2magnificent Tools.. Example

download 2magnificent Tools.. Example

of 6

Transcript of 2magnificent Tools.. Example

  • 8/20/2019 2magnificent Tools.. Example

    1/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 21

     Jurnal Teknologi , 35(A) Dis. 2001: 21–34

    © Universiti Teknologi Malaysia 

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESSCONTROL (SPC) TOOLS: A CASE STUDY

     JAFRI MOHD. ROHANI1 & CHAN KOK TENG2

    Abstract. In order to survive in a competitive market, improving quality and productivity of product or process is a must for any company. Some simple techniques like the “seven basic

    quality control(QC) tools” provide a very valuable and cost effective way to meet these objectives.

     This paper presents a case study in which a local plastic injection moulding company deployedsome part of the “seven basic quality control(QC) tools” to significantly improved the monthly

    defect quality from 13.49% to 7.4%. However, to make them successful as cost effective and prob-

    lem solving tools, strong commitment from top management is required.

     Keywords: Statistical Process Control (SPC), Plastic Injection Moulding, Control Charts

    Abstrak. Syarikat mesti berusaha untuk meningkatkan kualiti dan produktivi produk atauproses untuk maju bersaing. Sebahagian daripada tujuh alatan asas kawalan kualiti merupakan

    suatu teknik yang sangat berkesan untuk mencapai objektif tersebut. Kajian kes yang telah dijalankandi syarikat “plastic injection moulding” tempatan telah mengaplikasikan sebahagian daripada tujuh

    alatan kawalan kualiti dan keputusan menunjukkan purata bulanan kualiti kecacatan produkmenurun dari 13.49% ke 7.4%. Untuk mencapai kejayaan seterusnya dalam mempertingkatkan

    kualiti produk, sokongan daripada pihak atasan syarikat amatlah diperlukan.

     Kata kekunci : Kawalan Kualiti Berstatistik, “Plastic Injection Moulding”, carta kawalan

    1.0 INTRODUCTION

     The competitive business in the telecommunication market has encouraged “thecompany” in this study to provide lower cost, better quality product. Quality im-provement program had been designed and implemented to increase the potentialof making more profit. By improving the quality, it also means improvement inproductivity and lower reject rate. Quality goals can be included in the businessplan and as a degree of a product or service excellence provided to customer.Quality improvement should not only focused on external customer but also itsinternal customer. The purpose of this study is to improve the quality of plasticinjection moulded lenses used in telecommunication devices. The objective of thisstudy is to reduce the defect rate from 13.49% to 10%.

    1 & 2 Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia, 81310, Skudai, Johor Darul Ta’zim.Email: [email protected]

    Untitled-37 02/16/2007, 17:3121

  • 8/20/2019 2magnificent Tools.. Example

    2/13

     JAFRI MOHD. ROHANI & CHAN KOK TENG22

    2.0 QUALITY TOOLS

     The company had used some of the “seven basic quality control tools” in theirproblem solving technique. The seven quality tools are [1]:

    a. Check Sheet  b. Pareto Chart  c. Histogramd. Scatter Diagrame. Process Flow Chart f. Cause and Effect Diagram or Fish Bone Diagramg. Control Chart  

     The control chart is perhaps the most widely used of the “seven basic quality controltools”. It is the key tool in statistical process control (SPC) because it displays processbehavior graphically and it is used to monitor and control processes within the specifiedcontrol limits [2]. There are two basic types of control chart, depending on the type of data collected; namely variable control chart and attribute control chart.

     Variable control chart are designed to control product characteristics and processparameters which are measured in continuous scale. Examples of product charac-teristics are length, weight, and diameter and examples of process parameters aretemperature, pressure, and PH value [3]. The primary variable control chart usedare the X -bar and R chart and moving range chart, while the other two, rarely used

    charts include X -bar and s chart and median chart [4]. Attribute control charts are designed to control the process. Measurements used

    are in terms of good or bad, accept or reject, go/no-go, or pass or fail criteria (eg.conforming or non-conforming) [3]. The distinction between nonconforming ordefective unit and nonconformities or defects is very important in attribute controlchart because it will determine the selection in the type of attribute control chart used. Examples of nonconformities or defects in injection moulded lenses are flowlines/marks, dirty dots and scratches. A nonconforming or defective unit, however,may fail to meet the assesment criteria because of one or more nonconformities ordefects exists. For attribute data, there are: p chart, np chart, c chart and u chart. The

     p and np charts are the most widely used. They are primarily used to monitor thefraction of nonconforming unit, while, the c and u charts are used to monitor thenumber of nonconformities or defects. Wodall [5] discussed in detail the theory andfuture research of attribute control chart.

    3.0 DATA COLLECTION AND ANALYSIS

     The company collected the data over a period of three months based on daily checksheet which include the quantity output of good parts and defective parts as shownin Figure 1.

    Untitled-37 02/16/2007, 17:3122

  • 8/20/2019 2magnificent Tools.. Example

    3/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 23

       F   i  g  u  r  e

       1

       D  a   t  a   C  o   l   l  e  c   t   i  o  n

       P   E   R   C   E   N   T   A   G   E   (   %   )

       T  y  p  e  s  o   f   D  e   f  e  c   t  s

        M   o   n  t   h

      I   n -   P  r   o  c  e  s  s   F   a  l  l -   O   u  t

       T   o  t   a  l   G   o   o   d   P   a  r  t  s

       T   o  t   a  l   P  r   o   d   u  c  t  i   o   n

       R  e   w   o  r   k   F   a  l  l -   O   u  t

       F  l   o   w   L  i   n  e   /    M   a  r   k  s

       D  i  r  t   y   D   o  t  s

       S  c  r   a  t  c   h  e  s

       O  t   h  e  r   D  e  f  e  c  t  i   v  e

       G   a  t  e   C  r   a  c   k

       R   O  I   /   L  i   n  e   C   h  e  c   k

       S  i  l   v  e  r

       F   o  i  l   P  e  e  l

       F   o  i  l   D  e  f  e  c  t  i   v  e

       D   u  s  t

       A  l  i   g   n    m  e   n  t   O   u  t

       S  i   n   k    M   a  r   k

       F  e   b  r  u  a  r  y

       1   0   0 .   0

       0

       8   4 .   0

       7

       1   7 .   0

       6

       1 .   1

       3

       4 .   9

       0

       4 .   1

       3

       2 .   7

       6

       1 .   3

       6

       0 .   3

       9

       0 .   5

       3

       0 .   5

       5

       0 .   0

       3

       0 .   0

       3

       0 .   0

       6

       0 .   0

       3

       0 .   0

       2

       M  a  r  c   h

       1   0   0 .   0

       0

       8   5 .   2

       9

       1   6 .   5

       9

       1 .   2

       3

       5 .   1

       8

       4 .   0

       7

       2 .   3

       6

       0 .   7

       8

       0 .   5

       2

       0 .   3

       4

       0 .   1

       4

       0 .   0

       5

       0 .   0

       3

       0 .   0

       1

       0 .   0

       0

       0 .   0

       0

       A  p  r   i   l

       1   0   0 . -   0   0

       8   7 .   2

       7

       1   5 .   2

       6

       0 .   5

       5

       5 .   0

       2

       3 .   6

       7

       1 .   6

       9

       0 .   5

       8

       0 .   7

       4

       0 .   3

       9

       0 .   0

       2

       0 .   0

       3

       0 .   0

       2

       0 .   0

       0

       0 .   0

       0

       0 .   0

       0

       A  v  e  r  a  g  e

       1   0   0 .   0

       0

       8   5 .   5

       5

       1   6 .   3

       1

       0 .   9

       7

       5 .   0

       4

       3 .   9

       6

       2 .   2

       7

       0 .   9

       1

       0 .   5

       5

       0 .   4

       2

       0 .   2

       4

       0 .   0

       4

       0 .   0

       3

       0 .   0

       2

       0 .   0

       1

       0 .   0

       1

       T  a  r  g  e   t

       1   0   0 .   0

       0

       8   9 .   0

       3

       1   6 .   3

       1

       0 .   9

       7

       5 .   0

       0

       2 .   5

       0

       1 .   2

       0

       0 .   9

       0

       0 .   0

       0

       0 .   4

       0

       0 .   0

       0

       0 .   0

       0

       0 .   0

       0

       0 .   0

       0

       0 .   0

       0

       0 .   0

       0

       T  o   t  a   l   %   D  e   f  e  c   t  :

       F  e   b  r  u  a  r  y  :

       1   4 .   8

       0   %

       M  a  r  c   h  :

       1   3 .   4

       8   %

       A  p  r   i   l  :

       1   2 .   1

       8   %

       A  v  e  r  a  g  e  :   1   3 .   4

       9   %

    Untitled-37 02/16/2007, 17:3123

  • 8/20/2019 2magnificent Tools.. Example

    4/13

     JAFRI MOHD. ROHANI & CHAN KOK TENG24

    Figure 3 Fishbone Diagram for Flow Lines / Marks

     

     Machine Operator

    Materials Drying time

    SpecificationMelt flow

    index/characteristics

    Dryingtemperature

    Type ofmaterial

    Training

    Skill

    Coefficiency

    Maintenance

    FlowLines/Marks

    Machine

    Materialsflow speed

    HoldingHeat/temperature

    of injectionWork Method

    Pay attention

    Attitude

    Figure 2 Pareto Chart 

      14.79 14.75 14.70 14.66 14.63 14.08 

    13.55 13.16 

    11.80 

    5.18

    5.02

    4.90 

    14.80 

    13.48 13.48 13.47 13.44 13.39 13.25 12.91 

    12.39 11.61 

    9.25

    9.04

    8.69 

    13.48 12.17 12.15 12.12 12.09 

    11.70 10.97 

    10.39 

    12.17  12.18  12.18 

    0.00 

    2.00 

    4.00 

    6.00 

    8.00 

    10.00 

    12.00 

    14.00 

    16.00 

    Series 2 

    Series 1 

    Series 6 

    Series 3 

    Series 4 Series 5 

    Pareto: TPareto: TPareto: TPareto: TPareto: Type of Defect (Feb - March - April)ype of Defect (Feb - March - April)ype of Defect (Feb - March - April)ype of Defect (Feb - March - April)ype of Defect (Feb - March - April)

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

    Defect TDefect TDefect TDefect TDefect Typesypesypesypesypes

       F   l  o   w

        L   i  n  e

        /    M  a  r   k  s

      G  a   t  e

        C  r  a  c   k

       D  u  s   t

       F  o   i   l    D

      e   f  e  c   t   i   v  e

       F  o   i   l    P

      e  e   l

       O   t   h  e  r    D  e   f  e  c   t   i   v  e

       S   i   l   v  e

      r

       D   i  r   t   y

        D  o   t  s

       S  c  r  a   t  c   h  e  s

       R   O   I    /

        L   i  n  e    C   h

      e  c   k

      A   l   i  g   n  m  e  n   t    O

      u   t

       S   i  n   k

        M  a  r   k

    Untitled-37 02/16/2007, 17:3124

  • 8/20/2019 2magnificent Tools.. Example

    5/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 25

    Based on information in Figure 1 a Pareto chart was constructed to identify the most common defect as shown in Figure 2. The chart revealed that flow lines/marks is thehighest defect with average of 5.04%, dirty dots with average of 3.96%, and followed byscratches with average of 2.27%. All other minor defects are also shown in the Paretochart. Only the top three major defects are chosen for this case study.

    Figures 3 to 5 show the fishbone diagram for the top three defects. The root causes of these three defects can be grouped into machine operator, work method,environment, material, and equipment.

    3.1 Flow Line/Marks

    Flow lines/marks is usually caused by injection moulding process parameters suchas holding time, injection temperature and flow pressure. Raw material itself andtooling design can also cause the problem. Figure 6 shows some possibility that maycause flow lines/marks.

    3.2 Dirty Dots

    Dirty dots are not only caused by incoming raw material but also due to the mouldand operator’s handling. Figure 4 shows the possible causes of dirty dots.

    Figure 4 Fishbone Diagram for Dirty Dots

      Operator

    Handling

    Underlimitation

    Environment

    Material

    Maintenance

    MachineWork Method

    Payattention

    Attitude

    Connectorbetween

    hoppers andmachine

    Process

    Cleanness

    DirtyDots

    Handling

    Specification

    Cleanness

    Cleanness

    Cleanness

    3.3 Scratches

    Packaging and handling process may cause scratches as well as mould condition.Figure 5 shows the possible causes of scratches.

    Untitled-37 02/16/2007, 17:3125

  • 8/20/2019 2magnificent Tools.. Example

    6/13

     JAFRI MOHD. ROHANI & CHAN KOK TENG26

    4.0 IMPROVEMENT ACTION PLAN

     The related areas for improvement can be classified into operator, material,machine, work method and environment. Tables 1 to 3 summarize the action planfor flow lines/marks, dirty dots and scratches respectively.

    Figure 5 Fishbone Diagram for Scratches

     

     

    Packagingcomponent

    Materials Machine

    TrayTransferring

    InstrumentNegating

    Measurement

    Lighting

    Cleanness

    ScratchesAttitude

    Packing

    Machine Operator

    Negating

    Attitude

    Method handling

    Packing

    process

    Work Method

    Skill

    Table 1  Action Plan for Flow lines/marks

    Type Action Plan Suggestion for Flow line/Marks

    Machine – Must have skill/provide training knowledgeOperator – Must have good attitude/pay full attention

    – Follow work procedure

    Material – Every incoming material/resin must go through MFI (Melt Flow Index)– Must have correct drying time/temperature (in hopper) as specified

    Machine – A preventive maintenance to ensure machine always in good condition

     Work Method – Machine must always ensure correct temperature, holding time and flowcondition during injection period

    Untitled-37 02/16/2007, 17:3126

  • 8/20/2019 2magnificent Tools.. Example

    7/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 27

    Table 2  Action Plan for Dirty dots

    Type Action Plan Suggestion for Dirty Dots

    Operator – Material must be handled properly from any dirt  – Must have good attitude/pay full attention.

    Material – Maintain cleanness

    Machine – Machine, mould and hopper must be clean all the time

     Work Method – Connector between machine and hopper must be clean– Follow work procedure

    Environment – Work environment must be clean

    Table 3  Action Plan for Scratches

    Type Action Plan Suggestion for Scratches

    Operator – Condition packaging. Follow work instruction– Must have good attitude/pay full attention– Skill/knowledge on negating 

    Material – Packing component. Correct design/requirement  – Transferring/handling on tray

    Machine – Clean

     Work Method – Packing process must be correct. Follow work instruction.– Method of handling of part 

    Environment – Work environment must clean

    5.0 RESULT ANALYSIS AND SPC IMPLEMENTATION

     After implementing the action plans for the top three defects, significant improve-ment was observed. This observation is done for three months after implementa-tion. The Pareto chart in Figure 6 shows that monthly defect had reduced from10.28% in May to 8.27% in June and 7.41% in July.

    Untitled-37 02/16/2007, 17:3127

  • 8/20/2019 2magnificent Tools.. Example

    8/13

     JAFRI MOHD. ROHANI & CHAN KOK TENG28

     The p chart was also constructed to analyze the process and help determine howto yield further improvement. The p chart was constructed according to MIL STD105E LEVEL II AQL 0.4% SINGLE NORMAL INSPECTION as requested by thecustomer.

     Table 4 shows that inspection level II had been recommended and applied to thesampling plan with code letter K and L for different sample size depending onoutput lot size of above 1200 and below 10000 parts. The customer has requestedthat our part be inspected according to MIL

     Table 5 shows that for level II code letter K, sample size is 125 and if 2 or moredefective is found, all parts in that lot will be rejected. For letter code L, sample sizeis 200 and defective unit allowed is only 2 or less, otherwise the lot will be rejected.

    6.0 CONCLUSION

     A few of the “Seven basic QC tools” had been used for quality improvement activities. For example, fish-bone diagram had been used to describe an unsatisfac-tory condition or phenomenon and help to examine why that problem arised by

    Figure 6 Pareto Chart for May, June and July

     

    1.85  1.030.84

    0.90  0.040.01

    0.00 

    1.44 

    1.31

    1.25

    0.91 0.02

    0.02

    0.01 1.09 

    2.06

    1.63

    1.75 0.40

    0.36

    0.39 0.00

    0.00

    0.01 

    0.00

    0.00

    0.06 0.07

    0.03

    0.00 

    0.00

    0.00

    0.00 

    5.36 

    7.41 

    8.45 

    9.75 10.15  10.19  10.21  10.21  10.21  10.28  10.28 

    4.10 

    5.73 6.57 

    7.82 8.20  8.22  8.24  8.24  8.24  8.27  8.27 

    3.38 

    5.14 

    6.04 

    6.95  7.31  7.31  7.33  7.34  7.40  7.41  7.41 

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    12.00

    May

    June 

    July

    May

    June 

    July

    3.51

    2.66

    2.30 1.851.44

    1.09 

    Pareto: TPareto: TPareto: TPareto: TPareto: Type of Defect (Feb - March - April)ype of Defect (Feb - March - April)ype of Defect (Feb - March - April)ype of Defect (Feb - March - April)ype of Defect (Feb - March - April)

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

       D  e   f  e  c   t   (   %   )

    Defect TDefect TDefect TDefect TDefect Typesypesypesypesypes   F   l  o   w

        L   i  n  e

        /    M  a  r   k  s

      G  a   t  e    C  r  a  c   k

       D  u  s   t

       F  o   i   l    D

      e   f  e  c   t   i   v  e

       F  o   i   l    P

      e  e   l

       O   t   h  e  r    D  e   f  e  c   t   i   v  e

       S   i   l   v  e

      r

       D   i  r   t   y

        D  o   t  s

       S  c  r  a   t  c   h

      e  s

       R   O   I    /

        L   i  n  e    C   h

      e  c   k

      A   l   i  g   n

      m  e  n   t    O

      u   t

       S   i  n   k

        M  a  r   k

    Untitled-37 02/16/2007, 17:3128

  • 8/20/2019 2magnificent Tools.. Example

    9/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 29

    Table 4 Sampling Size Code Letters [6]

    Sampling size code letters

    Lot or batch sizeSpecial inspection levels General inspection levels

    S–1 S–2 S–3 I II III

    2 to 8 A A A A A B9 to 15 A A A A B C16 to 25 A A B B C D

    26 to 50 A B B C D E51 to 90 B B C C E F

    91 to 150 B B C D F G

    151 to 580 B C D E G H281 to 500 B C D F H J501 to 1200 C C E G J K  

    1201 to 3200 C D E H K L3201 to 10000 C D F J L M10001 to 35000 C D F K M N

    65001 to 150000 D E G L N P150001 to 500000 D E G M P Q  500001 to over D E H N Q R  

    Sample size  Sample code  size 

    Letters 

    A  2  0 1  1 2  2 3  3 4  5 6  7 8 10 11 14 15  21 22 30 32 B  3  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15 21 22  30 32 44 45 C  5  0 1  1 2  2 3  3 4  5 6  7 8 10 11  14 15 21 22 30 32  44 45 D  8  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15  21 22 30 32 44 45 E  13  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15 21 22  30 32 44 45 F  20  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15 21 22 G  32  0 1  1 2  2 3  3 4  5 6  7 8  10 11  14 15 21 22 H  50  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15  21 22 J  80  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15 21 22 K   125  0 1  1 2  2 3  3 4  5 6  7 8  10 11  14 15 21 22 L  200  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15  21 22 M  315  0 1  1 2  2 3  3 4  5 6  7 8 10 11 14 15 21 22 

     N  500  0 1  1 2  2 3  3 4  5 6  7 8  10 11 14 15 21 22 P  800  0 1  1 2  2 3  3 4  5 6  7 8  10 11  14 15 21 22 Q  1250  0 1  1 2  2 3  3 4  5 6  7 8  10 11  14 15  21 22 

    1 2  2 3  3 4  5 6  7 8  10 11  14 15  21 22 

    Ac Re 

    TABLE II-A - Single Sampling Plans for normal inspection Master

     

    Table)

    Acceeptable Quality Levels normal insinspection) 

    Use first sampling plan below arrow. If sample size equals, lot or batch size, do 100 percent inspection.  Use first sampling plan above arrow. 

    0.010  0.015  0.025  0.040 Ac Re Ac Re 

    acceptance number  Rejection number  

    R   2000 

    Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re 1000 650 400 250 150 100 65 40 25 15 10 6.5 4.0 2.5 1.5 1.0 0.10 0.065  0.65 0.40 0.25 0.15 

    Table 5 Single Sampling Plans for Normal Inspection [6]

    Untitled-37 02/16/2007, 17:3129

  • 8/20/2019 2magnificent Tools.. Example

    10/13

     JAFRI MOHD. ROHANI & CHAN KOK TENG30

    0  10  20  30  40  50  60 0.00 

    0.05 

    0.10 

    0.15 

    LCL CL 

    UCL 

    May

    Fraction Defective p) Chart

    Fraction

    Defective (p) 

    Subgroup Number 

    1st Shift 2nd Shift 3rd Shift

    Figure 7  p Chart for May

     Interpretation:

    Figure 7 shows that the process appears not in statistical control because there areeight points outside the upper control limits(UCL). Further investigation from thecheck sheet shows that the contribution factors to the fraction of defective arescratches from packaging material, scratches due to handling by operator andsink marks from machine. Other defectives are due to stain mark that caused byoperator, dirty dots due to resin/material and some small quantity of flow lines/sinkmarks.

    Corrective Actions:

    1) All reject lot goes to through 100% sorting. Parts with scratches and sinkmarks will have to be scrapped and separated from good parts.

    2) Operator will have to rework the parts with stain mark by using hexane toclean it and those with dirty dots will have to be sorted out.

    Untitled-37 02/16/2007, 17:3130

  • 8/20/2019 2magnificent Tools.. Example

    11/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 31

    Figure 8  p Chart for June

     Interpretation:

    Figure 8 shows that the process appears not in statistical control because there aretwelve points outside the upper control limits(UCL). Further investigation from thecheck sheet shows that the contribution factors to the fraction of defective arescratches due to operator and stains (others) due to mould. The uneven UCL of the chart is due to different sample size taken. For example, from calculation, theUCL for sample size of 125 is 0.03213 and 0.02709 for sample size of 200.

    Corrective Actions:

    1) Parts with scratches is sorted out and separated from the good parts. Allscratched parts are scrapped.

    2) Mould surface is cleaned from dirt that caused the stain mark.

     

    10  20  30  40  50  60  70  80 0.00 

    0.05 

    0.10 

    0.15 

    0.20 

    LCL CL 

    UCL 

    June 

    Fraction Defective p) Chart

     

    Fraction Defective (p)

    Subgroup Number

    1st Shift 2nd Shift 3rd Shift

    Untitled-37 02/16/2007, 17:3131

  • 8/20/2019 2magnificent Tools.. Example

    12/13

     JAFRI MOHD. ROHANI & CHAN KOK TENG32

    Figure 8  p Chart for July

     Interpretation:

    Figure 9 shows that the process appears not in statistical control because there arenine points outside the upper control limits(UCL). Further investigation from thecheck sheet shows that the contribution factors to the fraction of defective arescratches caused by operator's handling, broken ribs of the part due to carelessnessof operator during negating process and some other defects which include dirtydots and gate crack

    Corrective Actions:

    1) All rejected lots are sorted and separated from good parts. Good parts willproceed to the next process.

    2) Operator is advised to be more careful on their part handling to prevent de-fects caused by human error.

    10  20  30  40  50  60  70  80 0.00 

    0.05 

    0.10 

    LCL 

    CL 

    UCL 

    July

    Fraction Defective p) Chart

    Fraction Defective (p)

    Subgroup Number

    1st Shift 2nd Shift 3rd Shift

    Untitled-37 02/16/2007, 17:3132

  • 8/20/2019 2magnificent Tools.. Example

    13/13

    IMPROVING QUALITY WITH BASIC STATISTICAL PROCESS CONTROL (SPC) TOOLS 33

    systematically arranging the contributable factors. P  charts were used to monitor thedistribution pattern of average defect rate. Improvement action plans were set-upand data was collected for the next three months and analysed. Data collectedshowed that the average defect has improved to 7.4 % from 13.49 % initially. Thus,the study has achieved its set goals. It is noted that simple QC tools can makesignificant improvement to the company. Some future improvement plan that hadbeen suggested and recommended are:

    1. Company should be more disciplined and all operators must go throughsome simple training especially on how to handle parts to avoid defect caused by human handling for example finger print, stain mark and

    scratches. New operator must be trained to handle the parts properly. Work instruction sheets can be used as a guide for the proper work method.2. Machine must have a daily check sheet and machine operator must check

    the machine condition for every shift to confirm that the machines are ingood condition. The machine’s pressure, temperature and holding timemust be accurate to avoid flow lines/marks defects. Mould must always bein good condition and free from any dirt or dust that may cause stainmarks and scratches.

    3 Every incoming lots material must go through Melt Flow Index checking to avoid flow line defects.

    REFERENCES

    [1] Ishikawa, K. 1985. What is Total Quality Control . Prentice Hall. Englewood Cliff, N.J.[2] Bisgaard, S. 1993. Statistical Tools for Manufacturing. Manufacturing Review. 6(3): 192–200.[3] Freeman, J, G. Mintzas. 1999. Simulating c and u Control Schemes. The TQM Magazine. 11(4): 242–247.[4] Anjard, R.P. 1995. SPC chart selection process. Microelectronic Reliability. 35(11): 1445–1447.[5] Wodall, W. H. 1997. Control Charts Based on Attribute Data: Bibiography and Review.  Journal of 

    Quality Technology. 29(2): 172–196.[6] Duncan, A. J., 1974. Quality Control and Industrial Statistics. Richard D. Irwin, Inc. Illinois.

    Untitled-37 02/16/2007, 17:3133