

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 37Conductors

    TABLE3.4Class1SolidConductorsforSingle-CoreandMulticoreCables

    1 2 3 4

    NominalCross-SectionalAreamm2

    MaximumResistanceofConductorat20C

    Circular,AnnealedCopperConductors

    Plain/kmMetal-Coated

    /km

    AluminumandAluminumAlloyConductors,Circular

    orShapedc/km0.5 36.0 36.7

    0.75 24.5 24.8

    1.0 18.1 18.2

    1.5 12.1 12.2

    2.5 7.41 7.56

    4 4.61 4.70

    6 3.08 3.11

    10 1.83 1.84 3.08a

    16 1.15 1.16 1.91a

    25 0.727b 1.20a

    35 0.524b 0.868a

    50 0.387b 0.641

    70 0.268b 0.443

    95 0.193b 0.320d

    120 0.153b 0.253d

    150 0.124b 0.206d

    185 0.101b 0.164d

    240 0.0775b 0.125d

    300 0.0620b 0.100d

    400 0.0465b 0.0778

    500 0.0605

    630 0.0469

    800 0.0367

    1,000 0.0291

    1,200 0.0247

    Source: IEC60228(Edition3.02004-11),Conductorsofinsulatedcables,Copyright2004IECGeneva,Switzerland.www.iec.ch

    a Aluminumconductors10mm2to35mm2circularonly;see5.1.1c.b Seenoteto5.1.1b.c Seenoteto5.1.2.d For single-core cables, four sectoral shaped conductors may be assembled into a single circular

    shapedconductor.Themaximumresistanceoftheassembledconductorshallbe25%ofthatoftheindividualcomponentconductors.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 38Electrical Po

    wer C

    able En

    gineerin

    g

    TABLE3.5Class2StrandedConductorsforSingle-CoreandMulticoreCables

    1 2 3 4 5 6 7 8 9 10

    NominalCross-SectionalAreamm2

    MinimumNumberofWiresintheConductor MaximumResistanceofConductorat20C

    CircularCircular

    Compacted Shaped AnnealedCopperConductorAluminumor

    AluminumAlloyConductorc/kmCu Al Cu Al Cu Al

    PlainWires/km

    Metal-CoatedWires/km

    0.5 7 36.0 36.7

    0.75 7 24.5 24.8

    1.0 7 18.1 18.2

    1.5 7 6 12.1 12.2

    2.5 7 6 7.41 7.56

    4 7 6 4.61 4.70

    6 7 6 3.08 3.11

    10 7 7 6 6 1.83 1.84 3.08

    16 7 7 6 6 1.15 1.16 1.91

    25 7 7 6 6 6 6 0.727 0.734 1.20

    35 7 7 6 6 6 6 0.524 0.529 0.868

    50 19 19 6 6 6 6 0.387 0.391 0.641

    70 19 19 12 12 12 12 0.268 0.270 0.443

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 39C

    on

    du

    ctors

    95 19 19 15 15 15 15 0.193 0.195 0.320

    120 37 37 18 15 18 15 0.153 0.154 0.253

    150 37 37 18 15 18 15 0.124 0.126 0.206

    185 37 37 30 30 30 30 0.0991 0.100 0.164

    240 37 37 34 30 34 30 0.0754 0.0762 0.125

    300 61 61 34 30 34 30 0.0601 0.0607 0.100

    400 61 61 53 53 53 53 0.0470 0.0475 0.0778

    500 61 61 53 53 53 53 0.0366 0.0369 0.0605

    630 91 91 53 53 53 53 0.0283 0.0286 0.0469

    800 91 91 53 53 0.0221 0.0224 0.0367

    1,000 91 91 53 53 0.0176 0.0177 0.0291

    1,200 bbbbbb

    0.0151 0.0151 0.0247

    1,400 0.0129 0.0129 0.0212

    1,600 0.0113 0.0113 0.0186

    1,800 0.0101 0.0101 0.0165

    2,000 0.0090 0.0090 0.0149

    2,500 0.0072 0.0072 0.0127

    Source: IEC60228(Edition3.02004-11),Conductorsofinsulatedcables,Copyright2004IECGeneva,Switzerland.www.iec.cha Thesesizesarenonpreferred.Othernonpreferredsizesarerecognizedforsomespecializedapplicationsbutarenotwithinthescopeofthisstandard.b Theminimumnumberofwiresforthesesizesisnotspecified.Thesesizesmaybeconstructedfrom4,5,or6equalsegments(Milliken).c Forstrandedaluminumalloyconductorshavingthesamenominalcross-sectionalareaasanaluminumconductor,theresistancevalueshouldbeagreed

    betweenthemanufacturerandthepurchaser.

    D

    o

    w

    n

    l

    o

    a

    d

    e

    d

    b

    y

    [

    U

    n

    i

    v

    e

    r

    s

    i

    t

    y

    o

    f

    W

    a

    t

    e

    r

    l

    o

    o

    ]

    a

    t

    1

    6

    :

    5

    3

    2

    3

    J

    a

    n

    u

    a

    r

    y

    2

    0

    1

    5

  • 40 Electrical Power Cable Engineering

    1.circular solid conductors (Class 1) of copper, aluminum, and aluminumalloy;

    2.circularandcompactedcircularstrandedconductors (Class2)ofcopper,aluminum,andaluminumalloy.

    Thisisintendedasaguidetothemanufacturersofcablesandcableconnectorstoassistinensuringthattheconductorsandconnectorsaredimensionallycompatible.

    3.6 STRANDING

    Largersizesofsolidconductorsbecome toorigid to install, form,and terminate.Strandingbecomesthesolutionto thesedifficulties.Thepointatwhichstrandingshouldbeusedisdependentonthetypeofmetalaswellasthetemperofthatmetal.Copperconductorsarefrequentlystrandedat#6AWGandgreater.Aluminum,inthehalf-hardtemper,canbereadilyusedasasolidconductoruptoa#2/0AWGsize.

    3.6.1 concentricstranDing

    Thisisthetypicalchoiceforpowercableconductors.Thisconsistsofacentralwireorcoresurroundedbyoneormorelayersofhelicallyappliedwires.Eachadditionallayerhassixmorewiresthantheprecedinglayer.Exceptinunilay-strandedcon-ductors,eachlayerisappliedinadirectionoppositetothatofthelayerunderneath.Inthecaseofpowercableconductors,thecoreisasinglewireandallofthestrandshavethesamediameter.AsshowninFigure3.1,thefirstlayeroverthecorecontains6wires;thesecond,12;thethird,18;etc.Thedistancethatittakesforonestrandoftheconductortomakeonecompleterevolutionofthelayeriscalledthelengthof

    Number of wireseach layer 54 48

    4236

    3024

    1812 19

    3761

    91127

    169217

    271 Total numberof wires

    3

    5791113151719

    Number of wiresacross diameter

    16 7

    FIGURE3.1 Concentricstandingrelationships.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 41Conductors

    lay.TherequirementforthelengthoflayissetforthinASTMstandards[6]tobeneitherlessthan8normorethan16timestheoveralldiameter(OD)ofthatlayer.

    In power cables, the standard stranding is ClassB. Standards require that theoutermostlayerbeofalefthandlay.Thismeansthatasyoulookalongtheaxisoftheconductor,theoutermostlayerofstrandsrolltowardtheleftastheyrecedefromtheobserver.Moreflexibilityisachievedbyincreasingthenumberofwiresintheconductor.ClassChasonemorelayerthanClassB;ClassDhasonemorelayerthanC.TheclassdesignationgoesuptoM(normallyusedforweldingcables,etc.).ThesearecoveredbyASTMstandards.

    ClassCandDconductorshaveapproximatelythesameweightasaClassBandanODwithin3milsofClassB.ExamplesofClassB(standard),ClassC(flexible),andClassD(extraflexible)areshowninTable3.6withthenumberofstrandsanddiameterofeachstrand.

    Thefollowingformulamaybeusedtocalculatethenumberofwiresinaconcen-tricstrandedconductor:

    n N N= + +( )1 3 1 (3.3)

    wheren=totalnumberofwires instrandedconductorandN=numberof layersaroundthecenterwire.

    3.6.2 compresseDstranDing

    Thisisthetermthatisusedtodescribeaslightdeformationofthelayerstoallowthelayerbeingappliedtoclosetightly.Thereisnoreductioninconductorarea.Thediameterofthefinishedconductorcanbereducednomorethan3%oftheequivalent

    TABLE3.6ExamplesofClassB,C,andDStranding

    Size ClassB ClassC ClassD

    #2AWG 70.0974 190.0591 370.0424#4/0AWG 190.1055 370.0756 610.0589500kcmil 370.1162 610.0905 910.0741750kcmil 610.1109 910.0908 1270.0768

    TABLE3.7GapsinOuterLayerofaStrandedConductor

    TotalNumberofStrands AngleofGapat16OD19 8.30

    37 100

    61 100

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 42 Electrical Power Cable Engineering

    concentricstrand.Atypicalreductionisabout2.5%.ExamplesofgapsintheouterlayerforconcentricstrandedconductorsareshowninTable3.7.

    Shorteningthelengthoflayontheouterlayercouldsolvetheproblembutwouldresultinhigherresistanceandwouldrequiremoreconductormaterial.

    Compressed stranding is often the preferred construction, because concentricstranding,withitsdesignatedlaylength,createsaslightgapbetweentheouterstrandsofsuchaconductor.Lowerviscositymaterialsthatareextrudedoversuchaconductortendtofallintoanygapthatforms.Thisresultsinsurfaceirregularitiesthatcreateincreasedvoltagestressesandmakeitmoredifficulttostripoffthatlayer.

    3.6.3 compactstranDing

    Thisissimilartocompressedstrandingexceptthatadditionalformingisgiventotheconductorsothatthereductionindiameteristypically9%lessthantheconcen-tricstrandedconductor.Thisresultsinadiameternearingthatofasolidconductor.Someairspacesthatcanserveaschannelsformoisturemigrationarestillpresent.Themainadvantageofcompactconductorsisthereducedconductordiameter.

    3.6.4 BunchstranDing

    Thistermisappliedtoacollectionofstrandstwistedtogetherinthesamedirectionwithoutregardtothegeometricarrangement.Thisconstructionisusedwhenextremeflexibility is required for smallAWGsizes, suchasportable cables.Examplesofbunch-strandedconductorsarecordsforvacuumcleaners,extensioncordsforlawnmowers,etc.ExamplesofbunchstrandingareshowninTable3.8.

    NotethatinClassKandMconductors,theindividualwirediametersareconstantandthecross-sectionalareaisdevelopedbyaddingasufficientnumberofwirestoprovidethetotalconductorarearequired.

    3.6.5 ropestranDing

    Thistermisappliedtoaconcentric-strandedconductor,eachofwhosecomponentstrandsisstranded.Thisisacombinationoftheconcentricconductorandabunch-strandedconductor.Thefinishedconductor ismadeupofanumberofgroupsof

    TABLE3.8ExamplesofClassKandMStranding

    ConductorSize ClassK ClassM

    #16AWG 260.0100 650.0063#14AWG 410.0100 1040.0063#12AWG 650.0100 1680.0063

    NoteinClassKandMthattheindividualwirediametersarecon-stant and the area is developed by adding a sufficient number ofwirestoprovidethetotalconductorarearequired.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 43Conductors

    bunch- or concentric-stranded conductors assembled concentrically together. Theindividualgroupsaremadeupofanumberofwiresratherthanasingle,individualstrand.Arope-strandedconductorisdescribedbygivingthenumberofgroupslaidtogethertoformtheropeandthenumberofwiresineachgroup.

    ClassesGandHaregenerallyusedonportablecablesforminingapplications.Classes I,L, andMutilizebunch-strandedmembersassembled intoaconcentricarrangement.Theindividualwiresizeisthesamewithmorewiresaddedasneces-sarytoprovidethearea.ClassIuses#24AWG(0.020inch)individualwires,ClassLuses#30AWG(0.010inch)individualwires,andClassMuses#34AWG(0.0063inch)individualwires.ClassIstrandingisgenerallyusedforrailroadapplicationsandClassesLandMareused forextremeportability suchasweldingcableandportablecords.

    3.6.6 sectorconDuctors

    Thesehaveacrosssectionapproximatingtheshapeofasectorofacircle.Atypicalthree-conductorcablehasthree120segmentsthatcombinetoformthebasiccircleofthefinishedcable.SuchcableshaveasmallerODthanthecorrespondingcablewithconcentricroundconductors,andexhibitlowerACresistanceduetoareductionoftheproximityeffect.

    Forpaper-insulatedcables,thesectorconductorwasalmostalwaysstrandedandthencompactedinordertoachievethehighestpossibleratioofconductorareatocablearea.Thepreciseshapeanddimensionsvariedsomewhatbetweenthemanufacturers.

    Figure3.2andTable3.9showthenominaldimensionsoftypicalcompactsectorconductors.

    Forthecalculationofcablecapacitance,forinstance,anequivalentroundconductorisrequired.Overthe2/0AWGto750kcmilsizerange,thefollowingformulaholds:

    D A=1 337. (3.4)

    whereD=equivalentrounddiameter inmilsandA=areaofsectorconductor incircularmils.

    D

    E

    B

    H C VC 120

    FIGURE3.2 Outlineoftypicalcompactsector.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 44 Electrical Power Cable Engineering

    Sector conductors that are solid rather than stranded have been used forlow-voltagecablesonalimitedbasis.Thereisinterestinutilizingthistypeofconductorformedium-voltagecables,buttheyarenotavailableonacommercialbasisatthistime.

    3.6.7 segmentalconDuctors

    Theseareround,strandedconductorscomposedofthreeormoresegmentsthatareelectrically separated from each other by a thin layer of insulation around everyothersegment.Eachsegmentcarrieslesscurrentthanthetotalconductor,andthecurrentistransposedbetweeninnerandouterpositionsinthecompletedconductor.ThisconstructionhastheadvantageofloweringtheskineffectratioandhencetheACresistancebyhavinglessskineffectthanaconventionallystrandedconductor.

    TABLE3.9NominalDimensionsof3/cCompactSectorConductor

    Cond.AWG/kcmil

    V-GageInch

    V-Gage*Inch

    BInch

    CInch

    DInch

    EInch

    1/0 0.288 0.462 0.080 0.080 0.504

    2/0 0.323 0.520 0.085 0.085 0.540

    3/0 0.364 0.592 0.100 0.100 0.584

    4/0 0.417 0.660 0.111 0.090 0.595

    4/0 0.410 0.660 0.117 0.090 0.770

    250 0.455 0.720 0.118 0.220 0.635

    250 0.447 0.720 0.125 0.220 0.812

    300 0.497 0.784 0.130 0.179 0.678

    300 0.490 0.784 0.138 0.179 0.852

    350 0.539 0.834 0.151 0.259 0.718

    350 0.532 0.834 0.151 0.259 0.890

    400 0.572 0.902 0.147 0.244 0.754

    400 0.566 0.902 0.158 0.244 0.928

    500 0.642 1.018 0.155 0.207 0.820

    500 0.635 1.018 0.167 0.207 1.000

    600 0.700 1.120 0.165 0.210 0.882

    600 0.690 1.120 0.178 0.210 1.050

    750 0.780 1.280 0.163 0.284 0.970

    750 0.767 1.280 0.185 0.284 1.140

    800 0.806 1.324 0.164 0.224 0.890

    800 0.795 1.324 0.176 0.224 1.083

    900 0.854 1.405 0.170 0.236 1.040

    900 0.842 1.405 0.180 0.236 1.110

    1,000 0.900 1.500 0.137 0.300 1.008

    1,000 0.899 1.500 0.192 0.300 1.266

    * Denotesthecolumnthatappliesforinsulationthicknessover200mils.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 45Conductors

    Thistypeofconductorshouldbeconsideredforlargesizessuchas1,000kcmilandabovethataretocarrylargeamountsofcurrent.

    Thediametersoffour-segmentconductorsareapproximatelythesameasthatofClassBconcentric-strandedconductors(Table3.10).

    3.6.8 annularconDuctors

    Theseareround,strandedconductorswhosestrandsarelaidaroundacoreofrope,fibrousmaterial,helicalmetaltube,oratwistedI-beam.Thisconstructionhastheadvantage of lowering the total AC resistance for a given cross-sectional area ofconductorbyeliminatingthegreaterskineffectatthecenterofthecompletedcon-ductor.Wherespaceisavailable,annularconductorsmaybeeconomicaltousefor

    TABLE3.10NominalDiametersforSegmentalCopperandAluminumConductors

    ConductorSizeSegmentalConductorDiameter*

    (FourSegments)

    kcmil mm2 Inches mm

    1,0001,1001,2001,2501,300

    507557608633659

    1.1401.1521.1951.2091.2351.2631.2601.2891.2851.315

    29.029.330.430.731.432.132.032.732.633.4

    1,4001,5001,6001,7001,750

    709760811861887

    1.3251.3641.3751.4121.4201.4591.4601.5041.4801.526

    33.734.634.935.936.137.137.138.237.638.8

    1,8001,9002,0002,2502,500

    912963

    1,0131,1401,266

    1.5001.5481.5301.5901.5701.6321.6651.7301.7401.824

    38.139.338.940.439.941.542.343.944.246.3

    2,7503,0003,2503,5003,7504,000

    1,3931,5201,6471,7731,9002,027

    1.8301.9131.9101.9981.9852.0802.0852.1592.1502.2342.2252.309

    46.548.648.550.750.452.853.054.854.656.756.558.6

    4,2504,5004,7505,000

    2,1542,2802,4072,534

    2.2452.3782.3152.4482.3752.5162.4352.581

    57.060.458.862.260.363.961.865.6

    Source: ANSI/ICEAS-108-720,StandardforExtrudedInsulationPowerCablesRatedAbove46Through345kV,2004.

    * Diameteroverbindertape.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 46 Electrical Power Cable Engineering

    1,000kcmilcablesandaboveat60hertzandfor1,500kcmilcablesandaboveforlowerfrequenciessuchas25hertz.

    3.6.9 unilayconDuctors

    Unilayhas,asthenameimplies,allofitsstrandsappliedinthesamedirectionoflay.Adesignfrequentlyusedforlow-voltagepowercablesisthecombinationunilaywheretheouterlayerofstrandsarepartiallycomprisedofstrandshavingasmallerdiameterthantheotherstrands.Thismakesitpossibletoattainthesamediameterasacompactstrandedconductor.Themostcommonunilayconductorisacompact,8,000seriesaluminumalloy.

    3.7 PHYSICALANDMECHANICALPROPERTIES

    3.7.1 conDuctorproperties

    Althoughhigh conductivity is oneof the important featuresof a good conductormaterial,otherfactorsmustbetakenintoaccount.Silverisaninterestingpossibilityforacableconductor.Itshighcostiscertainlyoneofthereasonstolookforothercandidates.Silverhasanotherdisadvantage,which is its lackofphysicalstrengththatisnecessaryforpullingthecablesintoconduits.

    3.7.1.1 CopperImpuritieshaveaverydeleteriouseffectontheconductivityofcopper.Thespeci-fiedpurityofcopperforconductorsis100%.Smallamountsofimpurities,suchasphosphorousorarsenic,canreducetheconductivitytoaslowas80%.

    3.7.1.2 AluminumElectrical conductor (EC) grade aluminum is also low in impurities, 99.5%purity or better. ASTM B 233 specifies the permissible impurity levels foraluminum[6].

    TABLE3.11ComparativeProperties,CopperversusAluminum

    Property UnitCopper,

    AnnealedAlum,Hard

    Drawn

    Densityat20C Pounds/in3Grams/cm3

    0.321178.890

    0.09752.705

    LinearTemp.Coef.ofExpansion

    perFperC

    9.4106

    17.010612.8106

    23.0106

    MeltingPoint F 1981 12051215MeltingPoint C 1083 652657

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 47Conductors

    3.7.1.3 ComparativeProperties,CopperversusAluminumTable3.11comparesthepropertiesofannealedcopperandhard-drawnaluminum,whicharetypicallyusedforpowercableconductors.

    3.7.2 temper

    Drawing of the copper and aluminum rod into wire results in work hardeningofboth.Thisresults inaslightly lowerconductivityaswellasahigher temper.Stranding and compacting also increase the temperof the conductor. If amoreflexible conductor is required, annealing the metal may be desirable. This canbedoneeitherwhilethestrandisbeingdrawnorthefinishedconductormaybeannealedbyplacingareelofthefinishedconductorinanovenusuallyhavinganitrogenatmosphereandatanelevatedtemperatureforaspecifiedperiodoftime.

    3.7.2.1 CopperASTMStandardsB1,B2,andB3coverthreetempersforcopperconductors:hard-drawn,medium-hard-drawn,andsoftorannealed,respectively.Soft-drawnisusu-allyspecifiedforinsulatedconductorsbecauseofitsflexibilityandeaseofhandlinginthefield.Medium-hard-drawnandhard-drawnareusuallyspecifiedforoverheadconductors.

    3.7.2.2 AluminumASTMStandardsB231andB400coverconcentric-layandcompact-roundstrandedaluminumconductors,respectively.ASTMhasfivedesignationsforaluminumtempersasshowninTable3.12.Notethatsomeofthevaluesoverlap.Half-hardaluminumisusuallyspecifiedforsolidandfor8,000seriesalloyconductorsbecauseoftheneedforgreaterflexibility.Three-quarterandfull-hardareusuallyspecifiedforstrandedcables.

    Itisimportanttoconsidertwofactorsbeforedecidingwhichtempershouldbespecified:

    The increased cost of the energy and equipment required to anneal theconductor.

    Evenwithamoreflexibleconductor,theoverallstiffnessoftheinsulatedcablemayonlybemarginallyimproved.

    TABLE3.12AluminumTemper

    1350AluminumTempers PSI103

    FullSoft(H0) 8.514.0

    1/4Hard(H12or22) 12.017.0

    1/2Hard(H14or24) 15.020.0

    3/4Hard(H16or26) 17.022.0

    FullHard(H19) 22.529.0

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 48 Electrical Power Cable Engineering

    Overheadconductorsandcablesthatwillbepulledintolonglengthsfrequentlyutilize higher tempers in order to increase the tensile strength of the conductor.Examplesofcablesthatmightrequirehightensilestrengthconductorsareboreholecables,mineshaftcables,orextremelylongpullsoflargeconductors.

    3.8 STRANDBLOCKING

    Moisture in an insulated conductor has been shown to cause several problems.Aluminum,inthepresenceofwaterandintheabsenceofoxygen,willhydrolyze.Thus,ifwaterentersaninsulatedcablehavinganaluminumconductor,thealumi-numandwatercombinechemicallytoformaluminumhydroxideandhydrogengas.Thisconditionisaggravatedbyadeficiencyinoxygenintheinsulatedconductor.Thechemicalreactionis:

    2 6 2 32 3 2Al H O Al OH H+ ( ) +

    Aluminum hydroxide is a white, powdery material which is a good insulator.Manyusersofstrandedaluminumconductorsnowrequireblockedconductorsforthisreason.Waterblockingcomponents,suchaswater-swellabletapesandyarnsorsealants,incorporatedintotheintersticesofthestrandedconductoractasanimpedi-menttolongitudinalwaterpenetrationandthushelpretardthisformofdeterioration.Copperconductorsmay,ofcourse,alsobewater-blockedinthesamemanner.

    Regardlessoftheconductormaterialanddegreeofcompaction,thereisstillsomeairspaceremainingintheintersticesofthestrandedconductor.Thisspacecanactasareservoirformoisturetocollectandhenceprovideasourceofwaterforwatertreeing.Water-blocked strandedconductors are frequently specified forundergroundcablestoreducethepossibilityofthishappening.Solidconductors,ofcourse,aretypicallyspecifiedforthesamereasonfor#2/0AWGandsmalleraluminumconductors.

    3.9 ELECTRICALCALCULATIONS

    3.9.1 conDuctorDcresistance

    R C ADC at 25 1000 = , (3.5)

    whereRDC=DCresistanceofconductorinohmsper1,000feetat25C;=resis-tivityofmetalinohmcircularmilsperfoot;forcopper=10.575cmil/ft(100%conductivity) at 25C; for aluminum=17.345cmil/ft (61.0% conductivity) at25C;A=conductorareaincircularmils.

    Theresistanceofastrandedconductorismoredifficulttocalculate.Itisgenerallyassumedthatthecurrentisevenlydividedamongthestrandsanddoesnottransferfromonestrandtothenext.Forthisreason,theDCresistanceisbasedon:

    Multiplythenumberofstrandsbythecross-sectionalareaofeachtakenper-pendiculartotheaxisofthatstrand.Theproductisthenthecross-sectionalareaoftheconductor.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 49Conductors

    Comparethelengthofeachstrandtotheaxiallengthoftheconductor.Thisincreasedlengthisarithmeticallyaveraged.

    TheDCresistanceofasolidconductorhavingthesameeffectivecross-sec-tionalareaismultipliedbytheaverageincreaseinlengthofthestrand.Theresultantisthecalculatedresistanceofthestrandedconductor.

    Sinceresistanceisbasedontemperature,thefollowingformulaecorrectforothertemperaturesintherangemostcommonlyencountered:

    Copper:

    R R T

    T2 12

    1

    234 5234 5

    =+

    +

    .

    . (3.6)

    Aluminum:

    R R T

    T2 12

    1

    228 1228 1

    =+

    +

    .

    . (3.7)

    whereR2=conductorresistanceattemperatureT2inC;R1=conductorresistanceattemperatureT1inC.

    These formulasarebasedon the resistancecoefficientofcopperhaving100%conductivityandofaluminumhaving61.2%conductivity(InternationalAnnealedCopperStandard).

    3.9.2 conDuctoracresistance

    AconductoroffersagreaterresistancetotheflowofACthanitdoestoDC.ThisincreasedresistanceisgenerallyexpressedastheAC/DCresistanceratio.Thetwomajorfactorsforthisincreasearetheskineffectandtheproximityeffectofcloselyspacedcurrentcarryingconductors.Othermagneticeffectscanalsocauseanaddi-tionalincreaseinAC/DCresistanceratios.

    R RAC DCAC/DC ratio= (3.8)

    TheAC/DCresistanceratioisincreasedbylargerconductorsizesandhigherACfrequencies.

    3.9.3 skineFFect

    InACcircuits, thecurrenttendstodistributeitselfwithinaconductorsothat thecurrentdensitynearthesurfaceoftheconductorisgreaterthanthatatitscore.Thisphenomenonisknownasskineffect.Alongitudinalelementoftheconductornearthecenteroftheaxisissurroundedbymorelinesofmagneticforcethanneartherim.Thisresultsinanincreaseininductancetowardthecenter.Thedecreasedarea

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 50 Electrical Power Cable Engineering

    ofconductancecausesanapparentincreaseinresistance.At60hertz,thephenom-enonisnegligibleincopperconductorsizesof#2AWGandsmallerandaluminumsizesof#1/0AWGandsmaller.Astheconductorsizeincreases,thiseffectbecomesmoresignificant.

    Thefollowingformulacanbeusedtogiveanapproximationofskineffectforroundconductorsat60hertz;anotherapproximationwillbegiveninChapter14.

    Y

    RCS=

    +

    11 188 82

    .

    .DC (3.9)

    where YCS=skin effect expressed as a number to be added to the DC resistance;RDC=DCresistanceoftheconductorinmicro-ohmsperfootatoperatingtemperature.

    3.9.4 proximityeFFect

    IncloselyspacedACconductors,thereisatendencyforthecurrenttoshifttotheportionoftheconductorthatisawayfromtheotherconductorsofthatcable.Thisphenomenonisknownasproximityeffect.Thealternatingmagneticfieldlinkingthecurrentinoneisolatedconductorisdistortedbythecurrentinanadjacentconductor.Thisinturncausesanunevendistributionofthecurrentacrosstheconductorcrosssection.

    Sinceskinandproximityeffectsarecumbersometocalculate,tableshavebeenestablishedtogivethesevaluesforcommonmodesofoperation[5].

    3.9.5 caBlesinmagneticmetallicconDuit

    Due to excessive hysteresis and eddy current losses, individual phases of an ACcircuitshouldnotbe installed inseparatemagneticmetalconduitsunderanycir-cumstances.Thisisbecauseofthehighinductanceofsuchaninstallation.Infact,separatephasesshouldnotpassthroughmagneticstructuressinceoverheatingcanoccur insuchasituation.Allphasesshouldpass throughanymagneticenclosuresimultaneously,sothatmaximumcancellationoftheresultantmagneticfieldoccurs.Thisgreatlyreducesthemagneticeffect.However,evenundertheseconditions,anincrease inskinandproximityeffectswilloccurbecauseof theproximityof themagneticmaterial.Therecanbesignificantlosseswhenlargeconductorsaresimplyplacednearthemagneticmaterials.

    Cablesin50or60hertzACcircuitsshouldnotbeinstalledwitheachphaseinaseparatenonmagneticmetalconduitwhentheirconductorsizeis#4/0AWGorlargerduetohighcirculatingcurrentsintheconduit.Thiscausesasignificantdecreaseinthecableampacity.

    3.9.6 resistanceathigherFrequencies

    Cablesoperatingatfrequencieshigherthan60hertzmayneedtobeevaluatedforampacityandAC/DCratiosbecausetheycancausehighervoltagedropsthanmight

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • 51Conductors

    be anticipated.Also at higher frequencies, an increase in the inductive reactancemayaffectvoltagedrops.Insulatedconductorsshouldnotbeinstalledinmetallicconduits,norshouldtheyberunclosetomagneticmaterials.

    Forfrequenciesotherthan60hertz,acorrectionfactorisprovidedby:

    x f R= 0 027678. DC (3.10)

    wheref=frequencyinhertz,RDC=conductorDCresistanceatoperatingtempera-ture,inohmsper1,000feet.

    Foradditionalinformationontheeffectsofhigherfrequency,seetheICEAreportinReference[3]andthecablemanufacturersmanuals[4,5].

    REFERENCES

    1. Kelly, L. J., 1995, adapted from class notes for Power Cable Engineering Clinic,UniversityofWisconsinMadison.

    2. Landinger, C. C., 2001, adapted from class notes for Understanding Power CableCharacteristicsandApplications,UniversityofWisconsinMadison.

    3. ICEA P-34-359, 1973, AC/DC Resistance Ratios at 60 Hz, Global EngineeringDocuments,15InvernessWayEast,Englewood,CO80112.

    4. EngineeringDataforCopperandAluminumConductorElectricalCables,1990,TheOkoniteCompany,BulletinEHB-90.

    5. Southwire Company Power Cable Manual,SecondEdition,1997,Carrollton,GA. 6. Annual Book of ASTM Standards, Vol. 02.03: Electrical Conductors. Section 2:

    NonferrousMetalProducts,2010,ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA,19428-2959USA.

    7. IEC20/680/RVCResultofvotingon20/633/CDV:IEC60228Ed.3:ConductorsofInsulatedCables,2004,IECCentralOffice,3ruedeVaremb,P.O.Box131,CH-1211Geneva20,Switzerland.

    8. IEC60228(Edition3.02004-11),ConductorsofInsulatedCables,2004,IECCentralOffice,3ruedeVaremb,P.O.Box131,CH-1211Geneva20,Switzerland.

    9. IEC/TR62602(Edition1.02009-09),ConductorsofInsulatedCablesDataforAWGandkcmilSizes,2009,IECCentralOffice,3ruedeVaremb,P.O.Box131,CH-1211Geneva20,Switzerland.

    10. ANSI/ICEA S-94-649, Standard for Concentric Neutral Cables Rated 5,000-46,000Volts,2004,GlobalEngineeringDocuments,15InvernessWayEast,Englewood,CO80112.

    11. ANSI/ICEAS-108-720,StandardforExtrudedInsulationPowerCablesRatedAbove46Through345kV,2004,GlobalEngineeringDocuments, 15 InvernessWayEast,Englewood,CO80112.

    Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

  • Dow

    nloa

    ded

    by [U

    nivers

    ity of

    Wate

    rloo]

    at 16

    :53 23

    Janu

    ary 20

    15

    3.1 Introduction3.2 Material Considerations3.3 Conductor Sizes3.4 Circular Mil Sizes3.5 Metric Designations3.6 Stranding3.7 Physical and Mechanical Properties3.8 Strand Blocking3.9 Electrical CalculationsReferences