2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

download 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

of 150

Transcript of 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    1/150

    Preface Page No

    1. Functions

    Exercise 01 - 28

    2 LimitsExercise 29 - 53

    3 Continuity and derivabilityExercise 54 - 78

    4 Method of differentiationExercise 79 - 100

    5 Application of derivativesExercise 101 - 126

    6 Solution of triangleExercise 127 - 149

    Copyright reserved 2012-13.All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to only the enrolledstudent of RESONANCE. Any sale/resale of this material is punishable under law. Subject to Kota Jurisdiction only.

    MATHEMATICSCLASS : XII

    CONTENT

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    2/150

    SOLUTIONS (XII) # 1

    FUNCTIONS

    EXERCISE # 1PART - I

    Section (A) :

    A3. (i) f(x) =1x

    3x5x2

    3

    !

    "!

    f(x) =)1x)(1x(

    3x5x3

    "!

    "!

    Division by zero is undefined # x $ 1# Domain x %R {1, 1} & x %(', 1) ((1, 1) ((1, ')

    (ii) f(x) =x

    xsin 1!

    For sin1x, x %[1, 1]and division by zero is undefined x $0 # Domain x %[1, 0) ((0, 1]

    (iii) f(x) =|x|x

    1

    "

    for function to be defined x + |x| > 0 for x > 0, x + |x| = 2x > 0for x )0, x + |x| = 0 # Domain is x %(0, ')

    (iv) f(x) = ex + sin x

    Domain x %R as there is no restriction for exponent of e.

    (v) f(x) = )x1(log

    1

    10 !+ 2x"

    1 x > 0 and x + 2 *0 and 1 x $1& x %(', 1) {0} and x *2 & x %[2, 0) ((0, 1)

    (vi) f(x) = x21! + 3 sin1 +

    ,

    -./

    0 !2

    1x3

    1 2x *0 and 1 )2

    1x3 !)1 & x )

    2

    1and

    3

    1)x )1

    Taking intersection

    11/21/3x# Domain x % 1

    2

    345

    6!

    2

    1,

    3

    1

    (vii) f(x) = xsin1

    2!

    2x

    1

    !

    1 )x )1 and x > 2 & x %7

    (viii) f(x) = logx ++

    ,

    -../

    0+,

    -./

    0! 2/1x1

    log2

    In case of composite function in log.We start with outer log.

    x > 0, x $1 and

    2

    1x

    1

    !> 1 & x %(0, 1) ((1, ') and 0 < x

    2

    1< 1

    & x %(0, ') {1} and2

    1< x 0 & x %(0, 1]

    Range 0 < sin1x )2

    8

    '< !n (sin1x) )!n +,

    -./

    082

    Inequality doesn't change as !n is increasing function(iv) f(x) = 2 3x 5x2

    Domain x %RMethod 1y = 5x23x + 2opening downward parabola

    D/4a2

    0

    Range y % 12

    3./

    0 !'!

    a4

    D,

    & y % 12

    3./

    0'! 20

    49,

    Method 25x2+ 3x + (y 2) = 0

    D *0 & 9 20 (y 2) *0 & 20y 49 )0 & y )20

    49

    (v) f(x) = 3 |sin x| 4|cos x|f(x) is a periodic function with period 8. So analysis is limited in [0, 8]

    fmax

    = 3.1 4.0 = + 3 at x =2

    8, |sin x| = 1, |cos x| = 0

    fmin

    = 3.0 4.1 = 1 at x = 0, |sin x| = 0, |cos x| = 1 # Range y %[4, 3]

    (vi) f(x) = xtan1

    xsin

    2" + xcot1

    xcos

    2"f(x) = sin x |cos x| + cos x |sin x|periodic period = 28

    f(x) =

    9

    9999

    :

    99999

    ;

    = 0

    e12

    x

    1.e

    1x1

    2

    1x

    1

    ?+,-.

    /0

    +,

    -./

    0

    increasing function

    Hence one - one

    (vi) f(x) = )xcos(4

    x3 28

    8even function

    Hence many - one

    (vii) f(x) = sin1x cos1x = 2 sin1x 2

    8monotonically increasing.

    C5. (i) f(x) = sin (x2+1)& f(x) = f (x) = even function

    (ii) f(x) = x + x2

    & f(

    x) = x2

    x

    $f (x) or

    f(x) Neither even nor odd function(iii) f(x) = x x3 & f(x) = x + x3= f(x) odd function

    (iv) f(x) = x ++,

    -../

    0

    "1a

    1ax

    x

    & f(x) = x ++,

    -../

    0

    "1a

    1ax

    x

    & f(x) = x ++,

    -../

    0

    "1a

    1ax

    x

    = f(x) even function

    (v) f(x) = log (x + 1x2 " ) & f(x) = log (x + 1x2 " )

    f(x) + f(x) = log

    12

    3

    45

    6 """" )1xx)(1xx( 22 = log [(x2 + 1) x2] = 0 hence odd function

    (vi) f(x) = sin x + cos x & f(x) = sin x + cos x $f(x) or f(x)Neither even nor odd.

    (vii) f(x) = (x21) |x| & f(x) = f(x) even function.

    (viii) f(x) =9:

    9;

    0, Jx %R # f(x) = g(t) = t2+ t + 1, t > 0

    g(t) =

    2

    2

    1t +

    ,

    -./

    0" +

    4

    3

    +,

    -./

    0"

    2

    1t >

    2

    1&

    2

    2

    1t +

    ,

    -./

    0" >

    4

    1&

    2

    2

    1t +

    ,

    -./

    0" +

    4

    3> 1 Range is (1, ')

    Section (B) :

    B2.* (A) f(x) =)x(secn 1e! = sec1x, x %(', 1] ((1, ')

    g(x) = sec1x, x %(', 1] ( [1, ')non-identical functions

    (B) f(x) = tan (tan1x) = x, x %R g(x) = cot (cot1x) = x, x %Ridentical functions

    (C) f(x) = sgn (x) =9

    :

    9;

    0, Jx %R and 7x2+ 2x + 10 > 0 Jx %R" a = 2 > 0 and " a = 7 and D = 4 280 < 0

    D = 1 40 = 39 < 0# f(x) > 0 Jx %R

    Also f(x) never tends to 'as 7x2+ 2x + 10 has no real roots, Range $Codomain so into function.

    C3. f(x) = x3+ x2+ 3x + sin x, x %Rf>(x) = 3x2+ 2x + 3 + cos x

    " 3x2+ 2x + 3 *12

    32as a = 3 > 0 and D < 0

    1 )cos x )1 so f>(x) > 0 Jx %R

    'Gxlim f(x) = + ' !'Gx

    lim f(x) = '

    Hence f(x) is one-one and onto function (as f(x) is continuous function)

    C6. f(g(x1)) = f(g(x

    2)) & g(x

    1) = g(x

    2)

    as f is one - one function & x1= x

    2as g is one - one function

    hence f(g(x1)) = f(g(x

    2))

    & x1= x

    2 & f(g(x)) is one - one function

    Section (D) :

    D2. f(x) = sin L Mx]a[ . Period = ]a[28

    = 8

    [a] = 4 & a %[4, 5)

    D3. f(x) = x + a [x + b] + sin 8x + cos 28x + sin (38x) + cos (48x) + ........ + sin (2n 1)8+ cos (2px)

    f(x) = {x + b} + a

    b + sin (8x) + cos (28x) + sin (38x) + cos (48x) + .... + sin (2n

    1) + cos (2n8x)

    Period of f(x) = L.C.M (1, 2,3

    2,

    4

    2, .........,

    1n2

    2

    !,

    n2

    2) = 2

    # period of f(x) = 2since f(1 + x) $f(x) , hence fundamental period is 2

    D7.* (A) f(x) = cos (cos1 x)= x, x %[1, 1] odd function

    (B) f (x + 8) = cos (sin (x +8)) + cos (cos (x + 8))f (x + 8) = cos (sin x) + cos (cos x) = f(x)

    f +,

    -./

    0 8"

    2x = cos ++

    ,

    -..

    /

    0+,

    -./

    0 8"

    2xsin + cos ++

    ,

    -../

    0+,

    -./

    0 8"

    2xcos

    = cos (cos x) + cos (sin x) = f(x)

    fundamental period =2

    8

    (C) f(x) = cos (3 sin x), x %[1, 1]3 sin1 ) 3 sin x ) 3 sin 1& cos (3 sin 1) ) cos (3 sin x) ) 1 # Range is [cos (3 sin1), 1]

    Section (E) :

    E1.1

    y= xx

    xx

    ee

    ee!

    !

    "

    !

    By compnendo and dividendo

    y1

    y1

    !"

    =2

    e2 x& x = !n ++

    ,

    -../

    0

    !"

    y1

    y1# f1(x) = !n +

    ,

    -./

    0!"

    x1

    x1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    10/150

    SOLUTIONS (XII) # 9

    E7. f(1) = 1 = 2 1f(n + 1) = 2f(n) + 1 # f(2) = 2f(1) + 1 = 2. 1 + 1 = 3 = 221

    f(3) = 7 = 231f(4) = 15 = 241

    Similarly f(n) = 2n1

    E8. Method 1 : (usual but lengthy)

    x2

    f(x) + f(1

    x) = 2x

    x4

    .....(1)replace x by (1 x) in equation (1)(1 x)2f(1 x)+ f(x) = 2 (1x) (1 x)4 .....(2)eliminate f(1 x) by equation (1) and (2)we getf(x) = 1 x2

    Method 2 :Since R.H.S. is polynomial of 4thdegree and also by options consider f(x) = ax2+ bx + cx2f(x) + f(1 x) = 2x x4

    & x2(ax2 + bx + c) + a (1 x)2+ b (1 x) + c = 2x x4

    by comparing coefficientsa = 1b = 0

    c = 1# f(x) = x2+ 1

    EXERCISE # 2PART - I

    1. (i) f(x) = xx 2.223 !!!3 2x2 .2x*0 or (2x)23.2x+ 2 )0

    or (2x1) (2x2) )0 & 2x%[1, 2]& x % [0, 1]

    (ii) f(x) = 2

    x11 !!1 2x1! *0 & 2x1! ) 1 & 0 )1 x

    2 )1 & x % [1, 1](iii) f(x) = (x2+ x + 1)3/2

    D : x %R

    (iv) f(x) =2x

    2x

    "!

    +x1

    x1

    "!

    2x

    2x

    "!

    * 0 andx1

    x1

    "!

    *0

    x %(', 2) ([2, ') and x %(1, 1]D : 7

    (v) f(x) = xtanxtan 2!

    tan x tan2x *0 or 0 )tan x )1 or x % $N%n

    12

    345

    6 8"88

    4n,n

    (vi) f(x) =2

    xsin2

    1

    sin2

    x$0 or x $2n8

    (vii) f(x) = ++,

    -../

    0 !4

    xx5log

    2

    4/1

    4

    xx5 2!)1 and 5x x2> 0 or x %(0, 1] ([4, 5)

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    11/150

    SOLUTIONS (XII) # 10

    (viii) f(x) = log10

    (1 log10

    (x25x + 16))1 log

    10(x25x + 16) > 0 or x25x + 6 < 0

    or x %(2, 3)

    2. (i) f(x) = 1 |x 2||x 2| %[0, ') # f(x) %(', 1]

    (ii) f(x) =5x

    1

    !D : x %(5, ')R : f(x) %(0, ')

    (iii) f(x) =x3cos2

    1

    !

    range of cos 3x is [1, 1] cos 3x [1, 1] # f(x) % 12

    345

    61,

    3

    1

    (iv) f(x) =4x8x

    2x2 !!

    "= y

    x + 2 = yx28yx 4y or yx2x (8y + 1) (4y + 2) = 0

    for x to be real D *0(8y + 1)2+ 4y (4y + 2) *064y2+ 16y + 1 + 16y2+ 8y *0

    80y2+ 24y + 1 *0 or y % 12

    3./

    0!'!

    4

    1, ( +

    ,

    -45

    6'! ,

    20

    1

    (v) f(x) =4x2x

    4x2x2

    2

    ""

    "!= y

    x22x + 4 = yx2+ 2xy + 4yx2(1 y) 2x(1 + y) + 4(1 y) = 0D *0

    4(1 + y)216(1 y)2*0 or y % 1234563,

    31

    (vi) f(x) = 3 sin2

    2

    x16

    !8

    D : x % 12

    345

    6 88!

    4,

    4

    22

    x16

    !8

    % 12

    345

    6 84

    ,0 # f(x) % 12

    345

    6

    2

    3,0

    (vii) f(x) = x32x2+ 5 = (x21)2+ 4R : [4, ')

    (viii) f(x) = x312x , x %[3, 1] = x (x212)f>(x) = 3x212 = 0 or x = 2 R : [11, 16]

    (ix) f(x) = sin2x + cos4x= sin2x + 1 + sin4x 2 sin2x= sin4x sin2x + 1

    = +,

    -./

    0!

    2

    1xsin2 +

    4

    3R : 1

    2

    345

    61,

    4

    3.

    7. (i) f(x) = 6x

    7x

    )2(

    )12( "

    neither even non add

    (ii) f(x) =xsinx

    9xxsec 2 !"= f(x) even

    (iii) f(x) = f(x) odd

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    12/150

    SOLUTIONS (XII) # 11

    (iv) f(x) =9:

    9;

    0

    period G28; 8,3

    28

    Period of f(x) = L.C.M. +,

    -./

    0 888

    3

    2,,2 = 28

    (v) f(x) = +,

    -./

    0"""""+

    ,

    -./

    0""""

    n531n42 2

    xtan...

    2

    xtan

    2

    xtan

    2

    xtan

    2

    xsin....

    2

    xsin

    2

    xsinxsin

    Period of f(x) = L.C.M. of 8888888 n3n53 2.....2,2,2,......2,2,2

    = 2n8

    (vi) f(x) =x3cosxcos

    x3sinxsin

    ""

    period of f(x) = L.C.M. +,

    -./

    0 88

    88

    3

    2,2,

    3

    2.2 = 28

    For fundamental period

    f(x + 8) =)3x3cos()xcos(

    )3x3sin()x(sin

    8""8"8""8"

    =x3cosxcos

    x3sinxsin# Fundamental period = 8

    11. f(x) = 2x1

    x1

    "

    !

    & f>(x) = 0 at x = 1 2

    for x % B A21,12 ""! f is bijective function hence f is invertible.

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    13/150

    SOLUTIONS (XII) # 12

    2x1

    x1

    "

    != y

    or x2y + x + (y 1) = 0

    or x =y2

    )1y(y411 !!O!=

    y2

    1y4y41 2 "!O!

    f1(x) =9:

    9; 3x > 2

    8or x % +

    ,

    -./

    0 8! 0,

    6

    Domain :+

    ,

    -./

    0 8! 0,

    6 P(

    1, 0) K +,

    -

    ./

    0 8! 0,

    6

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    14/150

    SOLUTIONS (XII) # 13

    3. f(x) = sin1 ++,

    -../

    0 "2/3

    3

    x2

    x1+ )xsin(sin + log

    (3{x} + 1)(x2+ 1)

    Domain : 3{x} + 1 $1 or 0 & x Q N

    and 1 ) 2/3

    3

    x2

    x1")1

    2x

    3/2

    )1 + x3

    )2x3/2

    1 + x3+ 2x3/2*0(1 + x3/2)2*0 & x %R1 + x32x3/2)0 or (1 x3/2)2)0

    or 1 x3/2= 0 or x = 1Hence domain x% 7

    6. f(x) = (sin1x + cos1x)33 sin1x cos1x (sin1x + cos1x)

    =8

    383 sin1x +

    ,

    -./

    0!

    8 ! xcos2

    1

    2

    8=

    8

    38

    4

    3 28sin 1x + 3

    2

    8(sin1x)2

    =

    8

    38+

    2

    38

    1

    1

    2

    3

    4

    4

    5

    6 8"

    8! !!

    16xsin

    2)x(sin

    2121

    32

    3 38=

    32

    38+

    2

    38

    21

    4xsin +

    ,

    -.

    /

    0 8!!

    maximum value of f(x) at x = 1 & fmaximum

    =32

    38+

    2

    38

    16

    9 38=

    8

    7 38

    8. Here (2 log2(16 sin2x + 1) > 0

    & 0 < 16 sin2x + 1 < 4 & 0 ) sin2x 0 & 2log

    2*

    2log (2 log

    2(16 sin2x + 1)) > '

    & 2 *y > '

    Hence range is y %('R 2]

    11. (A) f(x) = e1/2 !n x= x , D : x > 0

    g(x) = x , D : x *0

    (B) tan1(tan x) = x D : x $ (2n +1)2

    8

    cot 1(cot x) = x D : x $ n8(C) f(x) = cos2x + sin4x = cos2x + (1 cos2x)2 = 1 cos2x + cos4x = sin2x + cos4x

    g(x) = sin2x + cos4x

    (D) f(x) =x

    |x|, D : x $0

    g(x) = sgn (x), D : x %R

    12. f(6{x}25{x} + 1) & f((3{x} 1) (2 {x} 1))

    (3{x} 1) (2{x} 1) ) 0 or {x}% 12

    345

    62

    1,

    3

    1# x %$

    N%n

    12

    345

    6""

    2

    1n,

    3

    1n

    13. f(x) = cot1x R+ G +,

    -./

    0 82

    ,0

    g(x) = 2x x2 R GRf(g(x)) = cot1(2x x2), where x %(0, 1]

    hence f(g(x)) % +,

    -45

    6 882

    ,4

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    15/150

    SOLUTIONS (XII) # 14

    20. f +,

    -./

    0"

    3

    1x = 1

    2

    345

    6"

    3

    1x + 1

    2

    345

    6"

    3

    2x + [x + 1] 3 +

    ,

    -./

    0"

    3

    1x + 15

    = 12

    345

    6"

    3

    1x + 1

    2

    345

    6"

    3

    2x + [x] 3x + 15 = f(x) # fundamental period is 1/3

    21. f(x) = |x 1| f : R+GRg(x) = ex, g : [1, ') GRfog(x) = f[g(x)] = |ex1|D : [1, ')R : [0, ')

    25. f(x) =}x{

    ])x[sin(8= 0 , x QN

    (A) By graph fundamental period is one(B) f(x) = 0 = f(x) # even function(C) Range y %{0}

    (D) y = sgn++

    ,

    -

    .

    .

    /

    0

    }x{

    }x{sgn 1, x QN

    y = sgn (1) 1 & y = 1 1y = 0, x QN Identical to f(x)

    28. f(x) = sin x + tan x + sgn (x26x + 10)f(x) = sinx + tan x + sgn ((x 3)2+1)f(x) = sin x + tan x + 1period = L.C.M. (28, 8) = 28fundamental period = 28

    29. f : N GI

    f(n) =9:

    9;

    0 &3 < x < 3 ...(2)Hence from (1) & (2)we get 2 )x < 3# Domain = [2, 3).

    8. 3xx7 P !

    ! is defined if

    7 x *0, x 3 *0 and 7 x *x 3&3 )x )5 and x %N # x = 3, 4, 5

    # f(3) = 3337 P !

    ! = 04P = 1

    f(4) = 3447 P !

    ! = 13P = 3

    f(5) =35

    57 P!

    ! =2

    2P = 2

    Hence range = {1, 2, 3}.

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    21/150

    SOLUTIONS (XII) # 20

    9. f(x) = tan1 +,

    -./

    0

    ! 2x1

    x2= 2 tan1x for x %(1, 1)

    If x %(1, 1) &tan1x % +,

    -./

    0 88!

    4,

    4

    &2 tan1

    x %+

    ,

    -./

    0 88!

    2,

    2

    Clearly, range of f(x) = +,

    -./

    0 88!

    2,

    2

    for f to be onto, co-domain = range # Codomain of function = B = +,

    -./

    0 88!

    2,

    2.

    10. f(2a x) = f(a (x a)) = f(1) f(x a) f(a a) f(a + x a)= f(1) f(x a) f(0) f(x)= f(x) [" x = 0, y = 0, f(0) = f2(0) f2(1) &f2(1) = 0 &f(1) = 0]&f(2a x) = f(x).

    11. f(x) is defined if 1 ) 2x 1 )1 and cos x > 0

    or 0 )2

    x)2 and

    2

    8< x x &x < 0 #x %(', 0) Ans.

    14. f(x) = (x 1)2+ 1, x *1f : [1, ') G[1, ') is a bijective function & y = (x 1)2+ 1 & (x 1)2= y 1

    & x = 1 1y & f 1(y) = 1 1y

    & f 1(x) = 1 + 1x {#x *1}

    so statement-2 is correctNow f(x) = f 1(x) & f(x) = x & (x 1)2+ 1 = x& x23x + 2 = 0 & x = 1, 2so statement-1 is correct

    ADVANCE LEVEL PROBLEMPART-I

    1. f(x) = +,-

    ./0

    "!

    !" x3

    1x2loglog

    2

    2

    4x

    For domain :

    2

    4xlog " +

    ,

    -./

    0"!x3

    1x2log2 )0

    Case-I

    0 1 or x > 2 ..........A

    2

    4xlog " +

    ,

    -./

    0"

    !x3

    1x2log2 ) 0 & 0 < log2 x3

    1x2

    "!

    ) 1 & 1 < x31x2

    "!

    ) 2

    & x %(4, ' ) ..........(ii) # (i) ((ii) Domain x %(4, 3) ((4, ')

    2. f(x) = (x12x9+ x4x + 1)1/2

    Dr : x12x9 + x4x + 1 > 0For x )0 it is obvious that for f(x) to be defined Dr > 0.For x *1, (x12x9) + (x4x) + 1 is positiveSince x12*x9, x4*x.For 0 < x < 1, Dr = x12+ (x4x9) + (1 x) > 0

    Since x4> x9, x < 1.Hence Dr > 0 for all x %RDomain is x %R

    3. f(x) = |x|x

    |x|x

    ee

    ee

    "

    ! !

    if x * 0, f(x) = x

    xx

    e2

    ee !!=

    2

    1 2x )e(2

    1=

    2

    1 +

    +,

    -../

    0!

    2x )e(

    11 ; f(x) % +

    ,

    -45

    62

    1,0 ........(i)

    f(x) % +,

    -45

    62

    1,0

    if x < 0, f(x) = xx

    xx

    ee

    ee!"

    != 0 .........(ii) # range of f(x) is (i) ((ii) = +

    ,

    -45

    62

    1,0

    4. f(a) = aa2 2 ! for domain of f(x)

    2a2a *0 & a(2a 1) *0 # a %(', 0] ( +,

    -45

    6',

    2

    1

    Let g(x) Kx2+ (a + 1)x + (a 1) = 0(i) D *0(a + 1)24(a 1) *0 & a %R ...(i)

    (ii) 2 < A2

    B< 1 & 2 <

    2

    )1a( " < 1 & a % L M3,3! ....(ii)

    (iii) g(2) > 0 & 4 2(a + 1) + (a 1) > 0 & a < 1(iv) g(1) > 0 & 1 + a + 1 + a 1 > 0 & a > 1/2Now (i) P (ii) P (iii) P (iv) we get

    5. f(x) = sin1 12

    345

    6"

    2

    1x2 + cos1 1

    2

    345

    6!

    2

    1x2

    Domain : 1 ) 12

    345

    6!

    2

    1x2 ) 1 & x % +

    +,

    -../

    0!

    2

    5,

    2

    5

    and 1 ) 123

    45

    6 "2

    1x2 ) 1 & x % +

    +,

    -../

    0!2

    3,

    2

    3

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    23/150

    SOLUTIONS (XII) # 22

    & domain is x % ++,

    -../

    0!

    2

    3,

    2

    3or x2% +

    ,

    -45

    62

    3,0

    if (i) x2% +,

    -45

    62

    1,0 , then f(x) = 8

    if (ii) x2 % +,

    -45

    61,2

    1, then f(x) = 8

    if (iii) x2% +,

    -45

    62

    3,1 , then f(x) = 8 & range = {8}

    6. +,

    -./

    02

    1f = 1

    2

    345

    62

    1+ 1

    2

    345

    6"

    2000

    1

    2

    1+ 1

    2

    345

    6"

    2000

    2

    2

    1+....... 1

    2

    345

    6"

    2000

    1999

    2

    1= 1000

    7. f(x) = ax2+ bx + cf(0) = c &c %Nf(1) = a + b + c &(a + b + c) %N & (a + b) %N

    8. f(x) = 9:

    9; 12

    f(x) =1112]x[1]x[

    1

    !!"! & f(x) = )12]x([21

    !

    Now for f(x) to be defined [x] $12 & x Q [12, 13) but x > 12x Q (12, 13)Case-## 1 )x )12

    f(x) =11]x[121]x[

    1

    !!""! =

    9:

    9; 0, x + 0.5 $ 1 & x %(0.5, ' ) & x $ 0.5 .....(A)

    &3x4x4

    3x2x2

    2

    !!

    !"> 0 or

    )1x2)(3x2(

    )1x)(3x(

    "!!"

    > 0

    or x %( ' , 3) ( +,

    -./

    0! 1,

    2

    1 ( +

    ,

    -./

    0',

    2

    3.....(B)

    (A) P(B) # Domain of f(x) : x % +

    ,

    -.

    /

    0! 1,

    2

    1( +

    ,

    -.

    /

    0',

    2

    3

    S

    TU

    :

    ; 0 or x % +,

    -./

    0! 6,

    6

    1

    & Domain +,-

    456 8(1

    23.

    /0 8! 6,

    3

    5

    3,

    6

    1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    25/150

    SOLUTIONS (XII) # 24

    (v) f(x) =

    123

    456 !

    21x

    5!

    21 xsin3

    !+

    1x

    !)1x7(

    "

    "

    12

    345

    6 !2

    1x $ 0 & x Q [1, 3) & x %[1, 1]

    & x + 1 > 0 & x %(1,

    ' ) & 7x + 1 %w

    # DomainSTU

    :;(x) =1x2

    1

    !

    x3

    1

    != 0 or f>(x) = 0 at x =

    5

    7

    f> ++

    ,

    -../

    0 !

    5

    7> 0 & f> +

    +,

    -../

    0 "

    5

    7< 0 & maxima at x =

    5

    7Range : B A10,2

    (ii) For domain (i) [x] > 0 and [x] $1 so [x] *2, so x %[2, ')

    for range if x %[2, '), thenx

    |x|= 1 so f(x) = cos10 =

    2

    8

    Range of f(x) =STU

    :; 0 & x %(2n8,(2n+1)8)here [x 1] > 0 & [x 1] $ 1 & x %[3, ' ]

    Domain x %[3, 8) ( L M12

    345

    68"8

    '

    C)1n2(,n2

    1n$ .

    For range sin x %(0, 1] and [x 1] %[2, ') so range %(', 0]

    (vi) f(x) = tan1 |x|2]x[]x[ !"!" + 2x

    1

    Domain : (i) [x] + [x] *0 & x %N (ii) 2 | x | *0 & |x| )2 & x %[2, 2] (iii) x $0

    For domain (i) P (ii) P (iii) Domain : {

    2,

    1, 1, 2}

    Range :STU

    :; 0If x %N, x > 0

    & x : {1, 2, 3, 4, .......... } .......(A)If x Q N

    [x] 1 > 0

    & [x] > 1 & x %[2, ') .......(B)A( [

    # x %{1} ( [2, ')

    7. Case # y = x x < 1x = y y < 1f1(x) = x x < 1

    Case ## y = x2

    1 )x )4x2= y 1 )y )16

    x = y 1 )y )16

    f1(x) = x 1 )x )16

    Case ### y = x8 x > 4

    x =64

    y2y > 16

    f1(x) =64

    x2x > 16

    8. Let x = y = 1f(x) + f(y) + f(xy) = 2 + f(x) . f(y)3f (1) = 2 + (f(1))2 & f(1) = 1, 2. But given thatf(1) $1 so f(1) = 2

    Now put y =x

    1

    f(x) + f +,

    -./

    0x

    1+ f(1) = 2 + f(x) . f +

    ,

    -./

    0x

    1& f(x) + f +

    ,

    -./

    0x

    1= f(x) . f +

    ,

    -./

    0x

    1

    so f(x) = xn + 1Now f(4) = 17 & (4)n+ 1 = 17 &n = 2

    f(x) = +(x)

    2

    + 1. # f(5) = 52

    + 1 = 26

    9. Put x = 1, y = 1(f(1))2= f(1) + 6 & f(1) = 3, 2f(1) = 3 [Since f(x) > 0]Put y = 1 in given relationf(x) f(1) = f(x) + 2(x + 2)2f(x) = 2x + 4f(x) = x + 2

    10. | f(2k) f(2 i)| = | f(2k) f(2k 1) + f(2k1) f(2k2)......... f(2i+1) f(2 i)|

    )| f(2k) f(2k1)| + | f(2k1) f(2k2)| + ...........| f(2 i+1) f(2 i)|Consider | f(2k1 + 2k1)| f(2 k1)| )1So | f(2k) f(2i)| )1 + 1 + ........(k i) term

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    29/150

    SOLUTIONS (XII) # 28

    I |)2(f)2(f| ik ) IC

    k

    1i

    )ik(

    )2

    )1k(k Hence proved.

    11. (x + 1)2f +,-.

    /0

    " 1x1 = f(x + 1)

    f +,

    -./

    0" 1x1

    = 2)1x(

    )x(f1

    "

    " ...........(i)

    Also f +,

    -./

    0" 1x

    1= f +

    ,

    -./

    0" 1x

    x1 = 1+ f +

    ,

    -./

    0"1x

    x

    = 1 f +,

    -./

    0" 1xx

    = 1 f +,-.

    /0 "

    x1x

    2

    1xx +

    ,-.

    /0

    "

    = 2

    2

    )1x(

    x1

    "f +

    ,

    -./

    0"

    x

    11 = 2

    2

    )1x(

    x1

    " +

    ,

    -./

    0"

    2x

    )x(f1 .........(ii)

    from equation (i) and (ii), we can say that

    (i) = (ii) & 2)1x(

    )x(f1

    "

    " = 2

    2

    )1x(

    )x(fx1

    "

    "

    & 1+ f(x) = 1 + 2x f(x) # f(x) = x

    12. (i) Put x = y = 1 in given relation, we get f(f(1)) = f(1)

    (ii) Now put x = 1, y = f(1) in given relation, we get f(f(1)) =)1(f

    )1(f= 1

    from (i) and (ii)

    # f(f(1)) = 1 # f(1) = 1

    Put x = 1, f(f(y)) = y

    )1(f & f(f(y)) = y

    1now substitute y = f(x)

    f(f(f(x))) =)x(f

    1& +

    ,

    -./

    0x

    1f =

    )x(f

    1

    13. "

    f(x, y) = f(2x + 2y, 2y

    2x) .......(i)= f(2(2x + 2y) + 2 (2y 2x), 2(2y 2x) 2(2x + 2y)) from (i)

    & f(x, y) = f(8y, 8x) .......(ii)= f(8(8x), 8(8y)) (using (ii))

    & f(x, y) = f(64x, 64y) .......(iii)= f((64) (64 x), (64) (64y)) (using (iii))

    & f(x, y) = f(212x, 212y)& f(x, 0) = f(212x, 0)Replace x by 2y

    # f(2y, 0) = f(212. 2y, 0)& f(2y, 0) = f(212+y, 0)& f(2x, 0) = f(212+x, 0)& g(x) = g(12 + x) ["given g(x) = f(2x, 0)]Hence g(x) is periodic function with period 12.

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    30/150

    SOLUTIONS (XII) # 29

    LIMITS

    EXERCISE # 1

    PART - ISection (A) :

    A-6. (i) "G0x im! x]x[ = ++

    ,-..

    /0" valueve 0 GNot an indeterminate form

    (ii)!'Gx

    im! 1x2 " x C'+ '= ' GNot an indeterminate form

    (iii)

    2x

    im8

    G

    ! (tan x)tan2x= (') form GYes

    (iv) "G1xim! Y ZL M nx

    1

    x !

    )h1(n

    1

    0h}h1{im "

    G" !!

    )h1(n

    1

    0h}h{im "

    G

    !! = (0'form) = 0 GNot an indeterminate form

    SECTION (B) :

    B-2. (i)0x

    imG!

    x5cos1

    x4cos1

    !!

    +,

    -./

    0form

    0

    0

    =0x

    imG!

    2

    x5sin2

    x2sin2

    2

    2

    =0x

    imG! 2

    2

    22

    2

    x52

    x5

    sin25

    x2

    x2sin2

    ++++

    ,

    -

    .

    .

    ..

    /

    0

    +,-.

    /0

    +,

    -./

    0

    =25

    16

    (ii)6

    x

    im8

    G

    !

    6x

    xcosxsin3

    8!

    !+

    ,

    -./

    0form

    0

    0

    using L' Hospital rule

    =6

    x

    im8

    G

    !

    1

    xsinxcos3 "=

    2

    1

    2

    3" =2

    (iii)0x

    imG!

    xsinx3

    x2x3tan2!

    !

    0ximG!

    x

    xsin.xsin3

    2x3

    x3tan.3

    =1.03

    2)1(3=

    3

    23=

    3

    1

    (iv)0x

    imG!

    x

    asina)xasin()xa( 22 !"" +,

    -./

    0form

    0

    0

    using L' Hospital rule

    =0x

    imG!

    1)xacos()xa()xasin()xa(2 2 """""

    = 2a sina + a2cos a

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    31/150

    SOLUTIONS (XII) # 30

    B-4.ax

    imG!

    ax

    )2a()2x( 25

    2

    5

    !"!"

    R.H.L. =ax

    )2a()2x(im

    2

    5

    2

    5

    ax

    """G

    !

    =aha

    )2a()h2a(im

    2

    5

    2

    5

    0h """"

    G! =

    h

    12a

    h1)2a(

    im

    2

    5

    2

    5

    0h

    111

    2

    3

    444

    5

    6

    +,

    -./

    0"

    ""

    G!

    = h

    1.....)2a(

    h.

    !2

    2

    3

    2

    5

    2a

    h.

    2

    51)2a(

    im

    2

    22

    5

    0h

    1111

    2

    3

    4444

    5

    6

    ""

    +,

    -./

    0+,

    -./

    0

    ""

    ""

    G! =

    2

    52

    3

    )2a( "

    L.H.L. =h

    )2a()h2a(im

    2

    5

    2

    5

    0h

    ""G!

    =

    L M

    h

    1....2a

    h

    !2

    2

    3

    2

    5

    2a

    h

    2

    512a

    im

    2

    2

    5

    0h

    1111

    2

    3

    4444

    5

    6

    "+,

    -./

    0"

    +,

    -./

    0+,

    -./

    0

    "+,

    -./

    0"

    "

    G! =

    2

    3

    )2a(2

    5"

    L.H. L. = R.H.L.

    So)ax(

    )2a()2x(im

    2

    5

    2

    5

    ax

    ""G

    ! =2

    5 23)2a( "

    SECTION (C) :

    C-1. (i)'Gx

    im! +,

    -./

    0"""

    222 x

    x....

    x

    2

    x

    1 =

    'Gxim!

    L M2x

    x.....21 """

    ='Gx

    im!2x2

    )1x(x "=

    'Gxim!

    2

    1 1

    2

    345

    6"

    x

    11 =

    2

    1

    (ii) 'Gx im! L M L MZxcos1xcos !"

    = 'Gxim! 2sin +

    +,

    -../

    0 ""2

    1xx. sin +

    +,

    -../

    0 "2

    1xx

    = 'Gxim! 2 sin +

    +,

    -../

    0 ""2

    1xx. sin +

    +,

    -../

    0

    "" )1xx(.2

    1xx

    =2 'Gxim! sin +

    +,

    -../

    0 ""2

    1xx. 'Gx

    im! sin112

    3

    445

    6

    "" )1xx(.2

    1

    = 2x (oscillating 1 to 1) 0= 0

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    32/150

    SOLUTIONS (XII) # 31

    (iii)'Gx

    im! Mxx8x2 "!= ('+ ') = '

    (iv)5 374 56

    3 423

    n 1n3n2n6n

    1n1n2nim

    ""!""

    """!'G

    ! =

    745

    7

    62

    3

    43

    4

    32

    3

    n

    n

    1

    n

    31n

    n

    2

    n

    61n

    n

    11n

    n

    1

    n

    21n

    im

    """"

    """

    'G!

    =

    7410

    1

    6

    46

    1

    3

    n

    n

    1

    n

    31n

    n

    2

    n

    61

    n

    11n

    n

    1

    n

    21

    im

    """"

    """

    'G! =

    01

    01"= 1

    (v) 'Gxim! L M +

    +

    ,

    -

    .

    .

    /

    0" 3

    2

    3

    2

    )1x(1x

    = 'Gx im!

    L M L M

    L M112

    3

    445

    6""""

    11

    2

    3

    44

    5

    6""""

    11

    2

    3

    44

    5

    6"

    3

    4

    3

    2

    3

    2

    3

    4

    3

    4

    3

    2

    3

    2

    3

    4

    3

    23

    2

    )1x()1x(1x)1x(

    )1x()1x(1x)1x(1x)1x(

    = 'Gxim!

    L M11

    2

    3

    44

    5

    6""""

    "

    3

    4

    3

    2

    3

    2

    3

    4

    22

    )1x()1x(1x)1x(

    )1x()1x(= 'Gx

    im!

    111

    2

    3

    444

    5

    6

    +,

    -./

    0"

    "+,

    -./

    0"

    ""3

    4

    3

    2

    3

    4

    1x

    1x

    1x

    1x1)1x(

    x4

    = 'Gxim!

    11

    1

    2

    3

    44

    4

    5

    6

    +,

    -./

    0

    ""+

    ,

    -./

    0

    """"

    3

    4

    3

    2

    3

    1

    1x

    1x

    1x

    1x1)1x)(1x(

    x4=

    ]111[)()01(

    4

    ""\'\" = 0

    SECTION (D) :

    D-1. (i)2x

    imG!

    x)2x7(

    )2x15()2x(

    4

    1

    5

    1

    2

    1

    !"

    "!"

    Let x = 2 + h

    = 0himG

    !

    )h2()h716(

    )h1532()h4(

    4

    1

    5

    1

    2

    1

    ""

    ""

    = 0himG

    !

    )h2(16

    h712

    32

    h1512

    4

    h12

    41

    5

    1

    2

    1

    "12

    345

    6"

    12

    345

    6"12

    345

    6"

    =0h

    imG!

    )h2(......64

    h712

    ....32

    h15

    2

    5

    4

    5

    1

    32

    h312....

    16

    h

    2

    2

    1

    2

    1

    8

    h12

    22

    "12

    345

    6""

    1111

    2

    3

    4444

    5

    6

    "+,

    -./

    0+,

    -./

    0+,

    -./

    0

    ""

    1111

    2

    3

    4444

    5

    6

    "++,

    -../

    0+,

    -./

    0+,

    -./

    0

    ""

    =0h

    imG!

    .....132

    7h

    ...256

    9

    64

    1h

    16

    3

    4

    1h 2

    "+,

    -./

    0

    "+,

    -./

    0"+

    ,

    -./

    0

    =1

    32

    716

    3

    4

    1

    = 252

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    33/150

    SOLUTIONS (XII) # 32

    (ii)0x

    imG!

    3

    2x

    x

    2

    xtanxsin1e !!!

    3

    2353432

    0h x

    ...3

    xx

    2

    1...

    !5

    x

    !3

    xx...

    !4

    x

    !3

    x

    !2

    xx

    im++

    ,

    -../

    0""+

    +,

    -../

    0""+

    +,

    -../

    0""""

    G

    !

    = 3

    432

    0h x

    ....3

    1

    !4

    1x

    6

    1

    6

    1x

    2

    1

    2

    1x

    im

    "++,

    -../

    0"+

    ,

    -./

    0"+

    ,

    -./

    0

    G!

    =6

    1+

    6

    1=

    3

    1

    SECTION (E) :

    E-2. (i)4

    x

    im8G

    !(tan x)

    tan2x

    =

    x2tan)1x(tan

    4x

    im

    e

    8G

    !

    =

    xtan1

    xtan2

    4x

    im

    e

    "8G

    !

    = e 1 =e

    1

    (ii)'Gx

    im!

    x

    x31

    x21+,

    -./

    0""

    ='Gx

    im!

    x

    3

    x

    1

    2x

    1

    ++++

    ,

    -

    .

    .

    .

    .

    /

    0

    "

    "

    =

    '

    +,

    -./

    03

    2= 0

    (iii)1x

    imG! L M 2

    xsec

    nx1

    8

    "! = 2x

    sec).nx(1x

    im

    e

    8

    G!!

    = 2x

    cos

    nx

    1xim

    e

    8G

    !!

    (0

    0form) = 2

    xsin

    2

    x

    1

    1xlim

    e

    88G=

    +,

    -./

    082

    e

    (iv) "G0xim! L M

    2xx ((0)0form)

    Let y = "G0xim! L M

    2xx

    & y = "G0xim

    e! x2(!nx) & y =

    2x

    1

    nx

    0x

    im

    e

    !!

    "G

    & y =3x

    2

    x

    1

    0x

    im

    e

    "G!

    = e0= 1

    (v)

    2x

    im8

    G

    ! (tan x)cosx ('0 form) & y =

    )xtann.(xcos

    2x

    im

    e

    !!

    8G

    & y =xsec

    xtann

    2x

    im

    e

    !!

    8G

    & y =

    xtanxsec

    x2sec

    xtan

    1

    2x

    im

    e

    \8

    G

    !

    & y =x2sin

    xcos

    2x

    im

    e

    8G

    !

    & y = e0= 1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    34/150

    SOLUTIONS (XII) # 33

    (vi) !G1xim! ([x])1x

    0himG! [1 h]1 (1 h)

    0himG!

    (0)h= 0

    E-3.'Gn

    im! 3n

    ]x)1n(.n[.....]x3.2[]x2.1[ """"

    (1.2)x 1 < [1.2x] )(1. 2)x(2.3)x 1 < [2.3x] )(2.3)x % % %

    n(n + 1) x 1 < [n (n + 1)x] )n(n + 1)xso (1.2)x + (2.3)x + ... n (n + 1)x n

    < [1.2 x] + [2. 3 x] + .... [n(n +1)x]

    )(1. 2) x + (2. 3) x + .... n(n +1)xx . (]n2 + ]n) n ) [1. 2x] +[2. 3x] +......[n(n+1)x] ) x (]n2 + ]n)

    & 'Gnim!

    3

    n

    n2

    )1n(n

    6

    )1n2()1n(n.x 12

    345

    6 ""

    ""

    < 3n n

    ]x)1n(n[.....]x3.2[]x2.1[im

    """"'G

    !

    ) 'Gnim!

    3n

    2

    )1n(n

    6

    )1n2()1n(nx 12

    345

    6 ""

    ""

    'Gnim! x 2

    2

    n

    1

    2

    n

    1

    n

    1

    6

    n

    12

    n

    11.1

    1111

    2

    3

    4444

    5

    6+,

    -./

    0"

    "+,

    -./

    0"+

    ,

    -./

    0"

    3n n

    ]x)1n(n[.....]x3.2[]x2.1[im

    """"=

    'G!

    ) 'Gnim! x

    1111

    2

    3

    4444

    5

    6+,

    -./

    0"

    "+,

    -./

    0"+

    ,

    -./

    0"

    2n

    1

    n

    1

    6n

    12

    n

    11.1

    2

    3

    x

    n

    ]x)1n(n[.....]x3.2[]x2.1[im

    3

    x3n

    )""""

    ='G

    !

    so'Gn

    im! 3n

    ]x)1n(n[.....]x3.2[]x2.1[ """"=

    3

    x

    E-5. f(x) = 'Gnim!

    1x

    1xn2

    n2

    "

    !

    case (i) when x = 1 f(x) = 'Gnim!

    11

    11

    "= 0

    case (ii) when x > 1 f(x) = 'Gnim!

    n2

    n2

    x

    11

    x

    11

    +,

    -./

    0"

    +,

    -./

    0

    =01

    01

    "= 1

    case(iii) when x < 1 f(x) = 'Gnim!

    1x

    1xn2

    n2

    "

    !=

    10

    10

    " = 1

    range of f(x) is {1, 0, 1}

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    35/150

    SOLUTIONS (XII) # 34

    PART - IISection (A) :

    A-3*. f(x) =]x[x

    20x9x2

    !"!

    !G5x

    im!

    ]x[x

    20x9x2

    !

    "!=

    1

    204525 "= 0

    "G5xim!

    ]x[x

    20x9x2

    !"!

    =]h5[h5

    20)h5(9)h5(im

    2

    0h """""

    G!

    =h

    20h945hh1025im

    2

    0h

    """G!

    =h

    hhim

    2

    0h

    "G! =

    h

    )1h(him

    0h

    "G! = 1

    " 5xim

    G! f(x) $ "G5x

    im! f(x) so5x

    imG! f(x) does not exist

    SECTION (B) :

    B-2.0x

    imG!

    ++,

    -../

    0"++

    ,

    -../

    0

    !

    3

    x1n

    p

    xsin

    )14(2

    3x

    !

    =0x

    imG!

    ++,

    -../

    0"

    1111

    2

    3

    4444

    5

    6++,

    -../

    0

    ++,

    -../

    0

    ++,

    -../

    0

    3

    x1n.

    p

    x

    p

    xsin

    p

    x

    x

    14x

    2

    3x

    3

    !

    = 3p .0x

    imG!

    1111

    2

    3

    4444

    5

    6++

    ,

    -../

    0

    ++

    ,

    -../

    0

    p

    x

    p

    xsin

    x

    14 3x

    .

    ++

    ,

    -../

    0"

    ++

    ,

    -../

    0

    3

    x1n

    3

    x

    2

    2

    !

    = 3 p (!n 4)3

    B-6.2

    x

    im8

    G

    ! tan2 x +,-.

    /0 ""!"" 2xsin6xsin4xsin3xsin2 22

    =2

    x

    im8

    G! tan2 x +++

    ,

    -

    .../

    0

    """""""!""

    2xsin6xsin4xsin3xsin2)2xsin6x(sin4xsin3xsin2

    22

    22

    =2

    x

    im8

    G

    ! tan2 x .261432

    )2xsin3x(sin2

    """""

    "

    =2

    x

    im8

    G

    !112

    3

    445

    6 "

    xcos

    2xsin3xsin

    6

    12

    2

    +,

    -./

    0form

    0

    0(use L'Hospital rule)

    =6

    1

    2x

    im8

    G

    ! )xsin(xcos2

    xcos3xcosxsin2

    =6

    1

    2x

    im8

    G

    !xsin2

    3xsin2= +

    ,

    -./

    0+

    ,

    -./

    02

    1

    6

    1=

    12

    1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    36/150

    SOLUTIONS (XII) # 35

    B-7*. Let f(x) =|x|x

    x2cos2cos2 !

    !

    (A) )x(fim1x !G

    ! for x = 1 |x| = x f(x) =xx

    x2cos2cos2 "

    !

    Nowxx

    x2cos2cosim

    21x "

    !!G

    ! (0

    0form) =

    1x2

    x2sin2im

    1x "!G! = 2sin2

    (B)xx

    x2cos2cosim

    21x !

    !G

    ! (0

    0form) =

    1x2

    x2sin2im

    1x !G! = 2sin2

    SECTION (C) :

    C-1. sinh < h < tanh , h % +,

    -./

    0 82

    ,0

    1sinh

    h? & 1

    hsin

    h=

    LHL =1111

    2

    3

    4444

    5

    6

    +,

    -./

    0!

    8

    8!!

    8

    Gh

    2cos

    2

    h

    2im0h

    != 1

    234

    56!

    G sinhhim

    0h! = 2

    RHL =1111

    2

    3

    4444

    5

    6

    +,

    -./

    0 "8

    8!"

    8

    Gh

    2cos

    2h

    2im0h

    != 1

    2

    345

    6!G sinh

    him

    0h! = 2 # LHL = RHL = 2

    C-3.'Gn

    im! n

    n

    )1(n4

    )1(n3

    !!

    !"! =

    'Gn

    im!

    n

    1.)1(4

    n

    1)1(3

    n

    n

    !!

    !"!

    =

    04

    03 "=

    4

    3

    C-6*. (A) 'Gxim!

    6x3

    2x2

    !

    " = 'Gx

    im!6x3

    2x2

    !

    "= 'Gx

    im!

    x

    63

    x

    21

    2"

    = 3

    1

    (B) 'Gxim!

    6x3

    2x2 "= 'Gx

    im!

    x

    63

    x

    21

    2"

    =3

    1

    SECTION (D) :

    D-4.0x

    imG!

    xsinx

    xcose3

    2

    2x

    =0x

    imG!

    112

    3

    445

    6"

    112

    3

    445

    6"

    112

    3

    445

    6"

    ^^

    .......!3

    xxx

    ......!4

    x

    !2

    x1......

    !2.4

    x

    2

    x1

    33

    44

    =0x

    imG!

    112

    3

    445

    6"

    "12

    345

    612

    345

    6

    .......!3

    x1x

    .....!6

    1

    !3.8

    1x

    !4

    1

    8

    1x

    24

    64

    = 12

    345

    624

    1

    8

    1=

    12

    1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    37/150

    SOLUTIONS (XII) # 36

    D-5*. For0x

    imG!

    2x

    xcosa1"

    for ++,

    -../

    0

    00

    form

    1 + a = 0 & a = 1

    for 0ximG

    !3x

    xsinb

    = 0ximG

    !

    2x

    b

    so b = 0

    Now != 0ximG!

    2x

    xcosa1"

    0ximG! 3x

    xsinb

    =0x

    imG!

    2x

    xcos1=

    0ximG!

    2x2x2sin2

    =0x

    imG!

    42

    2

    2x

    2xsin

    ++++

    ,

    -

    .

    .

    .

    .

    /

    0

    =2

    1. (1)2=

    2

    1

    # (a, b) = (1, 0) and !=2

    1

    SECTION (E) :

    E-3.)x(tann

    1

    4x

    ])x[1(im !! "8

    G=

    )x(tann

    1

    4x

    )1exact(im !!8

    G= 1

    E-7.'Gn

    im! 1

    4n

    ]xn[...]x2[]x1[ 333 """

    13x 1 < [13x] ) 13x23x 1 < [23x] ) 23x

    . . .

    . . .

    . . .

    n3x 1 < [n3x] ) n3xAdding all these inequilities

    (13+ 23+ 33...........+ n3) x n < [13x] + [23x] + ...........[n3x] ) (13+ 23+ ..........n3) x

    4

    22

    n

    nx4

    )1n(n!

    "

    & L

    1= 'Gx

    im! x

    xx

    e

    e)x(f)x(fe`

    `` `>

    & L = L1= 'Gx

    im!Y Z

    +,

    -./

    0`

    `

    `

    1.e

    dx

    d

    e)x(fdx

    d

    x

    x

    & L = 'Gxim!

    ++,

    -../

    0

    `

    `

    `

    x

    x

    e

    e)x(f

    & L ='Gx

    im! `f(x) & L = `'Gx

    im! f(x)

    & L = ` L2

    & L2=

    `

    L

    12. 1 < 2 < n

    1 < 3 < n1 < 4 < n1 < 5 < n. . .

    . . .

    . . .1 < n 1< nmultiply all these inequilities1 < 2 . 3. 4 . 5 ... (n1) < nn2

    1 < (n 1)! < nn2

    n < n! < nn 1

    nn

    n

    < nn

    !n

    < n

    1

    & 'Gnim!

    1nn

    1

    < 'Gnim!

    nn

    !n

    < 'Gnim!

    n

    1

    0 < 'Gnim! nn

    !n< 0 # 'Gn

    im!nn

    !n= 0

    14.CN

    AN= tanX

    CN = AN cotX

    Area of aABC =2

    1(AB) (CN) = AN.CN = AN. AN

    XX

    sin

    cos

    = r cosX.1123

    4456

    XX

    sincosr 2

    =X

    Xsin

    cosr 32

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    40/150

    SOLUTIONS (XII) # 39

    Area of aDEC =2

    1(DE) (CM) = (DM) (CM) = (CM)2tanX= (OC r)2tanX

    =

    2

    rsin

    r+,

    -./

    0X

    tanX CXX

    X!cossin

    )sin1(r 22

    now 0ABimG

    !

    DEC

    ABC

    a

    a

    = 2

    im8

    GX

    !

    22

    32

    )sin1(r.sin

    sin.cos.cosr

    XX

    XXX

    =2

    im8

    GX

    !2

    4

    )sin1(

    cos

    X

    X=

    2

    im8

    GX

    ! 2

    22

    )sin1(

    )sin1(

    X

    X=

    2

    im8

    GX

    ! (1 + sinX)2 = (2)2= 4

    PART - II

    1. 'Gxim!

    x

    n

    e

    x= 0 (n %integer)

    case(i) when n = 0

    then 'Gx im! xe

    nx= 'Gx im! xe

    1= 0

    case(ii) when n is +ve integer

    'Gxim!

    xe

    nx +,

    -./

    0

    '' form

    = 'Gxim!

    xe

    !n= 0

    case(iii) when n is ve n = m where m %z+

    'Gxim! xe

    nx= 'Gx

    im! xe

    mx= 'Gx

    im! xe.mx1

    = 0

    so 'Gxim!

    x

    n

    e

    x

    = 0

    3. 0ximG! f(g (h (x)))

    L.H.L. x G0

    0xim

    G! h (x) = 0+

    "G0xim! f(g(x))

    then "G0xim! g(x) = 1+

    "G1x im! f(x) = 1 1 = 0

    R.H.L. x G0+

    "G0xim! h (x) = 0+ so "G0x

    im! f(g(x)) = 0 L.H.L. = R.H.L. = 0

    5. 'Gxim! +

    +,

    -../

    0"

    +++

    ,

    -

    .

    .

    .

    /

    0

    ++,

    -../

    0

    2x

    1sinx1sinx

    'Gxim!

    ++++

    ,

    -

    ..

    .

    .

    /

    0

    ++,

    -../

    0"

    ++

    ,

    -

    .

    .

    /

    0

    2x

    1sin

    x1

    x1sin

    = 1 + 0 = 1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    41/150

    SOLUTIONS (XII) # 40

    6. +++

    ,

    -

    .

    .

    .

    /

    0

    12

    345

    6

    G

    3

    ax

    a

    3|x|ax

    im! (a > 0) # x = a h

    =++++

    ,

    -

    ..

    .

    .

    /

    0

    112

    3

    445

    6

    G

    3

    aha

    a

    3|ha|

    0him! =

    ++++

    ,

    -

    ..

    .

    .

    /

    0

    112

    3

    445

    6

    G

    3

    ah

    1a

    3|a|

    0him! = a20 = a2

    12. 'Gx im! sec

    1 +,

    -

    ./

    0

    " 1xx

    replace x Gy

    1& 'Gx

    im! G 0yimG!

    = 0yimG! sec1

    ++++

    ,

    -

    .

    .

    .

    .

    /

    0

    " 1y

    1

    y

    1

    = 0yimG! sec 1 ++

    ,

    -../

    0

    "1y1

    when y G 0+;1y

    1

    " < 1

    so 0yimG! sec 1 ++

    ,

    -../

    0" 1y1

    does not exist.

    14. (i) != L Mxsin1xsinimx

    !"'G

    !

    & != ++,

    -../

    0 !"++,

    -../

    0 ""'G 2

    x1xsin.

    2

    x1xcos2im

    x!

    & ! = L M++,

    -../

    0

    ""

    !"++,

    -../

    0 ""'G x1x2

    x1xsin.

    2

    x1xcos2im

    x!

    & != L M++,

    -../

    0

    ""++,

    -../

    0 ""'G 1xx2

    1sin

    2

    1xxcos2im

    x!

    & != (oscillating value 1 to 1) 0 = 0

    (ii) m = xsin1xsinimx

    !"!'G

    !

    when x G !'

    then x undefined

    m is undefined

    16. To find 0x imG! f(x)

    L.H.L. = 0xim

    G! f(x)

    = 0xim

    G! }x{cot}x{ =

    0himG! )h1(cot)h1( = 1cot

    R.H.L. = "G0xim! f(x) = "G0x

    im!22

    2

    ]x[x

    ]x[tan=

    0himG!

    22

    2

    ]h0[)h0(

    ]h0[tan

    ""

    "=

    0himG! 2

    2

    h

    0tan= 0

    " L.H.L. $R.H.L. so0x

    imG! f(x) does not exist. f(x) is not continuous at x = 0.

    Now cot1

    2

    0x

    )x(fim +,

    -./

    0

    G

    !

    = cot1 2)1cot( = cot1(cot 1) =1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    42/150

    SOLUTIONS (XII) # 41

    18. sinX< X< tanX , X% +,

    -./

    0 82

    ,0

    XX

    ==X

    X tan1

    sin

    X

    X==

    X

    X tannn

    sinn

    0imGX! ++

    ,

    -../

    012

    345

    6X

    X"1

    2

    345

    6X

    X tannsinn; n % N

    L.H.L. = !GX 0im! ++

    ,

    -../

    012

    345

    6X

    X"1

    2

    345

    6X

    X tannsinn= n 1 + n = 2n 1

    R.H.L. = "GX 0im!

    ++,

    -../

    012

    345

    6X

    X"1

    2

    345

    6X

    X tannsinn= n 1 + n = 2n 1 # L.H.L. = R.H.L = 2n 1

    20. 'Gnim!

    ++

    ,

    -..

    /

    0"

    """

    ""

    "n2n

    1.............2n

    1

    1n

    1

    n

    12222

    using sandwitch theorem

    2n

    1)

    n

    1

    1n

    1

    2 ")

    n

    1

    % %

    n2n1

    2 " )

    n1

    adding all these inequilities

    n2n

    1.............

    2n

    1

    1n

    1

    n

    1

    2222 """

    ""

    "" )

    n

    n2

    Taking both side 'Gnim!

    'Gnim! +

    +

    ,

    -

    .

    .

    /

    0

    """

    ""

    ""

    n2n

    1.............

    2n

    1

    1n

    1

    n

    1

    2222= 2

    21. f(x)= 0tim

    G! +

    ,

    -./

    08

    !2

    1

    t

    xcot

    x2

    Case-I : when x = 0f(x) = 0

    Case-II :when x > 0

    f(x) = +,

    -./

    08

    !

    G 21

    0t t

    xcot

    x2im! = )(cot

    x2 1 '\8

    !=

    8x2

    . 0 = 0

    Case-III when x < 0

    f(x) = +,

    -

    ./

    0

    8

    !

    G 2

    1

    0t t

    x

    cot

    x2

    im! = 8x2

    cot

    1(

    ') = 8

    x2

    . 8= 2x

    & f(x) = 2x

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    43/150

    SOLUTIONS (XII) # 42

    25. 0yimG!

    +++++

    ,

    -

    .

    .

    .

    .

    .

    /

    0++,

    -../

    0+,

    -./

    0 "!+,-

    ./0 +

    ,-.

    /0 "

    'G y

    1nxexp1nxexp

    imxyb

    xya

    x

    !!

    ! = 0yimG!

    +++++

    ,

    -

    .

    .

    .

    .

    .

    /

    0+,-

    ./0 "!+

    ,-.

    /0 "

    'G y

    11

    im

    xx

    x

    xyb

    xya

    !

    by expansion = 0yimG!

    ++++++

    ,

    -

    ..

    .

    .

    ..

    /

    0

    ++,

    -../

    0"""!++

    ,

    -../

    0"""

    'G y

    .....!2

    )1

    x(xby1......!2

    )1

    x(xay1

    im2

    22

    2

    22

    x

    xyb

    xya

    !

    = 0yimG!

    1111

    2

    3

    4444

    5

    6""

    y

    .....)ba(2

    y)ba(y 22

    2

    = a b

    29.Ax

    )1ax(im n

    n

    x "

    "'G!

    (A) If n %N

    'Gxim!

    n

    n

    x

    A1

    x

    1a

    "

    +,

    -./

    0"

    =01

    )0a( n

    ""

    = an

    (B) If n %Z& a = A = 0

    then 'Gxim!

    Ax

    )1ax(n

    n

    "

    "= 'Gx

    im! nx

    1= ' n %Z

    (C) If n = 0

    then 'Gxim!

    Ax

    )1ax(n

    n

    "

    "= 'Gx

    im! A1

    1

    "=

    A1

    1

    "

    (D) If n %Z, A = 0 & a $0

    then 'Gxim!

    Ax

    )1ax(n

    n

    "

    "= 'Gx

    im!n

    n

    x

    )1ax( "= 'Gx

    im!

    n

    x

    1a +

    ,

    -./

    0" = (a + 0)n= an

    EXERCISE # 3

    1. (A) 0ximG!

    xsin

    x]etan[x]etan[2

    2222 !!

    = 0ximG!

    2

    22

    22

    2222

    22

    2222

    x

    xsinx

    x]e[

    x]etan[x]e[

    x]e[

    x]etan[x]e[

    !

    !!

    = [e2] [e2] = 15

    (B) 0ximG! L M 1

    2

    345

    6""

    x

    xsin)6t4tmin( 2 = 0x

    imG!

    12

    345

    6x

    xsin2

    " sin x < x &x

    xsin2< 2 & 1

    23

    456

    x

    xsin2= 1 So 0x

    imG!

    123

    456

    x

    xsin2= 1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    44/150

    SOLUTIONS (XII) # 43

    (C) 0ximG!

    2

    4

    13/12

    xx

    )x21()x1(

    "

    "= 0x

    imG!

    2

    22

    xx

    ....x4!2

    14

    1

    4

    1

    2

    x1....

    3

    x1

    "

    ++++

    ,

    -

    .

    .

    .

    .

    /

    0

    "+

    ,

    -./

    0

    "++

    ,

    -../

    0""

    =2

    1

    (D) 0ximG! =

    xsin

    xcos122

    "!= 0x

    imG!

    xsin

    4xsin22

    2

    2

    = 0ximG!

    2

    22

    2

    x

    xsin.

    16

    x.16

    4

    xsin22

    =8

    2

    Comprehension # 1(For Q.No. 3 to 5)

    f(x) = 'Gnim!

    n

    n

    xcos ++

    ,

    -../

    0=

    n.1n

    xcosim

    ne

    ++,

    -../

    0!

    'G!

    Substituting, n = 2t

    1& f(x) =

    +,

    -./

    0 !G 20t t

    1txcosim

    e!

    =+,

    -./

    0 !!

    G 222

    0t xt

    txcos1xim

    e!

    =2x

    2

    1

    e!

    g(x) = b4x & b = 'Gx

    im! +,-.

    /0 "!"" 1x1xx 22 = 'Gx

    im!++

    ,

    -

    .

    .

    /

    0

    """"

    !!""

    1x1xx

    1x1xx

    22

    22

    =2

    1

    # g(x) = 21

    .4

    x = x2

    By observation, graphs of f(x) and g(x) intersect each other at two points# Number of solutions is 2.

    9. Statement -1 is true as

    12

    345

    6G x

    xsinim

    0x! = 0 and 1

    2

    345

    6G x

    xsinim

    0x! = 1

    Statement - 2 is true as

    ))x(g(himaxG

    ! = h ))x(g(im(axG

    ! if h(x) is continuous at x = g(a).

    10. Statement -1

    0ximG!

    x

    2

    x2cos1

    = 0ximG!

    x

    |xsin|& L.H.L. = 1 & R.H.L. = 1

    Statement -2 is true

    14. True indeterminate form of type ''

    18. 1ximG!

    1)x2(

    2)x5(

    !!

    !!

    1ximG!

    2)x5(

    1)x2(1)x2(4)x5(

    ""\ = 1x

    imG!

    4

    2

    x1

    x1 \ =2

    1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    45/150

    SOLUTIONS (XII) # 44

    21. 'Gxim! L Mx)bx()ax( !""

    = 'Gxim!

    x)bx()ax(

    x)bx()ax( 2

    """

    ""

    = 'Gxim!

    112

    3

    445

    6""""

    ""

    1xab

    x)ba(1x

    abx)ba(

    2

    =11

    ba

    ""

    =2

    ba"

    EXERCISE # 4PART - I

    1. 0ximG!

    2)x2cos1(

    xtanx2x2tanx

    !

    != 0x

    imG!

    22 )xsin2(

    x

    STU

    :; 00x

    imG! L M

    xsin

    x

    1

    x

    1xsin +

    ,

    -./

    0"

    xsin

    0x

    x

    1

    0x x

    1im)x(sinim +

    ,

    -./

    0"

    GG!! = 0 +

    xsin

    0x x

    1im +

    ,

    -./

    0G! =

    +,

    -./

    0G x

    1n).x(sinim

    0xe !!

    = xeccos)x(n

    im0x

    e

    !!

    G +,

    -./

    0'

    'form

    =)xcotecx(cos

    x

    1

    0xim

    e G!

    = xcosx

    xsinim2

    0x

    e G!

    = e = 1

    7*. L =4

    222

    0x x

    4

    xxaa

    im!!!

    G! =

    0ximG!

    4

    2

    4

    4

    2

    2

    x

    4

    x....

    a

    x.

    2

    12

    1

    2

    1

    a

    x.

    2

    11.aa !

    1111

    2

    3

    4444

    5

    6

    !+,

    -./

    0 !"!!

    ("a > 0)

    =0x

    imG!

    4

    2

    3

    42

    x

    4

    x......

    a

    x.

    8

    1

    a2

    x!""

    Since L is finite & 2a = 4 & a = 2 # L =0x

    im

    G

    ! 3a.8

    1=

    6

    8. x)2b1(nx

    0xelim

    "

    G

    !

    = 1 + b2= 2b sin2X & sin2X=2

    1 +

    ,

    -./

    0"

    b

    1b

    We know b +b

    1*2 & sin2X * 1 but sin2X ) 1

    & sin2X =1 & X = 2

    8

    9. ++

    ,

    -..

    /

    0

    """

    'Gbax

    1x

    1xxim

    2

    x! = 4

    'Gxim! +

    +,

    -../

    0

    """

    1x

    )b1()ba1(x)a1(x2

    = 4

    Limit is finite it exists when 1 a = 0 &a = 1

    then++++

    ,

    -

    .

    .

    .

    .

    /

    0

    "

    "

    'G

    x

    11

    x

    b1ba1

    imx!

    = 4 # 1 a b = 4 & b = 4

    10. ((1 + a)1/31)x2+ ((a+1)1/2 1)x + ((a+1)1/61) = 0let a + 1 = t6

    # (t21)x2+ (t31)x + (t 1) = 0(t + 1)x2+ (t2+ t + 1)x +1 = 0

    As a G0 , t G1 2x2+ 3x + 1 = 0 &x = 1 and x = 2

    1

    PART - II

    1.0x

    imG!

    x2

    x2cos1

    0ximG!

    x2

    xsin2 2

    = 0ximG!

    x

    |xsin|

    LHL = 0himG!

    1

    h

    hsin

    C , RHL = 0himG!

    1h

    hsin

    CLHL $RHLSo limit does not exist

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    47/150

    SOLUTIONS (XII) # 46

    2. 'Gxim!

    x

    2x

    3x+,

    -./

    0"

    (1'form)

    =x1

    2x

    3xim

    xe

    +,

    -./

    0"'G

    !

    = 2xx5

    imxe "'G!

    = x2

    1

    5im

    x

    e"'G

    !

    = e5

    3. f(2) = 4, f>(2) = 4

    2ximG!

    2x

    )x(f2)2(fx +,

    -./

    0form

    0

    0= 2x

    imG!

    1

    )x(f2)2(f >= f(2) 2f>(2) = 4 8 = 4

    4. f(1) = 1, f>(1) = 2

    1ximG!

    1x

    1)x(f

    !

    !+

    ,

    -./

    0form

    0

    0=

    1ximG!

    )x(f2

    x2)x(f>= 2

    1

    2

    )1(f

    )1(fCC

    >

    5. 'Gxim!

    ]x[

    ]x[xn n!

    = 'Gxim!

    ]x[

    nxn! 'Gx

    im! ]x[

    ]x[= 'Gx

    im! ]x[

    nxn! 'Gx

    im! 1 = 0 1 = 1

    6. 'Gxim!

    x

    2

    2

    3xx

    3x5x++

    ,

    -../

    0

    ""

    ""

    = 'Gxim!

    x

    2 3xx

    1x41 +

    ,

    -./

    0

    ""

    "" (1' form) = 3xx

    )1x4(xim

    2xe """

    'G!

    = e4

    7.2

    x im8G!3)x2(

    2

    xtan1

    )xsin1(

    2

    xtan1

    8+,

    -./

    0"

    +

    ,

    -.

    /

    0

    =2

    x im8G! 3)x2(

    )xsin1(

    2

    x

    4

    tan

    8

    +

    ,

    -.

    /

    08

    put x = y2

    "8

    y G 0+

    = 0yimG! 3)y2(

    )ycos1(2

    ytan +

    ,

    -./

    0

    = 0yimG!

    3y8

    )ycos1(2

    ytan +

    ,

    -./

    0

    = 0yimG!

    ++++

    ,

    -

    .

    .

    ..

    /

    0

    2

    y2ytan

    64

    2

    4

    y

    2

    ysin

    2

    2

    ++++

    ,

    -

    .

    .

    ..

    /

    0

    = (1) (1) 32

    1

    32

    1C

    8.0x

    imG! k

    x

    )x3(n)x3(nC

    " !!

    &0x

    imG! k

    x

    3

    x1n

    3

    x1n

    C+,

    -./

    0+,

    -./

    0 " !!

    &0x

    imG!

    1111

    2

    3

    4444

    5

    6

    +,

    -./

    0

    +,

    -./

    0

    +,

    -./

    0+,

    -./

    0 "

    3

    1

    3

    x

    3

    x1n

    3

    1

    3

    x

    3

    x1n !!

    = k

    & k3

    1

    3

    1C" & k =

    3

    2

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    48/150

    SOLUTIONS (XII) # 47

    Alt.

    0ximG! k

    x

    )x3(n)x3(nC

    " !!

    Apply L' Hospital rule

    &0x

    imG! k

    x3

    1

    x3

    1C+

    ,

    -./

    0"

    " & k31

    3

    1C"

    & k =32

    9.ax

    imG! 4

    )x(f)x(g

    )a(g)x(f)a(g)a(f)x(g)a(fC

    "

    Apply L' Hospital rule

    &ax

    imG! ++

    ,

    -../

    0>>

    >>

    )x(f)x(g

    )x(f)a(g)x(g)a(f= 4

    &ax

    imG! 4

    )x(f

    )x(g

    )x(f)x(gk C++

    ,

    -..

    /

    0

    >>

    >>

    & k = 4

    10. 'Gxim!

    2x2

    2e

    x

    b

    x

    a1 C+

    ,

    -./

    0""

    & 2x2xb

    x

    aim

    ee2x C

    +,

    -./

    0"

    'G! & 'Gx

    im! 2x

    2)bax(C

    "

    & 'Gxim! 2

    x

    b2a2 C" # b %R, a = 1

    11. ax2+ bx + c = 0

    a(x _) (x b) = 0

    2

    2

    x )x(

    )cbxaxcos(1im

    _!

    ""!_G

    !

    =2

    22

    x )x(

    2

    cbxaxsin2

    im_!

    ++,

    -../

    0 ""

    _G! = _Gx

    im! 2

    2

    )x(

    )x()x(2

    asin2

    _

    +,

    -./

    0b_

    = _Gx im!

    4

    )x(a2

    2

    )x()x(a

    2

    )x()x(asin 22

    2

    b

    +++++

    ,

    -

    ..

    .

    .

    .

    /

    0

    b_

    +,

    -./

    0 b_

    = (1) 2

    )(a

    4

    )(a2 2222 b_C

    b_

    12.0x

    limG )x(f

    )x3(f= 1

    f(x) < f(2x) < f(3x) Divide by f(x)

    )x(f

    )x3(f

    )x(f

    )x2(f1 ==

    using sandwitch theorem

    & 'Gxlim )x(f)x2(f

    = 1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    49/150

    SOLUTIONS (XII) # 48

    13.2lim

    2xG )2x(

    )2x(sin

    !

    !

    # does not exist

    14. 0|5x|

    9))x(f(im

    2

    5xC

    G!

    0]9))x(f[(im 25x

    CG!

    5ximG! f(x) = 3

    ADVANCE LEVEL PROBLEM

    1.0x

    imG!

    x

    1

    x2

    x1

    x2

    x1

    bb

    aa

    ++

    ,

    -

    .

    .

    /

    0

    "

    "=

    x

    11

    bb

    aaim

    x2

    x1

    x2

    x1

    0x

    e++

    ,

    -

    .

    .

    /

    0!

    "

    "G!

    =++

    ,

    -

    .

    .

    /

    0

    "++

    ,

    -

    .

    .

    /

    0 !!

    !!

    !"

    !G x

    2x

    1

    x2

    x1

    x2

    x1

    0x bb

    1

    x

    )1b(

    x

    )1b(

    x

    1a

    x

    1aim

    e!

    =)blogblogaloga(log

    2

    12e1e2e1e

    e!!"

    =++,

    -../

    0

    21

    21e

    bb

    aalog

    2

    1

    e =21

    21

    bb

    aa

    2.1x

    imG!

    qpqp

    qp

    xxx1

    pxqxqp""!!

    !"! +,

    -./

    0form

    0

    0 =

    1ximG! 1qp1q1p

    1q1p

    x)qp(qxpx

    pqxpqx!"!!

    !!

    ""!!

    ! +

    ,

    -./

    0form

    0

    0

    =1x

    imG! 2qp2q2p

    2q2p

    x)1qp)(qp(x)1q(qx)1p(p

    x)1q(pqx)1p(pq!"!!

    !!

    !"""!!!!

    !!!=

    2

    qp !

    3.0t

    im

    G

    ! t

    11t1t

    ab

    ab

    +

    +

    ,

    -

    .

    .

    /

    0

    !

    ! ""

    =0t

    imG!

    t

    11

    ab

    ab 1t1t

    e++

    ,

    -../

    0!

    !! ""

    =+,

    -./

    0!+

    +,

    -../

    0 !!

    !G ab

    1

    t

    )1a(a

    t

    )1b(bim

    tt

    0t

    e!

    = abnaanbb

    e !! !!

    =

    ab

    1

    a

    b

    a

    b !

    ++,

    -../

    0

    4. LHL = "G0him! f(0 h) = "G0h

    im! f(h) = "G0him! L MB A

    2h1 =1

    RHL = "G0him! f(0 + h) = "G0h

    im! f(h) = "G0him! +

    ,

    -./

    0

    "'G nn h1

    1im! = 1

    5. 0ximG!

    )xtanx(sin

    xk2xn

    cos2ee 2xnxn

    !

    !!"!

    =

    ++,

    -../

    0"""!+

    +,

    -../

    0"!

    !112

    3

    445

    6!"!!

    112

    3

    445

    6"""

    G.......x

    15

    2

    3

    xx........

    !3

    xx

    xk........!4.16

    xn

    !2.4

    xn12.....

    !4

    xn

    !2

    xn12

    im5

    33

    244224422

    0x!

    =..........

    3

    1

    !3

    1x

    !4.16

    n2

    !4

    n2xk

    4

    nnx

    im3

    444

    222

    0x"+

    ,

    -./

    0!!

    ++,

    -../

    0!"+

    +,

    -../

    0!"

    G! limit exists, if coff. of x2is zero.

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    50/150

    SOLUTIONS (XII) # 49

    & n2+4

    n2k = 0 & 4k = 5n2

    so the possible value match that is n = 2, k = 5

    6. L =

    2

    1x

    )x4x3(cosim31

    2

    1x !

    !!

    G

    !=

    2

    1x

    )x3x4(cosim31

    2

    1x !

    !!8 !

    G

    !

    Let X= cos1x " As x G2

    1# XG

    3

    8

    & L =

    2

    1cos

    )3(coscosim1

    3 !X

    X!8 !8

    GX

    !

    Now LHL =

    2

    1cos

    )3(coscosim1

    3 !X

    X!8 !8

    GX!

    !=

    2

    1cos

    3im

    3 !X

    X!8!8

    GX

    ! +,

    -./

    0form

    0

    0

    =

    X!!

    !8GX sin

    3im

    3

    ! = 32

    Also, RHL =

    2

    1cos

    )3(coscosim1

    3 !X

    X!8 !8

    GX"

    ! =

    2

    1cos

    ))32(cos(cosim1

    3 !X

    X!8!8 !

    8GX

    "! =

    2

    1cos

    )32(im

    3!X

    X!8!8"8

    GX

    !

    =

    2

    1cos

    3im

    3 !X

    8!X"8

    GX

    ! +,

    -./

    0form

    0

    0 =X!

    "8GX sin

    3im

    3

    ! = 32

    & LHL $RHL # Limit does not exist

    7.

    I

    I

    C

    C

    'G

    "!

    n

    1r

    3

    n

    1r

    2

    n

    r

    )1rn(r

    im! = I

    II

    C

    CC

    'G

    !"

    n

    1r

    3

    n

    1r

    3n

    1r

    2

    n

    r

    rr)1n(

    im!

    =++++

    ,

    -

    .

    .

    .

    .

    /

    0

    !"

    """

    'G1

    4

    )1n(n

    6

    )1n2()1n()n()1n(

    im22n

    ! =4/1

    3/11 =

    3

    11

    3

    4C!

    8. 'Gnim!

    ++,

    -../

    0!"!! ...

    n6

    C

    n2

    CCn

    n

    23

    x2

    x

    1x1x

    1999

    =2000

    1

    the limit obviously exists if 2000 x = 0 & x = 2000

    9. Let X= sin1 x " as2

    1xG #

    4

    8GX

    2

    1sin

    )cossin2(cosim1

    4 !X

    XX!8

    GX

    !=

    2

    1sin

    )2(sincosim1

    4 !X

    X!8

    GX

    !=

    2

    1sin

    22

    coscosim

    1

    4 !X

    ++,

    -../

    0+,

    -./

    0X!

    8!

    8GX

    !

    Left hand limit =

    2

    1sin

    22coscosim

    1

    4 !X

    ++,

    -../

    0+,

    -./

    0X!

    8!

    8GX

    !! =

    2

    1sin

    22im

    4 !X

    X!8

    !8GX

    ! +,-.

    /0 form

    0

    0

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    51/150

    SOLUTIONS (XII) # 50

    = X

    !

    8GX

    cos

    2im

    4

    ! = 22!

    Right hand limit ="8

    GX4

    im!

    2

    1

    sin

    22

    coscos 1

    !X

    ++,

    -../

    0+,

    -./

    0X!

    8!

    ="8

    GX4

    im!

    2

    1

    sin

    22coscos

    !X

    ++,

    -../

    0+,

    -./

    0 8!X

    ="8

    GX4

    im!

    2

    1sin

    22

    !X

    8!X

    = "8GX

    4

    im! Xcos

    2= 22 & LHL $RHL # Limit does not exist

    10. 0ximG!

    x

    k

    xf...

    3

    xf

    2

    xf)x(f +

    ,

    -./

    0""+

    ,

    -./

    0"+

    ,

    -./

    0"

    +,

    -./

    0form

    0

    0

    = 0ximG!

    12

    3

    45

    6

    +,

    -./

    0>""+,

    -./

    0>"+,

    -./

    0>"> k

    x

    fk

    1

    ...3

    x

    f3

    1

    2

    x

    f2

    1

    )x(f

    = 1 +2

    1+

    3

    1+ .... +

    n

    1= c !""""

    1

    0

    1n2 dx)x...xx1( = c !!

    1

    0

    n

    dxx1

    x1= c

    !!1

    0

    n

    dxx

    )x1(1

    = nC1

    2

    C2n

    +3

    C3n

    ........ + (1)n1.n

    Cnn

    PART - II

    1. Let Ln+1

    =0x

    imG!

    21n321

    x

    )xacos().......xa(cos).xa(cos.)xacos(1 "

    & Ln+1

    =0x

    imG!

    21n211n1n

    x

    )xa(cos.....)xa(cos.)xa(cos)xa(cos)xa(cos1 """ "

    & Ln+1

    =0x

    imG!

    2n211n1n

    x

    )}xa(cos).....xacos().xacos(1{)xa(cos)xacos(1 "" "

    & Ln+1

    =0x

    imG! 2

    1n

    x

    )xacos(1 "+

    0ximG! cos (a

    n+1x) . L

    n

    & Ln+1

    =L M

    2

    a2

    1n" + Ln

    L1= 2

    a21

    , L2= 2

    a22

    + L1= 2

    a22

    + 2

    a21

    , L3= 2

    a23

    + L2= 2

    a23

    + 2

    a22

    + 2

    a21

    , Ln= 2

    1

    ICn

    1i

    2ia

    2. '!Gxim! x x a x b2 1! " " !0

    /. -

    ,+ = 0

    +,-.

    /0 !!""

    'Gbax1xxim 2

    x! = 0

    Let x =h

    10

    h

    bhahh1im

    2

    0hC

    !!"""G

    ! " limit exists

    So 1 a = 0 & a = 1

    0h

    bh1hh1im2

    0hC!!""

    "G!

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    52/150

    SOLUTIONS (XII) # 51

    & 20h hh12

    )1h2(im

    ""

    ""G

    ! b = 0 &2

    1b = 0 & b =

    2

    1

    So a = 1, b =2

    1

    3. " 'Gxim! xnf(x) = p

    & 'Gxim!

    x

    )x(fx 1n"= p

    using L- Hospital rule, we get

    'Gxim!

    1

    )x(fx)x(fx)1n( 1nn >"" "= p &(n + 1) p + 'Gx

    im! xn+1.f>(x) = p & 'Gxim! xn+1f>(x) = np.

    4. Let f(x) =3

    2x

    x

    x1xe "

    Since limit exists & "G0him! f(0 + h) = "G0h

    im! f(0 h) = L (say)

    L = "G0him!

    3

    2h

    h

    h1he "

    Also, L = "G0him!

    3

    2h

    h

    h1he ""&2L = "G0h

    im! 3

    hh

    h

    h2ee

    Put h = 3t

    &2L = "G0tim! 3

    t3t3

    t27

    t6ee &54 L = "G0t

    im! 3

    ttt2t23t3t

    t

    t6)ee(3)ee(3)1e()1e( "

    & 54 L = "G0t im! 112

    3

    445

    6

    "++,

    -

    ../

    0

    "++,

    -

    ../

    03

    tt

    3

    t2t23

    t3

    t

    t

    )t2ee(3t

    )t4ee(3t

    1e

    t

    1e

    & 54 L = "G0tim! 1

    1

    2

    3

    44

    5

    6

    ++

    ,

    -../

    0++

    ,

    -../

    0"+

    +,

    -../

    0"+

    +,

    -../

    03

    tt

    3

    t2t23

    t3

    t

    t

    t2ee3

    )t2(

    t4ee24

    t

    1e

    t

    1e

    & 54 L = 1 + 1 + 48 L 6L &12 L = 2 &L =6

    1

    5. 'Gnim! n

    n! 2 ( ) .......n n n nn

    n

    " "0/.

    -,+

    "0/.

    -,+ "

    0/.

    -,+

    1 & when m >1 continuous and derivableif 0 < m )1 continuous but not derivable

    Section (D) :

    D-2. y = f(x)

    Section (E) :

    E-2. f : R GR and f(x + y) = f(x) f(y) J x, y %RPut x = y = 0 f(0) = f2(0) since f(0) $0

    & f(0) = 1

    f '(x) =h

    )x(f)hx(flim

    0h

    !"G

    =B A

    h

    1)h(f)x(flim

    0h

    !G

    = f(x) f '(0)

    Let f(x) = y &dx

    dy= y.f '(0)

    On solving !ny = x f '(0) + cy = f(x) = ec. ex f '(0) "f(0) = 1 & c = 0

    Thus f(x) = ex.f '(0) J x %R

    E-3._ f(x) is continuous and3

    7% [f(2), f(2)], by intermediate value theorem (IVT), there exists a point

    c % (2, 2) such that f(c) =3

    7

    PART - II

    Section (A) :

    A-2.* (A) f(x) is continuous no where

    (B) g(x) is continuous at x = 1/2(C) h(x) is continuous at x = 0(D) k(x) is continuous at x = 0

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    57/150

    SOLUTIONS (XII) # 56

    Section (B) :

    B-4. y =2tt

    12 !"

    , where t =1x

    1

    !, y = f(x) is discontinuous at x = 1, where t is discontinuous and y =

    )1t)(2t(

    1

    !" at t = 2 and t = 1

    & 1x 1! & 2x + 2 = 1, x = 21

    1 1x

    1

    ! & x = 2 f(g(x)) is discontinuous at x =

    2

    1, 2,1

    Section (C) :

    C-9. !G2xLim

    f(x) =5

    3= f(2) $ "G2x

    Limf(x) = 1

    f(x) is not continous at x = 2

    !G3xLim

    f(x) = "G3xLim

    f(x) = f(3) =2

    9

    Now LHD (x =3) is 0hLim

    G h

    2

    9))h3()h3((

    4

    1 23

    !

    !!!!

    C 0hLim

    G 421

    4

    21h8h2C

    "!

    and RHD (x = 3) is 0hLim

    G 0h

    2

    9|)h1||1h(|

    4

    9

    C!!!"!

    # f(x) is not differentiable at x =2 and x = 3

    Section (D) :

    D-3.* 0x

    0x

    0

    x/1cos)x(sin)x(fy

    21

    C

    $

    9:

    9;(1) =0h

    LimG

    h

    )ba(b)h1(a8)h1(3)h1(

    ])h1sin[( 32

    2

    !

    "!"!""!!!

    8!

    =0h

    LimG h

    a)h1(a 3

    !!!

    +,-

    ./0

    form0

    0 =

    0hLim

    G 1

    )h1(a3 2!

    f>(1) = 3a

    f>(1+) =0h

    LimG h

    ba)h1(tan)h1cos(2 1 !!""8" !=

    0hLim

    G h

    )ba)h1(tanhcos2( 1 !!""8! !

    Function is differentiable

    # 2 +4

    8= a + b .....(1)

    =0h

    LimG h

    2/2)h1(tanhcos2 1 8"!""8! !=

    0hLim

    G 28sin 8h + 2)h1(1

    1

    ""=

    2

    1

    Now f>(1) = f>(1+) 3a =2

    1

    a =6

    1....(2) by (1) and (2) b =

    48

    6

    13

    PART - II

    3. f +,

    -./

    082

    =]h41[n

    (cosh)n

    h4

    cosh1lim

    220h "

    !G !

    !

    =)h41(n

    h4.

    2/h

    2/hsin

    1616

    2lim

    2

    2

    2

    2

    0h "++,

    -../

    0

    \G !.

    2/hsin2

    )2/hsin21(n2

    2!!.

    2/h

    2/hsin22

    2

    =641 . 1. 1.(1) .1 =

    641!

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    61/150

    SOLUTIONS (XII) # 60

    5. f(x) = [sin[x]] =

    99

    99

    :

    9999

    ;

    (0) = 4

    0xlimG 2x

    )x4(f)x2(f3)x(f2 "!12

    345

    60

    0form

    using L>Hospital rule

    0xlimG x2

    )x4(f4)x2(f6)x(f2 >">!>12

    345

    60

    0form

    using L>Hospital rule

    0xlimG 2

    )x4(f16)x2(f12)x(f2 >>">>!>>=

    2

    4.164.124.2 "!= 12

    17. f(x) = [n + psinx] , x %(0, 8)graph of y = n + p sinx

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    62/150

    SOLUTIONS (XII) # 61

    obviouslyf(x) = [n +psinx] is discontinous at points mark in above curve

    & number of such points & (p 1) + 1 + p 1 = 2p 1

    21. f(x) = [x] + }x{

    Curve of y = f(x) = 9

    :

    9;

    (1) = Rf>(1).Therefore, function is differentiableat x = 1.

    Again Lf>(2) =

    = = (4 1) (2 1) sin 2 = 3 sin 2

    and R f>(2) = = = (221) sin 2 = 3 sin 2

    So L f>(2) $R f> (2), f is not differentiable at x = 2Therefore, (d) is the answer.

    12. f(x) = [x sin 8x]f(0) = 0

    f(0 ) = [h sin8(h)] = 0 ; f(0+) = [h sin 8h] = 0

    Here f(0) = f(0+) = f(0) = 0So continuous at x = 0Since graph of f(x) is as shown in the figureNow all options can be checked from graph.

    PART - II

    1. f(x) =

    (i) for 0 < sin x < 1,

    f(x) = = 1

    (ii) for sin x = 0,

    f(x) =

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    76/150

    SOLUTIONS (XII) # 75

    (iii) for 1 )sinx < 0,

    f(x) = # f(x) =

    # f(x) is discontinuous at integral multiples of 8

    2.

    = =

    = =

    for g(x) to be continuous (!na)2= (!n2a)2 & (!na + !n2a) = 0

    & a = # g(0) = (!n 2)2

    3. " f(x) =

    by definition of g(x)

    g(x) =

    g>(x) =

    clearly g(x) is discontinuous at x = 0 and not differentiable at x = 0, 2

    4. f(x) =

    graph of f(x) is as shown is figure

    #f(x) is continuous for all x butnon-differentiable for integral points.

    5. " f(x) =

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    77/150

    SOLUTIONS (XII) # 76

    " f(x) = = 0 and f(x) = = 0

    and f (0) = 0 # f(x) is continuous at x = 0

    " f(x) = = and f(x) = G '

    #f(x) is discontinuous for x = 1

    Similarly we can check that f(x) is discontinuous at x =

    1

    " L.H.D. at (x = 0) is = = = 1

    " R.H.D. at (x = 0) is = = = 1

    & L.H.D. = R.H.D.# at x = 0, f(x) is derivable.

    6. is 1 or 0 according to x is a rational number or an irrational number. As m!8x will

    become integral multiple of 8when x is rational, then cos (m!8x) = 1. And when m!8x is not an integral multipleof 8i.e. when x is irrational then 1 < cos (m!8x) < 1

    #f(x) =

    # f(x) is discontinuous and non-differentiable at every real number.

    7. f(x) + f(y) =

    f(x) = f

    f (x) = f

    put x = 0f (0) = f (y) (1+y2)

    = f (y)

    Integrating both sidesf(0) tan1y = f(y) + c ..... (1)

    Now put x = 0 & y = 0 in f(x) + f(y) = f

    we get 2f(0) = f(0)

    #f(0) = 0 ............. (2) and " = 2

    & = 2 & f> (x) = 2 # f>(0) = 2 ........... (3)

    from (2) & (3) & (1)2tan-1y = f(y) + cnow put y = 1, we get 2tan-11 = f(1) + c

    = + c & c = 0

    # f(x) = 2tan-1x

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    78/150

    SOLUTIONS (XII) # 77

    8. " R.H.L. = f(0 + h) =

    = .

    (putting 1h2= cos2X)

    = = =

    " L.H.L = f(0 h) =

    = = = =

    since R.H.L. $ L.H.L, therefore no value of f(0) can make f continuous at x = 0

    9. As f is continuous on R, so f(0) = f(x)

    Thus f(0) = f=

    = 0 + 1 = 1

    10. " f(1) = 0

    R.H.L. = f(1 + h) = cos1 = cos1 = 0

    L.H.L. = f(1 h) = cos1 = cos1(0) =

    " f(1) = 0# f(x) is discontinuous hence non-derivable at x = 1

    " f>(1+) = = 0

    and f>(1) = = 0

    & f>(1+) = f>(1) = 0# f(x) is derivable at x = 1

    11. " f>(x) = =

    = f(x) = &f>(x) =

    so dx = =

    12. we have

    f(x) = (sin(h) + cos(h))cosec(-h) = (cosh sinh)cosech

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    79/150

    SOLUTIONS (XII) # 78

    = = = e

    Now we have

    f(x) = = =

    Iffis continuous at x = 0 , then

    e = a = gives a = e and b = 1

    13. Given that

    f(xy) = exyxy(eyf(x) + ex f(y)) x,y %R+

    putting x = y = 1 , we getf(1) = e1(ef(1) + ef(1))

    &f(1) = 0

    now " f>(x) = =

    = = f(x) +

    & f>(x) = f(x) + & = & =

    Integrating both sides w.r.t. x, we get

    !n |x| + c =

    or f(x) = ex(!n|x| + c)

    since f(1) = 0 & c = 0#f(x) = ex!n|x|

    14. Given f(x + y3) = f(x) + [f(y)]3

    and f(0) > 0putting x = y = 0, we getf(0) = f(0) + (f(0))3 & f(0) = 0

    also f>(0) = =

    Let L = f(0) = = = L3

    or L = L3

    or L = 0 , 1, 1 as f>(0) > 0 &f>(0) = 0, 1

    Thus f(x) =

    = & f(x) = & f(x) = 0 , 1

    Integrating both sides, we getf(x) = 0 or f(x) = x + cAs f(0) = 0 , we have f(x) = 0 or f(x) = x

    Now f(x) = 0 is imposible as f(x) is not identically zero# f(x) = x and f(10) = 10

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    80/150

    SOLUTIONS (XII) # 79

    METHOD OF DIFFERENTIATION

    EXERCISE # 1PART - I

    Section (A) :

    A-1. (i) f(x) = sinx2

    f(x) = =

    = = . cos

    = (2x + h) . cos & (f(x)) = (1) . (2x) . cosx2

    f>(x) = 2x cosx2

    (ii) f(x) = e2x + 3

    f(x + h) = e2(x + h) + 3

    (f(x)) = = = e2x + 3 . 2

    = 2e2x + 3 & f(x) = 2e2x + 3. 1 & f>(x) = 2e2x + 3

    A2. (i) y = x2/3+ 7e + 7 tan x

    = x1/3+ + 7 sec2x

    (ii) y = x2.!n x.ex

    = 2x.!n x .ex+ x.ex+ x2.!nx.ex

    (iii) y = !n

    = . sec2 = . = = sec x

    (iv) y =

    =

    =

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    81/150

    SOLUTIONS (XII) # 80

    (v) y = tan

    y =

    y = tan & = sec2

    Section (B) :B3. (i) ax2+ 2hxy + by2+ 2gx + 2fy + c = 0

    & = & =

    (ii) xy + xey + y. exx2= 0

    = & =

    Section (C) :

    C3. (i) y = tan1 + tan1

    y = tan1 + tan1

    y = tan15x tan1x + tan-1 + tan1x

    =

    (ii) y = sin1 , 0 < x < 1

    y = cos1

    Let tan1x = X, X%

    y = cos1(cos 2X)

    0 < 2X(ex).ex

    = ex f>(ex) + e2x f>>(ex)

    E5.* u = exsin x, v = excos x

    v

    u = v(ex

    cos x + ex

    sin x)

    u(ex

    cos x

    ex

    sin x)

    = exsin x(v + u) + excos x( v u)= u(v + u) + v(v u) = v2+ u2

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    85/150

    SOLUTIONS (XII) # 84

    again = exsin x + excos x

    = exsin x + excos x + excos x exsin x

    = 2v

    similarly other options can be checked.

    EXERCISE # 2PART - I

    3. x = at3 and y = bt2

    = 3at2, = 2bt

    = .

    = . =

    . .

    = . . = =

    4. y = 1+ + +

    = + + = +

    = =

    & !ny = !nx !n(x c1) + !nx !n(x c2) + !nx !n(x c3)Differentiating both sides w.r.t. x , we get

    & = =

    & =

    10. y = x!n & = !n

    & = ...(1) & =

    & = &(1 + x) = from equation (1)

    &(1 + x) = +

    &(1 + x) = x + y 1 &(1 + x) + x = y 1

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    86/150

    SOLUTIONS (XII) # 85

    12. let g(x) = &g(x) = + 0 + 0

    " g(_) = g>(_) = 0i.e. _is the repeated root of g(x) = 0 and h(x) is a polynomial of degree 3" f(x) = 0 has repeated root _

    hence g(x), is divisible by f(x)

    PART - II : OBJECTIVE QUESTIONS

    3. x + y = 0

    x2(1 + y) = y2(1 + x)x2y2+ x2y y2x = 0(x + y) (x y) + xy (x y) = 0

    (x y) (x + y + xy) = 0 " x $y & y =

    & = =

    5. y = sin1 + sin1x

    = + = + &P =

    6. f>(x) = , g(2) = a & g>(2) = ?

    g is inverse of ff(g(x)) = xDifferentiating w.r.t. xf> (g(x)) . g>(x) = 1

    g>(x) = & g>(2) = = & g> (2) =

    10. u = ax + bLet y = f(ax + b)

    = a f >(ax + b)

    =a2f>>(ax + b)

    = a3f>>>(ax + b)

    = anfn(ax + b) & f(ax + b) = anfn(u) = an f(u)

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    87/150

    SOLUTIONS (XII) # 86

    12. y = f & f>(x) = sin x

    & = f> . = sin .

    14. y2

    = P(x)

    & 2y = P>(x) & =

    & 2 = & 2y3 = y2P>>(x) P>(x) . y

    & 2y3 = P(x) P>>(x) " y2= P(x) & y =

    & 2 = P>(x) . P>>(x) + P(x) . P>>>(x) 2

    # 2 = P(x) . P>>>(x)

    17. f>>(x) = f(x) .... (i)f>(x) = g(x) .... (ii)h>(x) = (f(x))2+ (g(x))2 .... (iii)h(0) = 2, h(1) = 4Differentiating equation (ii) w.r.t. xf>>(x) = g>(x) = f(x)Differentiating equation (iii) w.r.t. xh>>(x) = 2f(x) . f>(x) + 2 g(x) . g>(x)

    = 2f(x) . f>(x)

    2f>(x) . f(x) = 0 {" g>(x) =

    f(x)}& h>(x) is constant& h(x) is linear function" h(0) = 2 & h(x) not passing through (0, 0)Let y = h(x) = ax + bat x = 0

    y = 2 = b & y = ax + 2at x = 1

    a + 2 = 4a = 2 & curve is y = 2x + 2

    20. y = cos1

    =

    & = & =

    & = when x < 0 & =

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    88/150

    SOLUTIONS (XII) # 87

    when x > 0 & =

    Alternate :

    put x = tanX

    tan1

    x = X % & y = cos1

    = cos1

    y = cos1(cosX/2) & y = & =

    EXERCISE # 3

    2. (A) y = f(x3)

    # = f>(x3) . 3x2 # = f>(1) . 3 = 9

    (B) f(xy) = f(x) + f(y)f(1) = f(1) + f(1)

    # f(1) = 0 " f(1) = f(e) + f # f(e) + f = 0

    (C) ff(x) = f(x), f>(x) = g (x)# g>(x) = f>>(x) = f(x)

    h (x) = (f(x))2+ (g(x))2

    # h>(x) = 2f(x) . f>(x) + 2g(x) . g>(x) = 2f(x) . g (x) + 2g(x) (f (x)) = 0

    # h (x) = c, x %R # h (10) = h (5) = 9

    (D) y = tan1(cot x) + cot1(tan x), < x < 8

    = + . sec2 x

    = 1 1 = 2Comprehension # 2 (6, 7, 8)

    = = = at (1, 1)

    & = = & =

    For question 8

    Slope of normal at (1, 1) = =

    Equation of normal

    y 1 = (x 1) & 5y 5 = 8x 8 & 8x 5y 3 = 0

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    89/150

    SOLUTIONS (XII) # 88

    11_. y = x2

    = 2x

    = 2

    again 2x = 1

    2 + 2x = 0 &x = & = & $1

    Statement-2 :

    " = & = =

    15. " x = 1/2 # 0 < x < 1

    then tan1 x = , 0 < (x

    0) = 21F(x

    0), f>(x

    0) = 4f(x

    0), g(x

    0) = 7g(x

    0)

    h>(x0) = kh(x

    0)

    F>(x) = f>(x).g(x).h(x) + f(x).g>(x).h(x) + f(x).h>(x).g(x)at x = x

    0

    21F(x0) = 4f(x

    0)g(x

    0)h(x

    0) 7f(x

    0).g(x

    0).h(x

    0) + kf(x

    0)g(x

    0).h(x

    0)

    21(f(x0).g(x

    0).h(x

    0)) = (4 7 + k) f(x

    0).g(x

    0).h(x

    0)

    &k = 24

    EXERCISE # 4PART - I

    1. We have x2+ y2= 1Differentiating w.r.t. x.2x + 2yy>= 0Again diff. w.r.t. x.

    1 + y>y>+ yy>>= 0yy>>+ (y>)2+ 1 = 0

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    90/150

    SOLUTIONS (XII) # 89

    2. p(x) = a0+ a

    1x + a

    2x2+ ........ + a

    nxn

    & p>(x) = a1+ 2a

    2x + ......... + na

    nxn 1

    & p>(1) = a1+ 2a

    2+ ........ + na

    n.......(i)

    Now | p(x) | )|ex 11| Jx *0 (given)& |p(1)| )|e01| = |1 1| = 0But |

    p(1)

    | *0 & p(1) = 0

    Now for 1 < h < ', h $0, 1 + h > 0and |p(x)| )|ex 11| Jx *0

    & |p(1 + h)| )|eh1| Jh > 1, h $0& |p(1 + h) p(1)| )|eh1| " p(1) = 0

    & )

    Taking limit as h G0, we get

    ) & |p>(1)| )1

    & |a1+ 2a

    2+ 3a

    3+ ........ na

    n| )1 {from (i)}

    Hence proved

    3. f : R GR, f(1) = 3, f>(1) = 6

    y =

    & !ny = !n & !ny = By L.H. Rule

    & !ny = = = 2 & y = e2

    4. At x = 0, !ny = 0 & y = 1

    Also on differentiating w.r.t x on both sides, we get (1 + y>) = 2y + 2xy>

    Putting x = 0, we get, = 2y..

    & y>= 2y21 = 1.

    5. Let P(x) = bx2+ ax + c b $0P(0) = 0 c = 0

    P(1) = 1 a + b = 1

    P(x) = (1 a) x2+ ax P>(x) = 2(1 a)x + a

    Now P>(x) > 0 for x %[0, 1]P>(0) > 0 & P>(1) > 0a > 0 & 2(1 a) + a > 0

    0 < a < 2

    # S = {(1 a) x2+ ax; 0 < a < 2}

    6. x sin y + y cos x = 8# x = 0, y = 8

    x cos y + sin y + y (sin x) + cosx = 0

  • 8/13/2019 2nd-Dispatch DLPD IIT-JEE Class-XII English PC(Maths)

    91/150

    SOLUTIONS (XII) # 90

    = # y>(0) = 0

    =

    # = 8

    7. " g(x) = f>(x) ..... (i)& g>(x) = f>>(x) = f(x) ..... (ii)

    F(x) = +

    & F>(x) = 2f(x/2) . f>(x/2) . + 2 g(x/2) . g>(x/2) . & F>(x) = + g g>

    & F>(x) = f . f> f> f {Using (i) & (ii)}

    & F>(x) = 0 & F(x) = constant & F(5) = F(10) = 5

    8. =

    = . =

    9. g(x + 1) = log [f(x + 1)] = log [xf(x)] = log x + log [f(x)] = log x + g(x)

    & g(x + 1) g(x) = log x

    & g>>(x + 1) g>>(x) = & g>> g>> = 4

    & g>> g>> = & g>> g>> =

    Adding all, g>> g>> = 4

    PART - I