29/10/2019 - NTUAusers.ntua.gr/eglytsis/EM_B/Notes_1.pdf · 2. (2) At this point let’s examine...

68

Transcript of 29/10/2019 - NTUAusers.ntua.gr/eglytsis/EM_B/Notes_1.pdf · 2. (2) At this point let’s examine...

  • EliasText Box29/10/2019

  • s , 1-1'0.

    \ vKavEva

    f r OpO 'rwv 'C'l ~ U)V

    J

  • i1

    All "'(0 CPCr:'-o) = 0

    ~ 9'j¢ (f') ::: ~-4n~ J R'J

    , n

    1 S dol I .... ... I IcP (r) ::- - -- R:: r--f 4n~ R

    ~

    E = ..... , ' To r ~l 6Y'1~JU~ aVQ"P~-:lpQ.S '"

  • 12.

    I r' 'R C\ II 'To lulO QnoicAE 6~Q ~Mapt:J VCI r'PEOE.J ko.t \J f. I cP Cr) == j S~ Cl.' ) d t' [_I -~ J

    4TTE R R~I

    l.. , , Lf 6 to apia 00 OIJ ~ 00

    -L

    t I I

    L

    i dz::' _ en [(l+L)+[r./+ ('l+LtJ'!2. J S [ 'r,2 -I- (Z 2'.!) 2. ] 1/2. -L en [ (l-L)+ [ri~+(l-L)? J'f2 J

    ,

    I I

    '2 (2 ?)() [",r ) ... (") [.5-J [4 L:.-l ]-I: n L. \ t+L .J - ICY) 2(l~~) =- -en r..,... '2

    e" [4[~2~~ ] ] ~;:.

    rEn o).J iVVlS ) xpn~1 IJoncIWV(O$ t"rw t s,' E, VJ E:.li ~\..t:l. 'r'o

  • -- ---

    , Me XPfl6(\ EnQrlrlnl\~ClS, r

    !..... r

    /

    [.

    I

    C r"'! U'pO.ls

  • Ηλεκτρικό ∆ίπολο - Εύρεση Ηλεκτρικού Πεδίου

    (ανεξάρτητα του συστήµατος συντεταγµένων)

    Χρησιµοποιώντας τις προσεγγίσεις του ηλεκτρικού διπόλου, το ηλεκτροστατικό δυναµικό στην τυχαία ϑέση

    ~r (ϑεωρώντας το ηλεκτρικό δίπολο στο κέντρο του συστήµατος συντεταγµένων και κατά µήκος του άξονα z),

    δίδεται από την σχέση

    Φ(~r) =~p · ~r

    4π�r3,

    όπου ~p = q~d = qdı̂z η ϱοπή του ηλεκτρικού διπόλου. Το ηλεκτρικό πεδίο, ~E, δίδεται από την κλίση του

    δυναµικού και εποµένως δίδεται από

    ~E = −~∇Φ = 14π�

    ~∇(~p · ~rr3

    ).

    Για το υπολογισµό του ηλεκτρικού πεδίου απαιτούνται τα gradient:

    ~∇(

    1

    r3

    )=

    ∂x

    (1

    r3

    )ı̂x +

    ∂y

    (1

    r3

    )ı̂y +

    ∂z

    (1

    r3

    )ı̂z =

    −3~rr5

    ,

    ~∇ (~p · ~r) = (~p · ~∇)~r + (~r · ~∇)~p+ ~p× (~∇× ~r) + ~r × (~∇× ~p) =

    = (~p · ~∇)~r = ~p,

    εφόσον r = (x2 + y2 + z2)1/2, (~r · ~∇)~p = 0, ~∇ × ~r = 0, και ~∇ × ~p = 0. Χρησιµοποιώντας τα παραπάνωgradient το ηλεκτρικό πεδίο δίδεται από την κάτωθι εξίσωση

    ~E(~r) =3(~p · ı̂r )̂ır − ~p

    4π�r3.

    Στην περίπτωση που το ηλεκτρικό δίπολο ϐρίσκεται σε τυχαία ϑέση αντικαθιστούµε το διάνυσµα ϑέσης ~r

    µε το ~R = ~r − ~r ′ όπου το ~r ′ αντιστοιχεί στην ϑέση του ηλεκτρικού διπόλου. Εποµένως το δυναµικό και τοηλεκτρικό πεδίο δίδονται από τις εξισώσεις :

    Φ(~r) =~p · ~R

    4π�R3=

    ~p · ı̂R4π�R2

    ,

    ~E(~r) =3(~p · ı̂R)̂ıR − ~p

    4π�R3,

    όπου ı̂R = ~R/R.

  • 18

    .

  • is

    I

    npEII~\ vo ~p~6u jJtE>v.} '(Ii) A0.;r"U 7r\S

    E:fi6Ul6ns Tou LOplQQ \"H OpIQM~) cru\lSn~€; nOllw E.'t.~ S. OfJvJf 0\

    6uvC)t\v(E..l ilOVVl 6Tn v S np€nEI va... S;VO\l"tQ...l.'

    cp\ s

    I

    onou

    v+ ~ /

    ~--.....,..... ~/~

    4>pls Cf)Afs := ~Is - ~/sCPr pt E (10 ,t..,lt\A i q

    va¢}. = 0

    TrOlES npEnE'\ VO.

  • • 2.0

    H )..060 "{'(IS ~!1·6v..H:;ns Pcj.r.tcn (\}2¢ == - PIE' ) A "(r'lS LaplexCR.

    ()72¢=-O) 6'(0 EOu.rtEp,u6 r~ nEp(OX~f 00kCV V E,vQ.J f-!oVQ&'lvn

    ov GEe Uo..8E ~f'\pE-I'O 't I\J '2nl

  • I -l

    NOVOcSIQ6"t.OLn Poisson

    n C\' _r: , "\"" I rI' I r IN CA !-,PE:.QEI TO uuvo...\..A\I - q:>~) \ s s &. G

    Elias_TurboXText Boxl

    Elias_TurboXText Box2

    Elias_TurboXText Box2

  • Elias_TurboXText Box

    Elias_TurboXText Box

    Elias_TurboXText Box2

    Elias_TurboXText Boxl

  • NATIONAL TECHNICAL UNIVERSITY OF ATHENS

    School of Electrical & Computer EngineeringDivision of Electromagnetic Appl., Electro-Optics, & Electronic Materials

    9 Iroon Polytechniou St., Zografou, Athens 15780Tel. (30) 210-7722479, Fax. (30) 210-7722281

    E-mail: [email protected]

    Spherical Cavity in a Spherical Conductor (October 20, 2019)†

    Problem Statement

    Assume a spherical conductor of radius a in vacuum. Inside the conductor there is a spherical cavity

    (an air bubble) of radius b. The center of the cavity and its radius are such that the whole cavity

    is inside the interior of the conductor as shown in Fig. 1. Assume that inside the spherical cavity is

    a point charge q positioned at the center of the cavity (as shown). Assume that the permittivity is

    everywhere equal to the permittivity of freespace �0.

    (a) Assume that the conductor is uncharged before the positioning of the point charge q inside the

    cavity. Find the electrostatic potential and the electric field everywhere, i.e., inside the cavity, in the

    interior, and in the exterior of the spherical conductor.

    (b) Repeat (a) in the case that the spherical conductor is always retained at a potential U0 (for example

    when it is connected to a battery of potential U0).

    Figure 1: A spherical conductor of radius a has in its interior a cavity of radius b with the position of thecavity and its radius such that the whole cavity is inside the volume of the spherical conductor (as shown).Assume a point charge q at the center of the cavity.

    † c©2019 Prof. Elias N. Glytsis, Last Update: October 20, 2019

  • Solution

    (a) It is easier to start for the interior of the spherical conductor. As it is known a conductor in a

    static situation does not have in its interior electric field and its volume (and surface) is equipotential.

    Therefore, in the interior of the conductor (excluding the volume of the cavity) the potential is constant.

    Assume this potential Φ0 (Φ0 has not been determined yet). Since the interior of the conductor is

    equipotential the electric field should be zero (excluding the cavity area). In a second step let’s examine

    the cavity. Inside the cavity is a point charge at the center of it. The spherical boundary of the cavity

    is equipotential and should have potential Φ0 since it is part of the interior of the spherical conductor.

    Therefore, the solution for the potential inside the cavity is

    Φ(rb) − Φ(rb = b) =q

    4π�0

    (

    1

    rb−

    1

    b

    )

    , for 0 < rb ≤ b,

    Φ(rb) =q

    4π�0

    (

    1

    rb−

    1

    b

    )

    + Φ0, for 0 < rb ≤ b. (1)

    In the above equation rb is the radial distance from the center of the cavity. This of course implies an

    electric field inside the cavity that can be easily determined from the gradient of the electric potential,

    i.e., ~E = −~∇Φ = (q/4π�0)(1/r2

    b)̂ırb. This field will induce a surface charge on the boundary of the

    cavity which the inner boundary surface of the spherical conductor. Due to the spherical symmetry

    of the cavity the surface charge density, σb, should be uniform. This can be easily determined from

    the boundary condition on the cavity boundary: σb = ı̂rb • (0−~D|b) = −(q/4πb

    2). However, since the

    spherical conductor is initially uncharged, a surface charge density σa will be induced at the outer

    surface of the spherical conductor, such as the total charge should be zero. Since the surface charge

    density, due to spherical symmetry, should be uniform, then

    σa(4πa2) + σb(4πb

    2) = 0 =⇒ σa = +q

    4πa2. (2)

    At this point let’s examine the exterior region of the spherical conductor. The potential due to the

    spherical symmetry should depend only in the radial distance ra from the center of the conductor (for

    ra ≥ a). The corresponding Laplace’s equation takes the following form:

    1

    r2a

    d

    dra

    (

    r2adΦ

    dra

    )

    = 0 =⇒ Φ(ra) = −C1ra

    + C2, (Ra ≥ a),

    but Φ(ra → ∞) → 0 =⇒ C2 = 0,

    Φ(ra) = −C1ra

    , (ra ≥ a).

    In the above expression ra is the radial distance from the center of the spherical conductor. Then the

    electric field outside the conductor and the induced surface charge density are related as follows:

    σa = ı̂ra • (~D|a − 0) = −�a

    C1a2

    =⇒ C1 = −σaa

    2

    �0= −

    q

    4π=⇒

    Φ(ra) =q

    4π�0ra, (ra ≥ a) and Φ0 = Φ(ra = a) =

    q

    4π�0a.

  • Then all the parameters have been defined and the electric potential is summarized as follows:

    Φ =

    q

    4π�0

    (

    1

    rb−

    1

    b

    )

    +q

    4π�0a, for rb ≤ b,

    q

    4π�0afor ra ∈ interior of conductor,

    q

    4π�0ra, for ra ≥ a.

    (3)

    The corresponding electric field is given by

    ~E =

    q

    4π�0r2

    b

    ı̂rb, for rb < b,

    0 for ra ∈ interior of conductor,

    q

    4π�0r2aı̂ra, for ra > a.

    (4)

    It is reminded that at rb = b and ra = a the electric field is discontinuous due to the surface charge

    densities σb and σa, respectively.

    (b) In the second case the spherical conductor is always retained in a constant potential U0. In this

    case electric charge can either come from or can drop into the battery source. The solution to the

    interior of the conductor (excluding the cavity) is the same as previously with the only difference that

    Φ0 = U0 while the interior electric field is zero. Inside the cavity the solution is also identical to the

    one shown in Eq. (1) with Φ0 = U0. Therefore, the only solution that changes is the region outer of

    the spherical conductor. The solution for the electric potential for ra >≥ a is again Φ(ra) = −C1/ra.

    However, now continuity of the potential at ra = a gives C1 = −U0a. Then, the solution for the

    electric potential is summarized as follows:

    Φ =

    q

    4π�0

    (

    1

    rb−

    1

    b

    )

    + U0, for rb ≤ b,

    U0 for ra ∈ interior of conductor,

    U0a

    ra, for ra ≥ a.

    (5)

    The corresponding electric field is the given by:

    ~E =

    q

    4π�0r2

    b

    ı̂rb, for rb < b,

    0 for ra ∈ interior of conductor,

    U0a

    r2aı̂ra, for ra > a.

    (6)

    It is worth mentioning that again that the surface charge density σb = −q/4πb2 as in case (a). However,

    the surface charge density σa = ı̂ra • (~D|a − 0) = �0U0/a. The last surface charge density remained the

  • same even before the point charge q was positioned at the center of the spherical cavity. Therefore,

    the total charge of the conductor before and after the insertion of q is not the same. The difference

    was accommodated by the battery source that was connected to the spherical conductor (actually the

    induced charge σb(4πb2) = −q came from the battery source since σa must not change.

  • 1~5 , , I"Xwp 'r11:" u 0'(" n"Lwv - ~\JVT~>'~E> LES ~\.JVO-.fJ'~00

    As

    Av TO 6nj-JE 10 f,3P:6UET").J ,-,0·"....> (:, cO I} 0 ?5(~ 60 L "to t.E

    I L JOj.d SJ R'. -= \ r.. - r.' I J' = I) 2) " ') N JI I J

    4lrEo J' R ,. ~ :Jl

    To Ol0pOl6tJO nE:p\)\~pOV(:l

    , ,

    n ~JE:6() 'tl H'0 -r:r) Cn.l

  • '() ~ Ota..

    . f Ge . E:'n OfJ CV '..AJ oS

    6U61:.n\-JQ 'to Ef'6v'Hi(WV qJi = ~ Pi) qj ~nopGi va. ~PO'fGr J

    ,> [Q]:= [pJ-1 [1>J == [C][CPJ 0(100 [cJ =- [Pj-'

    01100 'LQ 6"(01 X~I'O T~ Cc J E)vQJ. "to.. C U (= CJ(' ).

    To c~~ ~IYCU Ol 6UV1"EAfb'((S xwpY'"L\uOrrq:,cx3 VCh.J ""Q::>. c~· U~j) u'vOJ

    tll 6\.)V"[EAqiLES fna...()w(Sns.

    t q - I c"

  • ~00 C\6wOo~ pf 9!-Ti'2 =0

    #2

    t1

    GIc-=?

    -#1

    I[c] ;::

    I

    MEpIUE.5 xwpn"C\ U.. 9 ~ ------- ~ (c2 / ~ CI2-) +

    C,/-t en

  • 2+b

    c" -

    ~

    C 2...::: (2'elL ,,=,C2.f

    1 1\ ...'"

    I1 2.

    ~~-CH72 ..J

    ell !

    1- ~2-1

    cno

  • v

    4rre

    , , no ~ t:vw.s ('l rra.po.Il CXVW

    I

    fJ"6 W 6t') }Jt 0I(fVW6'rO "t""''' ll"'l!

  • :;u AX A ~

    I >< ' -;X . { L J.

    J ,

    n OYW"C(PW rtP06~O

    I fJ 1:= [AJ~I[~J ~i \

    ~ C~J

  • ;

    'LQ o ~(f)

    I

    D VoU. "

    loo SUltD fI 'Vf'l f n,!"pC>(" ~ d . G bTLJ e.p~=

  • J

    L

    /" /'.( X~, )Ij ) L-----'------,__---I-C-.... -!

    I::-LJ ------".1

    4fTE

    /

    'l:OU 'PopLA'au 'LOU Gt:C>\?([jOV • . r

    ( l I J) 6TO v T G-

  • --

    ~ P" 5.(,;xId + (M12 ) [(,;yS~ (,jX12 t J'!:C 7 ( 2- ( ( 6.)(/2 ) (A Y! 2 ) J (

    / \ I'

    TnS ~nfcq)wvn) ilrkJ\2

    ~ =: AI::r ) l 4>

    Nxtt, Ny~,.xl

    A, NXI'lY,N)lN) 0N)

  • ! II J-I r-1/ 1 UL..,r L::--_

    1- IcY n O-p c: is"zA ~ to ell'.

    Av rY"' ad (I ) N)() = 0 N J' =- N x

    -t i

  • ΠΑΡΑ∆ΕΙΓΜΑΤΑ ΤΗΣ ΜΕΘΟ∆ΟΥ ΤΩΝ ΡΟΠΩΝ

    ΣΤΗΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗ †

    1. Ευθύγραµµος Κυλινδρικός Αγωγός Μήκους 2L & Ακτίνας a

    x direction (meters)-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    Lin

    e ch

    arg

    e (p

    C/m

    )

    7.5

    8

    8.5

    9

    9.5

    102L = 1m, ǫ r = 1, N = 15, a = 0.001 m, U = 1 V, Q = 8.5638 pC, Q1 = 8.4295 pC

    Simple CoefficientsMore Accurate Coefficients

    x direction (meters)-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    Lin

    e ch

    arg

    e (p

    C/m

    )

    7.5

    8

    8.5

    9

    9.5

    10

    10.5

    112L = 1m, ǫ r = 1, N = 25, a = 0.001 m, U = 1 V, Q = 8.5891 pC, Q1 = 8.4484 pC

    Simple CoefficientsMore Accurate Coefficients

    †©2016 Prof. Elias N. Glytsis, Last Update: Oct. 18, 2016

  • x direction (meters)-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    Lin

    e ch

    arg

    e (p

    C/m

    )

    7.5

    8

    8.5

    9

    9.5

    10

    10.5

    11

    11.5

    122L = 1m, ǫ r = 1, N = 50, a = 0.001 m, U = 1 V, Q = 8.6118 pC, Q1 = 8.4655 pC

    Simple CoefficientsMore Accurate Coefficients

    x direction (meters)-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    Lin

    e ch

    arg

    e (p

    C/m

    )

    7

    8

    9

    10

    11

    12

    13

    142L = 1m, ǫ r = 1, N = 100, a = 0.001 m, U = 1 V, Q = 8.6265 pC, Q1 = 8.4767 pC

    Simple CoefficientsMore Accurate Coefficients

    x direction (meters)-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    Lin

    e ch

    arg

    e (p

    C/m

    )

    7

    8

    9

    10

    11

    12

    13

    14

    15

    162L = 1m, ǫ r = 1, N = 150, a = 0.001 m, U = 1 V, Q = 8.633 pC, Q1 = 8.4816 pC

    Simple CoefficientsMore Accurate Coefficients

  • x direction (meters)-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    Lin

    e ch

    arg

    e (p

    C/m

    )

    -20

    -10

    0

    10

    20

    30

    40

    502L = 1m, ǫ r = 1, N = 500, a = 0.001 m, U = 1 V, Q = 8.6559 pC, Q1 = 8.4918 pC

    Simple CoefficientsMore Accurate Coefficients

    Σχήµα 1: Γραµµική πυκνότητα ϕορτίου ευθύγραµµου κυλινδρικού αγωγού µήκους 1 µέτρου και ακτίνας 0.001 µέτρου. Ν =15, 25, 50, 100, 150, και 500. Παρατηρούµε ότι για Ν=500 η µέθοδος αποκλίνει γιατί παύουν να ισχύουν οι προϋποθέσεις τουγραµµικού, µονοδιάστατου, αγωγού.

  • 2. Τετραγωνική Επίπεδη Αγώγιµη Πλάκα ∆ιαστάσεων 2L × 2L

    0.5

    2Lx = 1m, 2Ly = 1m, ǫ r = 1, Nx = 15, Ny = 15, U = 1 V, Q = 40.1823 pC

    x direction (meters)

    0

    -0.5-0.5y direction (meters)

    0

    0

    50

    100

    150

    0.5

    Su

    rfac

    e ch

    arg

    e (p

    C/m

    2)

    0.5

    2Lx = 1m, 2Ly = 1m, ǫ r = 1, Nx = 25, Ny = 25, U = 1 V, Q = 40.4547 pC

    x direction (meters)

    0

    -0.5-0.5y direction (meters)

    0

    0

    50

    100

    150

    200

    0.5

    Su

    rfac

    e ch

    arg

    e (p

    C/m

    2)

  • 0.5

    2Lx = 1m, 2Ly = 1m, ǫ r = 1, Nx = 50, Ny = 50, U = 1 V, Q = 40.6488 pC

    x direction (meters)

    0

    -0.5-0.5y direction (meters)

    0

    400

    0

    100

    200

    300

    0.5

    Su

    rfac

    e ch

    arg

    e (p

    C/m

    2)

    0.5

    2Lx = 1m, 2Ly = 1m, ǫ r = 1, Nx = 75, Ny = 75, U = 1 V, Q = 40.7094 pC

    x direction (meters)

    0

    -0.5-0.5y direction (meters)

    0

    0

    100

    200

    300

    400

    500

    0.5

    Su

    rfac

    e ch

    arg

    e (p

    C/m

    2)

    0.5

    2Lx = 1m, 2Ly = 1m, ǫ r = 1, Nx = 100, Ny = 100, U = 1 V, Q = 40.7384 pC

    x direction (meters)

    0

    -0.5-0.5y direction (meters)

    0

    200

    300

    400

    500

    0

    100

    0.5

    Su

    rfac

    e ch

    arg

    e (p

    C/m

    2)

    Σχήµα 2: Τετραγωνική πλάκα διαστάσεων 1 µέτρου × 1 µέτρου. Nx = Ny = 15, 25, 50, 75, και 100.

  • VQ ppt;:B~( ana I

    ;::nvTo

    C> 'fI ":' - l1:(:)l:

    ~PEBE:I Ua...t 1:10':\, and Trw 6uvoplQ..Un 6\JvtlnlA.r"\.'

    E otpj - ct 'l-=-Q

    . 2. ( C 1- h ) l ~ 1 -d "2 -I,) 1 J - 2 (2 - ~H. Ij ',.\- (~-I-\-,yJ ] \ [':}'2. .... (~_h)l. J 2

    ()

    J 4\-t ':A ~~ .9h(S-:Y -rt - =- - #TT'1 :JZ...\-h't -rr!::(-I h'l- ,:(".. ,h'1.. 4- .... ....j () d~ - TI ~ J d!::l - ~;;:> ~=.- " Z+1,1

    -

  • Noks on Apollonia0 uv-ilis;

    .;

    ! ( c'

    A c B

    Let AB -= Xo end

    AC S- = C~ 1-5

    C/A s(' point: -- = =) s --~- ~c/e 1- s 1-5 Nl del lR. oR C'C ( poin~ K) :

    ~+s e /c __ ~ I X 1+ SXo 1-25 X I + S Xo -" C K:. KC = 2 = 2

    => e'K :0- kC :::-R= ,,(S(I-5) x~ _ S(I-s) Xo ,,2.(1-2.5) 1 - 25

    S S(I-5) J 52K coordin~tR: A K == +(XI - R') =: -+ [ . -,2...$ - 1 2. s Xo -: --t _ Xo - 1-2.::.

    sak: (-~)o)

    ::;;2 s2+1-25 (s _1)'kB~ kA-+xo =: (- + 1 ) Xc = ')(c - -Xo-\-2S i- 2s \-'2.S

    S2......) d d-):: O-s)" ( S ( 1- s) '1,0)" :.- R2.KB :: d ) K A = d' XC) _Xo =

    1.-25 \-2s . 1- '2,s

    ex +- ~ Xc '/ -+ lJ"2. ~ (~)Xo)aI - 2. s -.J 1-2s

  • c

    o .A

    Lef (rCl+ia of dishnces 1Y'OYY'\ pain+::' A~ B ).

    ---l -...l. -!> .-..:!. -A ~ ~~ ~

    OA+ AC :::: r ~ AC -= i - OA :=> CA = OA - r -" ~ ~ --" --:.. ~ r + CB := OB -) C B = at:> - r

    ..,.l. ~ ~ ~ 2 CA- CA 1leAl _ ~ .-) \C.....A \ = ";)2.. =?\ ~~ ::os~

    lca l - -' Ice \l- CB·CB

    ~ ~) >( OA- r) . ( I2.-f6A\? IOA-,A~OB1

  • \r-~ ~

    \ CA - t;)?. 0(3 '1 [:;)IABI r

    I_~'l. \ - 'A'"

    --" ~

    ~ OA -;:\?OGro -- R ::: .2.. IAi311_'" '2\- ?~ 1"1 ~ -' 'l.

    I r - ro \ -;:: R'2.. i'"') this \ ) Q drcle of r,;\ diu s R cenfe.red Q+

    t - A2

    r'\ '4 -!I. -3 _/1_ COS-OA ) ::: \-;\'2.

    '2

    kA = i) lAS \ ( assume o-

  • I

    o

    Known.

    A -lhQ bis e c+or 0{ 13AC.

    CA'li AB

    i i

    PUye geome{(IC solu-bon:

    A. II

    E

    Le-f A G / AC

    lei A P

    6r\~3

    Tric:\n9 tu ABO a net DCA' are sirnl'ia r.

    DB DC , ,...,= but ACA' IS ISOS~ A'c=AC

    AS A'e

    OS DC DB ABj l and ...(.~ n:.. t..re - ~ =J -", AB AC DC ACDCA'ABD

    Lcd AE +~ bi s-edov lJt +I-u TT- SAC Qn~.

    Simil~rllj) EI3A .s;milar +0 ECAII

    EB EC but CAA" is"osc4 r-J c...A =: CAli ~!'\c!= CAl!AB EB AS 1:)13

    l COn 5e q\.U..rd-~ ::>~ - EC AC -DC€ SA E C "'"

    A'

    Pain, A be. \c~.r 4-0 +~ dnle cer')k~d ~+ 0 (mi JJit a~ EO)

    CApol\OIlI

  • Apollonian Circles in xy plane for A (a = 0m,0m), and B (b = 5m,0m)

    0.10.2

    0.30.4

    0.5

    0.6

    0.8

    1

    1.25

    1.6667

    22.5

    3.33335

    10

    -5 0 5 10x (meters)

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    y (m

    eter

    s)

  • Kelvin Inversion (d’=a2/d) Παραδείγματα

  • _ _ . ___________ I I3ta

    l _H_~_E_K_T~P_O_6_ro_T_l_k_~_E_V_E~P~~~[_I_q_6_T_n_._V_H_~_e_o_&_o__~- --_:: -- ___~_:_;_~_~_~_ ---------l--

    I

    Ii i

    I i i Ii I \lI'E6eL 6nl' ,,().U~ 4>01'1:10 DnO I Tnv no.pOU6La. 1 o..o\))~~V i,) 2,_ ..) k) --, N 'E6t.w Ot:1 \J nep0l! \J t va )( pn E:.\ tJ onolr)6 au ~ i. Tnv f r GEuJp~CX- '(lUi U

  • I

    ~('19U )'Apa 2 J ~n€oR..i0

    u..e(g)9~) 'iI hAEkTP06T(H'il\~ ~v~Ptf'~ nou OE;'A,E-1QJ 61nv'

    H nCkpancivw

    uno"px 0'-.) V

    Am. :r, Ph lj s') va I, 52./ :262 ( 198 8),

    1391 (2006),

  • 3+,

    IfOlp6.5~X ~~ :

    'i\"l)JUCl.U~ CfOpL,'O no:vw a9 1'l

    9

    h{ l

    • g

    z: = 0

    AvT.) ef:-CWS. e;,v x p r) f.' II-! CJ n '-" '¥lh:;luOl; E,{ O-Dt.rw 't(")v ntplnTt.o.lE,\') 'fJP()POUJ.ll VCi, UIUC:UC)I"\~-

    !60upE "eO Q.(\a\~~~kol'(}.. 6QN Ue = Ue i .. 2

    6'~ Z I'D.• (V t'u~_ho,») E:.~ rtLO n lp ir\c\c)UE.~ 51 u-o...to clc:. ~" f.t~ b Lv £.tv Q...l ~ IU.l: fS •

    I

    http:fJP()POUJ.llhttp:ntplnTt.o.lE

    newpage.pdfNotes_1.pdfKelvin Inversion.pdfKelvin Inversion (d’=a2/d)�ΠαραδείγματαSlide Number 2Slide Number 3Slide Number 4