2D Quantum Harmonic Oscillatorocw.nctu.edu.tw/course/physics/quantummechanics_lecture...we will...

29
2D Quantum Harmonic Oscillator 2006 Quantum Mechanics Prof. Y. F. Chen Two-Dimensional Quantum Harmonic Oscillator

Transcript of 2D Quantum Harmonic Oscillatorocw.nctu.edu.tw/course/physics/quantummechanics_lecture...we will...

  • 2D Quantum Harmonic Oscillator

    2006 Quantum Mechanics Prof. Y. F. Chen

    Two-Dimensional Quantum Harmonic Oscillator

  • in ch5, Schrödinger constructed the coherent state of the 1D H.O. to

    describe a classical particle with a wave packet whose center in the

    time evolution follows the corresponding classical motion

    the H.O. plays a significant role in demonstrating the concept of

    quantum-classical correspondence ∵ it can be analytically solved in

    both CM & QM

    the Schrödinger coherent state of the 2D H.O. is a nonspreading wave

    packet with its center moving along the classical trajectories

    we will start from the time-dep. Schrödinger coherent state for 2D H.O.

    to extract the stationary coherent states that are localized on the

    corresponding classical trajectories

    2006 Quantum Mechanics Prof. Y. F. Chen

    2D Quantum Harmonic Oscillator2D Quantum Harmonic Oscillator

  • the Hamiltonian for the isotropic 2D H.O. in Cartesian coordinate:

    the time-indep Schrödinger eq. is:

    is separable:

    2006 Quantum Mechanics Prof. Y. F. Chen

    Eigenstates of the 2D Isotropic Harmonic Oscillator2D Quantum Harmonic Oscillator

    )(21

    2222

    22

    yxmm

    ppH yx ++

    += ω

    ),(),()(21

    2222

    2

    2

    2

    22

    yxEyxyxmyxm

    ψψω =⎥⎦⎤

    ⎢⎣⎡ ++⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂

    +∂∂

    −h

    ),( yxψ )()(),( yxyx ΥΧ=ψ

    Eymyd

    dmy

    xmxd

    dmx

    =⎟⎠⎞

    ⎜⎝⎛ +−

    Υ+⎟

    ⎠⎞

    ⎜⎝⎛ +−

    Χ22

    2

    2222

    2

    22

    21

    2)(1

    21

    2)(1 ωω hh

  • consequently, we have obtained 2 differential eq. for the 1D H.O.:

    where

    the eigenfunction and the eigenvalue of the 2D isotropic H.O. are given

    by

    where &

    2006 Quantum Mechanics Prof. Y. F. Chen

    Eigenstates of the 2D Isotropic Harmonic Oscillator2D Quantum Harmonic Oscillator

    )()(21

    222

    2

    22

    xExxmxd

    dm

    x Χ=Χ⎟⎠⎞

    ⎜⎝⎛ +− ωh

    )()(21

    222

    2

    22

    yEyymyd

    dm

    y Υ=Υ⎟⎠⎞

    ⎜⎝⎛ +− ωh

    EEE yx =+

    ( ) 2 21/ 2 ( ) / 2, ( , ) 2 ! ! ( ) ( )x yn mm n x y m x n ym n e H Hξ ξψ ξ ξ π ξ ξ− − ++= ⋅%

    ( ) ωh1, ++= nmE nm

    xmx hωξ = ymy hωξ =

  • the eigenvalues of the 2D H.O. are the sum of the two 1D oscillator

    eigenenergies & the eigenfunctions are the product of two 1D

    eigenfunctions

    It can be found that the eigenstates in

    do not reveal the characteristics of classical elliptical trajectories even in

    the correspondence limit of large quantum number

    2006 Quantum Mechanics Prof. Y. F. Chen

    Eigenstates of the 2D Isotropic Harmonic Oscillator2D Quantum Harmonic Oscillator

    ( ) )()(!!2),(~ 2/)(2/1,22

    ynxmmn

    yxnm HHenm yx ξξπξξψξξ +−−+ ⋅=

  • 2006 Quantum Mechanics Prof. Y. F. Chen

    Eigenstates of the 2D Isotropic Harmonic Oscillator2D Quantum Harmonic Oscillator

    (0,0) (1,0) (0,1) (1,1)

    (2,0) (0,2) (2,2) (5,5)

    (0,0) (1,0) (0,1) (1,1)

    (2,0) (0,2) (2,2) (5,5)

    Figure 7.1 Probability density patterns of eigenstates for the 2D isotropic harmonic oscillator

  • It is clear that the center of the wave packet follows the motion of a classical 2D

    isotropic harmonic oscillator, i.e.,

    The Schrödinger coherent state for the 2D isotropic harmonic oscillator is a

    product of two infinite series. The method of the triangular partial sums is used

    to make precise sense out of the product of two infinite series.

    Mathematically, the notion of triangular partial sums is called the Cauchy product

    of the double infinite series

    Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    2 cos( ) ; 2 cos( )x x x y y yt tξ α ω φ ξ α ω φ= − = −

  • With the representation of the Cauchy product, the terms can be arranged

    diagonally by grouping together those terms for which has a fixed value:

    Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    2 2

    2 2

    ( ) / 2 ( 1),

    0 0

    ( ) / 2 ( 1),

    0 0

    ( ) ( )( , , ) ( , )

    ! !

    ( ) ( ) ( , )

    ! ( ) !

    yxx y

    yxx y

    ii m nx y i m n t

    x y m n x yn m

    ii K N KNx y i N t

    K N K x yN K

    e et e e

    m n

    e ee e

    K N K

    e

    φφα α ω

    φφα α ω

    α αξ ξ ψ ξ ξ

    α αψ ξ ξ

    ∞ ∞− + − + +

    = =

    −∞− + − +

    −= =

    Ψ =

    =−

    =

    ∑ ∑

    ∑ ∑

    2 2( ) / 2 ( 1)

    0

    ( ),

    0

    ( )!

    ! ( , )

    ! ( ) !

    y

    x y

    x y

    i Nyi N t

    N

    KN

    ixK N K x y

    K y

    ee

    N

    Ne

    K N K

    φα α ω

    φ φ

    α

    α ψ ξ ξα

    ∞+ − +

    =

    −−

    =

    ⎛⎜⎜⎝

    ⎞⎡ ⎤⎟× ⎢ ⎥⎟− ⎢ ⎥⎣ ⎦ ⎠

  • After some algebra,

    The wave function above represents a type of normalized stationary coherent

    state.

    Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    tNiyxN

    NNyx eACt

    ωφξξξξ )1(0

    ),;,(),,( +−∞

    =

    Φ=Ψ ∑ ( )!

    1 22/)( 22

    NeA

    eCNi

    yN

    y

    yx

    φαα α+= +−

    ( ) ∑= −⎟⎠⎞

    ⎜⎝⎛

    +=Φ

    N

    KyxKNK

    KiNyxN AeK

    N

    AA

    0,

    2/1

    2),(~)(

    1

    1),;,( ξξψφξξ φ yxy

    xA φφφαα

    −== ,

  • Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    Figure 7.2 Wave patterns of the stationary coherent states

    for N=32 with different values of the parameters A and ψ.

    2),;,( φξξ AyxNΦ

  • Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    It can be seen that the coherent states correspond to the

    elliptic stationary states.

    The superposition of two elliptic states with a phase factor ψ

    in the

    opposite sign can form a standing wave pattern:

    Next figure shows the standing wave patterns corresponding to the elliptic

    states shown in figure above.

    ),;,( φξξ AyxNΦ

    ),;,(),;,( φξξφξξ −Φ±Φ AA yxNyxN

  • Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    A=1, φ = π /4 A=1, φ = π /3 A=1, φ = π /2

    A=0.5, φ = π /2 A=1.5, φ = π /2 A=2.5, φ = π /2

    Figure 7.3 Standing wave patterns corresponding to the elliptic states shown in figure 7.2.

  • Stationary Coherent States of the 2D Isotropic H.O.2D Quantum Harmonic Oscillator

    manifestly reveals the relationship

    between the Schrödinger coherent state and the stationary coherent state.

    represents the probability of finding the system in the elliptic stationary

    state with order N.

    The probability distribution is identical to the Poisson distribution with the

    mean value of

    tNiyxN

    NNyx eACt

    ωφξξξξ )1(0

    ),;,(),,( +−∞

    =

    Φ=Ψ ∑

    2NC

    ( ) )(222 22!

    yxeN

    CN

    yxN

    αααα +−+=

    22yxN αα +>=

  • Angular Momentum in 2D Confined Systems2D Quantum Harmonic Oscillator

    angular momentum of a classical particle is a vector quantity,

    Angular momentum is the property of a system that describes the tendency

    of an object spinning about the point r = 0 to remain spinning, classically.

    For the motion of a classical 2D isotropic harmonic oscillator, the angular

    momentum about the z-axis can be found to be independent of time:

    prL ×=

    t

    mty

    tm

    tx

    yy

    xx

    ⎪⎪⎩

    ⎪⎪⎨

    −=

    −=

    )cos(||2)(

    )cos(||2)(

    φωαω

    φωαωh

    h

    ⎪⎪⎩

    ⎪⎪⎨

    −−==

    −−==

    )sin(||2)()(

    )sin(||2)()(

    yyy

    xxx

    tmtdtydmtp

    tmtdtxdmtp

    φωαω

    φωαω

    h

    h

    )sin(||||2)()()()( yxyxxy tptytptx φφαα −−=− h

  • Angular Momentum in 2D Confined Systems2D Quantum Harmonic Oscillator

    In quantum mechanics, the angular momentum is associated with the

    operator , that is defined as

    For 2D motion the angular momentum operator about the z-axis is

    The expectation value of the angular momentum for the stationary coherent

    state and time-dependent wave packet state which are shown below :

    L̂ prL ˆˆˆ ×=

    xyz pypxL ˆˆˆˆˆ −=

    ( ) ∑= −⎟⎠⎞

    ⎜⎝⎛

    +=Φ

    N

    KyxKNK

    KiNyxN AeK

    N

    AA

    0,

    2/1

    2),(~)(

    1

    1),;,( ξξψφξξ φ

    tNiyxN

    NNyx eACt

    ωφξξξξ )1(0

    ),;,(),,( +−∞

    =

    Φ=Ψ ∑

  • Angular Momentum in 2D Confined Systems2D Quantum Harmonic Oscillator

    The position and momentum operators for the harmonic oscillator can be in

    terms of the creation and annihilation operators.

    ( ) ( ) ( ) ( )

    ( )

    ? ?

    ?

    ˆ ? ?

    1 ? ? ? ?2

    ? ?

    z y x

    x x y y y y x x

    x y x y

    L x p y p

    i a a a a a a a a

    i a a a a

    = −

    ⎡ ⎤= + − − + −⎣ ⎦

    = −

    h

    h

  • Angular Momentum in 2D Confined Systems2D Quantum Harmonic Oscillator

    The properties of the creation and annihilation operators :

    ( )∑=

    +−−+−⎟⎠⎞

    ⎜⎝⎛

    +=

    Φ

    N

    KyxKNK

    KiN

    yxNyx

    AeKNKKN

    A

    Aaa

    11,1

    2/1

    2/2

    ),(~1)1(

    1

    ),;,(ˆˆ

    ξξψ

    φξξ

    φ

    ( )∑−

    =−−+−+⎟

    ⎠⎞

    ⎜⎝⎛

    +=

    Φ

    1

    01,1

    2/1

    2/2

    ),(~1)1(

    1

    ),;,(ˆˆN

    KyxKNK

    KiN

    yxNxy

    AeKNKKN

    A

    Aaa

    ξξψ

    φξξ

    φ

  • Angular Momentum in 2D Confined Systems2D Quantum Harmonic Oscillator

    With the orthonormal property of the eignestates :

    ( )∑

    =

    −−

    =

    −+

    ⎟⎠⎞

    ⎜⎝⎛

    +=

    −+⎟⎠⎞

    ⎜⎝⎛

    ⎟⎠⎞

    ⎜⎝⎛

    ++=

    ΦΦ

    N

    K

    iKN

    N

    K

    iKN

    yxNyxyxN

    AeAKKN

    A

    eAKNKKN

    KN

    A

    AaaA

    1

    )1(22

    1

    0

    122/12/1

    2

    )1(1

    11)1(

    1

    ),;,(|ˆˆ|),;,(

    φ

    φ

    φξξφξξ

    ( )∑

    =

    =

    ⎟⎠⎞

    ⎜⎝⎛

    +=

    +−⎟⎠⎞

    ⎜⎝⎛

    ⎟⎠⎞

    ⎜⎝⎛

    −+=

    ΦΦ

    N

    K

    iKN

    N

    K

    iKN

    yxNyxyxN

    AeAKKN

    A

    eAKNKKN

    KN

    A

    AaaA

    1

    )1(22

    1

    122/12/1

    2

    )1(1

    11)1(

    1

    ),;,(|ˆˆ|),;,(

    φ

    φ

    φξξφξξ

  • Angular Momentum in 2D Confined Systems2D Quantum Harmonic Oscillator

    Using the property

    We can obtain and

    ( ) ( ) ∑∑=

    −−

    =⎟⎠⎞

    ⎜⎝⎛=+⇒⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂

    =+∂∂ N

    K

    KNN

    K

    KN xKKN

    xNxKN

    xx

    x 111

    0

    11

    )1()1(1

    21

    )1(22 A

    NAKKN

    A

    N

    K

    KN +

    =⎟⎠⎞

    ⎜⎝⎛

    + ∑=−

    ( )

    ( )

    ?

    2( 1)2 2

    1

    ˆ( , ; , ) | | ( , ; , )

    ? ?( , ; , ) | | ( , ; , )

    2 sin(1 ) 1

    N x y z N x y

    N x y x y x y N x y

    NK i i

    NK

    A L A

    A i a a a a A

    Ni AK A Ae Ae NKA A

    φ φ

    ξ ξ φ ξ ξ φ

    ξ ξ φ ξ ξ φ

    φ− −=

    Φ Φ

    = Φ − Φ

    ⎛ ⎞= − = −⎜ ⎟+ +⎝ ⎠

    h

    hh

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    The time-independent Schrödinger equation for a 2D harmonic oscillator

    with commensurate frequencies can generally given by

    is the common factor of the frequencies by and , and p and q are relative prime integers

    The eigenfunction and the eigenvalue of the 2D harmonic oscillator with

    commensurate frequencies are given by

    ),(),()(21

    22222

    2

    2

    2

    22

    yxEyxyxmyxm yx

    ψψωω =⎥⎦⎤

    ⎢⎣⎡ ++⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂

    +∂∂

    −h

    ωω qx = ωω py =

    xω yωω

    ( ) )()(!!2),(~ 2/)(2/1,22

    ynxmmn

    yxnm HHenm yx ξξπξξψξξ +−−+ ⋅=

    yxnm nmE ωω hh ⎟⎠⎞⎜

    ⎝⎛ ++⎟

    ⎠⎞⎜

    ⎝⎛ +=

    21

    21

    , xm xx hωξ = ym yy hωξ =

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    The eigenfunction is separable, so the corresponding Schrödinger coherent

    state can be expressed as the product of two 1D coherent states:

    ∑ ∑

    =

    =

    +++−+−

    =

    +−−−

    =

    +−−−

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛×

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=Ψ

    0 0

    )2/2/(,

    2/)(

    0

    )2/1(2/2/

    0

    )2/1(2/2/

    ),(~!!

    )()(

    )(!2

    1!

    )(

    )(!2

    1!)(),,(

    22

    22

    22

    n m

    tpqpnqmiyxnm

    niy

    mix

    n

    tpniyn

    n

    niy

    m

    tqmixm

    m

    nix

    yx

    eenm

    ee

    eeHn

    en

    e

    eeHm

    emet

    yx

    yx

    yy

    y

    xxx

    ωααφφ

    ωξαφ

    ωξαφ

    ξξψαα

    ξπ

    α

    ξπ

    αξξ

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    It is clear that the center of the wave packet follows the motion of a classical

    2D isotropic harmonic oscillator, i.e.,

    The set of states with indices in last page can be divided into subsets

    characterized by a pair of indices given by and

    Schrödinger coherent state can be rewritten as

    )cos(2;)cos(2 yyyxxx tptq φωαξφωαξ −=−=

    ),( nm

    ),( yx uu ( )pum x mod≡ ( )qun y mod≡

    )

    2 21 1 ( ) / 2

    0 0 0 0

    [ ( ) ( 1/ 2) ( 1/ 2)],

    ( ) ( )( , , )

    ( ) ! ( ) !

    ( , )

    y y yx x xx y

    y x y x

    x y x y

    x x y y

    i qN ui pN uq px y

    x yu u N N x x y y

    i pq N N q u p u tpN u qN u x y

    e et e

    pN u qN u

    e

    φφα α

    ω

    α αξ ξ

    ψ ξ ξ

    ++− − ∞ ∞− +

    = = = =

    − + + + + ++ +

    ⎛⎜Ψ =⎜ + +⎝

    ×

    ∑ ∑ ∑ ∑

    %

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    The 2D Schrödinger coherent state is divided into a product of two infinite

    series and two finite series

    With the representation of the Cauchy product, the terms

    can be arranged diagonally by grouping together those terms for which

    :

    ),(~ , yxuqNupN yyxx ξξψ ++

    NNN yx =+

    )

    ⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧

    +−+×

    =

    ×

    ⎜⎜⎝

    +−+=Ψ

    +−+=

    =

    =

    =

    ++++−++−

    ++++−+−+

    =

    =

    = =

    +−+−+

    ∑ ∑∑

    ∑ ∑∑∑

    ),(~!])([!)(

    ][)/(

    )()(

    ),(~!])([!)(

    )()(),,(

    )(,0

    )(

    1

    0

    1

    0 0

    )]2/1()2/1([2/)(

    )]2/1()2/1([)(,

    1

    0

    1

    0 0 0

    2/)()(

    22

    22

    yxuKNqupK

    N

    K yx

    KqpiKqy

    px

    q

    u

    p

    u N

    tupuqpqNiuqNiy

    uix

    tupuqpqNiyxuKNqupK

    q

    u

    p

    u N

    N

    K yx

    uKNqiy

    upKix

    yx

    yx

    yx

    y x

    yxyyxxyx

    yx

    yx

    y x

    yx

    yyxx

    uKNqupK

    e

    eeee

    e

    euKNqupK

    eet

    ξξψαα

    αα

    ξξψ

    ααξξ

    φφ

    ωφφαα

    ω

    ααφφ

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    These stationary coherent states are physically expected to be associated

    with the Lissajous trajectories.

    The minor indices ux and uy essentially do not affect the characteristics of

    the stationary states.

    Including the normalization condition, the stationary coherent states in

    Cartesian coordinates are given by

    ),(~!])([!)(

    ][

    !])([!)(),;,(

    )(,0

    2/1

    0

    2

    ,,

    yxuKNqupK

    N

    K y

    Ki

    N

    K y

    K

    yxuuN

    yx

    yx

    uKNqpKeA

    uKNqpKAA

    ξξψ

    φξξ

    φ

    +−+=

    =

    +−×

    ⎟⎟⎠

    ⎞⎜⎜⎝

    +−⋅=Φ

    yxqy

    px qpA φφφ

    αα

    −== ,)()(

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    The stationary coherent states associated with the Lissajous trajectories are

    the superposition of degenerate eigenstates with the relative amplitude

    factor A and phase factor .

    The relative amplitude factor A and phase factor in the stationary

    coherent states are explicitly related to the classical

    variables

    the eigenenergies of the stationary coherent states

    are found to be

    φ

    φ

    ),;,(,, φξξ AyxuuN yxΦ

    ( )yxyx φφαα ,,,),;,(,, φξξ AyxuuN yxΦ

    [ ] ωh)2/1()2/1(,, ++++= yxuuN upuqpqNE yx

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    Next three figures depict the comparison between the quantum wave

    patterns and the corresponding classical periodic

    orbits for to be , , and , respectively.

    Three different phase factors, , , and , are displayed

    in each figure.

    The behavior of the quantum wave patterns in all cases can be found to be

    in precise agreement with the classical Lissajous figures.

    20,0, ),;,( φξξ AyxNΦ

    qp : 1:2 3:42:3

    0=φ πφ 3.0= πφ 6.0=

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    (a) (b) (c)

    (a’) (b’) (c’)

    (a) (b) (c)

    (a’) (b’) (c’)

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    (a) (b) (c)

    (a’) (b’) (c’)

    (a) (b) (c)

    (a’) (b’) (c’)

  • Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits

    2D Quantum Harmonic Oscillator

    (a) (b) (c)

    (a’) (b’) (c’)

    (a) (b) (c)

    (a’) (b’) (c’)

    投影片編號 1投影片編號 2投影片編號 3投影片編號 4投影片編號 5投影片編號 6投影片編號 7投影片編號 8投影片編號 9投影片編號 10投影片編號 11投影片編號 12投影片編號 13投影片編號 14投影片編號 15投影片編號 16投影片編號 17投影片編號 18投影片編號 19投影片編號 20投影片編號 21投影片編號 22投影片編號 23投影片編號 24投影片編號 25投影片編號 26投影片編號 27投影片編號 28投影片編號 29