2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F...

35
MIT 2.717J wk1-b p-1 2.717J/MAS.857J Optical Engineering Welcome to ...

Transcript of 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F...

Page 1: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-1

2.717J/MAS.857JOptical Engineering

Welcome to ...

Page 2: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-2

This class is about• Statistical Optics

– models of random optical fields, their propagation and statistical properties (i.e. coherence)

– imaging methods based on statistical properties of light: coherence imaging, coherence tomography

• Inverse Problems– to what degree can a light source be determined by measurements

of the light fields that the source generates?– how much information is “transmitted” through an imaging

system? (related issues: what does _resolution_ really mean? what is the space-bandwidth product?)

Page 3: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-3

The van Cittert-Zernike theorem

Galaxy, ~100 millionlight-years away

radiowaves

Very Large Array (VLA)

Cross-Correlation+

Fouriertransform

image

( )optical image

Image credits:hubble.nasa.gov

www.nrao.edu

Page 4: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-4

Optical coherence tomography

Coronary artery

Intestinal polyps

Esophagus

Image credits:www.lightlabimaging.com

Page 5: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-5

Inverse Radon transform(aka Filtered Backprojection)

Magnetic Resonance Imaging (MRI)

The principle

The hardware

The image

Image credits:www.cis.rit.edu/htbooks/mri/www.ge.com

Page 6: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-6

You can take this class if• You took one of the following classes at MIT

– 2.996/2.997 during the academic years 97-98 and 99-00– 2.717 during fall ’00– 2.710 at anytimeOR

• You have taken a class elsewhere that covered Geometrical Optics, Diffraction, and Fourier Optics

• Some background in probability & statistics is helpful but not necessary

Page 7: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-7

Syllabus (summary)• Review of Fourier Optics, probability & statistics 4 weeks• Light statistics and theory of coherence 2 weeks• The van Cittert-Zernicke theorem and applications of statistical optics

to imaging 3 weeks• Basic concepts of inverse problems (ill-posedness, regularization) and

examples (Radon transform and its inversion) 2 weeks• Likelihood and information methods for imaging channel inversion 2

weeks

Textbooks:• J. W. Goodman, Statistical Optics, Wiley.• M. Bertero and P. Boccacci, Introduction to Inverse Problems in

Imaging, IoP publishing.• Richard E. Blahut, Theory of Remote Image Formation, Cambridge

Page 8: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-8

What you have to do• 4 homeworks (1/week for the first 4 weeks)• 3 Projects:

– Project 1: a simple calculation of intensity statistics from a model in Goodman (~2 weeks, 1-page report)

– Project 2: study one out of several topics in the application ofcoherence theory and the van Cittert-Zernicke theorem from Goodman (~4 weeks, lecture-style presentation)

– Project 3: a more elaborate calculation of information capacity of imaging channels based on prior work by Barbastathis & Neifeld (~4 weeks, conference-style presentation)

• Alternative projects ok (please propose early)• No quizzes or final exam

Page 9: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-9

Administrative• Website http://web.mit.edu/2.717/www• Broadcast list will be setup soon• Instructor’s coordinates

George Barbastathis 3-461c [email protected]• Please do not phone-call• Office hours TBA• Admin. Assistant

Nikki Hanafin 3-461 [email protected] 4-0449 & 3-5592• Class meets in 1-242

– Mondays 1-3pm (main coverage of the material)– Wednesdays 2-3pm (examples and discussion)– presentations only: Wednesdays 7pm-??, pizza served

Page 10: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-10

The 4F system1f 1f 2f 2f

( )yxg ,1 ⎟⎟⎠

⎞⎜⎜⎝

⎛ ′′′′

111 ,

fy

fxG

λλ ⎟⎟⎠

⎞⎜⎜⎝

⎛′−′− y

ffx

ffg

2

1

2

11 ,

object planeFourier plane Image plane

Page 11: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-11

The 4F system1f 1f 2f 2f

( )yxg ,1 ⎟⎟⎠

⎞⎜⎜⎝

⎛ ′′′′

111 ,

fy

fxG

λλ ⎟⎟⎠

⎞⎜⎜⎝

⎛′−′− y

ffx

ffg

2

1

2

11 ,

object planeFourier plane Image plane

( )vuG ,1

θx

λθλθ

y

x

v

u

sin

sin

=

=

Page 12: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-12

Low-pass filtering with the 4F system

( )yxg ,in

⎟⎟

⎜⎜

⎛ ′′+′′×⎟⎟⎠

⎞⎜⎜⎝

⎛ ′′′′R

yxf

yf

xG22

11in circ,

λλ

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛′−′−∗ y

ffx

ffg

2

1

2

1in , jinc

object planetransparency

Fourier planecirc-aperture

Image planeobserved field

1f 1f 2f 2f

⎟⎟⎠

⎞⎜⎜⎝

⎛ ′′′′

11in ,

fy

fxG

λλ

( )⎟⎟

⎜⎜

⎛ ′′+′′=′′′′

Ryx

yxH22

circ,

field arrivingat Fourier plane

monochromaticcoherent on-axis

illumination

field departingfrom Fourier plane

ℑℑFourier

transformFourier

transform

x ′′ x′x

Page 13: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-13

Spatial filtering with the 4F system

( )yxg ,in

( )yxHf

yf

xG ′′′′×⎟⎟⎠

⎞⎜⎜⎝

⎛ ′′′′,,

11in λλ

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛′−′−∗ y

ffx

ffhg

2

1

2

1in ,

object planetransparency

Fourier planetransparency

Image planeobserved field

1f 1f 2f 2f

⎟⎟⎠

⎞⎜⎜⎝

⎛ ′′′′

11in ,

fy

fxG

λλ

( )yxH ′′′′ ,

field arrivingat Fourier plane

monochromaticcoherent on-axis

illumination

field departingfrom Fourier plane

ℑFourier

transformFourier

transform

x ′′ x′x

Page 14: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-14

Coherent imaging as a linear, shift-invariant system

Thin transparency( )yxt ,

( )yxg ,1

( ) ),( ,),(

1

2

yxtyxgyxg

==

(≡plane wave spectrum) ( )vuG ,2

impulse response

transfer function

( )),(),(

,

2

3

yxhyxgyxg∗=

=′′

Fourier transform

),(),(),(

2

3

vuHvuGvuG

==

output amplitude

convolution

multiplication

Fourier transform

illumination

transfer function H(u ,v): aka pupil function

Page 15: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-15

Coherent imaging as a linear, shift-invariant system

Thin transparency( )yxt ,

( )yxg ,1

(≡plane wave spectrum)

impulse response

transfer function

⎟⎟⎠

⎞⎜⎜⎝

⎛ ′⎟⎟⎠

⎞⎜⎜⎝

⎛ ′=

22

sincsinc),(fby

faxyxh

λλ

( )),(),(

,

2

3

yxhyxgyxg∗=

=′′

( ) ⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=

bfv

afuvuH λλ rectrect,

Fourier transform

output amplitude

convolution

multiplication

Fourier transform

illumination

( ) ),( ,),(

1

2

yxtyxgyxg

==

Example: 4F system with rectangularrectangular aperture @ Fourier plane

( )vuG ,2 ),(),(),(

2

3

vuHvuGvuG

==

Page 16: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-16

Coherent imaging as a linear, shift-invariant system

Thin transparency( )yxt ,

( )yxg ,1

(≡plane wave spectrum)

impulse response

transfer function

⎟⎟⎠

⎞⎜⎜⎝

⎛ ′=

2

jinc),(fRryxh

λ

( )),(),(

,

2

3

yxhyxgyxg∗=

=′′

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛ +=

RvufvuH

22

circ, λ

Fourier transform

output amplitude

convolution

multiplication

Fourier transform

illumination

( ) ),( ,),(

1

2

yxtyxgyxg

==

( )vuG ,2 ),(),(),(

2

3

vuHvuGvuG

==

Example: 4F system with circularcircular aperture @ Fourier plane

Page 17: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-17

Examples: the amplitude MIT pattern

Page 18: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-18

Weak low–pass filtering

Fourier filter Intensity @ image planef1=20cmλ=0.5µm

Page 19: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-19

Strong low–pass filtering

Fourier filter Intensity @ image planef1=20cmλ=0.5µm

Page 20: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-20

Phase objects

glass plate(transparent)

protruding partphase-shifts

coherent illuminationby amount φ=2π(n-1)t/λ

thicknesst

Often useful in imaging biological objects (cells, etc.)

Page 21: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-21

Imaging with Zernicke mask

Fourier filter Intensity @ image planef1=20cmλ=0.5µm

Page 22: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-22

Coherent vs incoherent imaging

Coherentopticalsystem

field in field out

Incoherentopticalsystem

intensity in intensity out

Page 23: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-23

Imaging with spatially incoherent light

2f 2fx ′′ x′x

1f 1f

Generalizing:thin transparency with

sp. incoherentsp. incoherent illumination

( ) ( ) ( ) xxxhxIxI d 2−′=′ ∫

( )xI

intensity at the outputof the imaging system

Page 24: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-24

Incoherent imaging as a linear, shift-invariant system

Thin transparency( )yxt ,

( )yxI ,1

( ) ),( ,),(

1

2

yxtyxIyxI

=

=

incoherentimpulse response ( )

22

3

),(),(

,

yxhyxI

yxI

∗=

=′′

output intensity

convolutionillumination

Incoherent imaging is linear in intensitywith incoherent impulse response (iPSF)

where h(x,y) is the coherent impulse response (cPSF)

( ) 2),(,~ yxhyxh =

Page 25: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-25

Incoherent imaging as a linear, shift-invariant system

Thin transparency( )yxt ,

( )yxI ,1

( ) ),( ,),(

1

2

yxtyxIyxI

=

=

(≡plane wave spectrum) ( )vuI ,2̂

incoherentimpulse response

transfer function

( )2

2

3

),(),(

,

yxhyxI

yxI

∗=

=′′

Fourier transform

),(~),(ˆ),(ˆ

2

3

vuHvuI

vuI

=

=

output intensity

convolution

multiplication

Fourier transform

illumination

transfer function of incoherent system: ( )yx ssH ,~optical transfer function (OTF)

Page 26: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-26

The Optical Transfer Function

( ) ( ){ }( ) ( )

( )∫∫∫∫

′′′′

′′−′−′′′=

ℑ≡

vuvuH

vuvvuuHvuH

yxhvuH

dd,

dd ,,

1 tonormalized , ,~

2

*

2

umax–umax

1

2umax–2umax

real(H) ( )H~real

1

Page 27: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-27

some terminology ...

Amplitude transfer function(coherent)

Optical Transfer Function (OTF)(incoherent)

Modulation Transfer Function (MTF)

( )vuH ,

( )vuH ,~

( )vuH ,~

Page 28: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-28

MTF of circular aperture

physical aperture filter shape (MTF)f1=20cmλ=0.5µm

Page 29: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-29

MTF of rectangular aperture

physical aperture filter shape (MTF)f1=20cmλ=0.5µm

Page 30: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-30

Incoherent low–pass filtering

MTF Intensity @ image planef1=20cmλ=0.5µm

Page 31: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-31

Incoherent low–pass filtering

MTF Intensity @ image planef1=20cmλ=0.5µm

Page 32: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-32

Coherent vs incoherent imaging

( )yxh ,

( ) ( ) 2,,~ yxhyxh =

( ) ( ){ }yxhvuH ,FT, =

( ) ( ){ }( ) ( )vuHvuH

yxhvuH,,

,~FT,~

⊗==

Coherent impulse response(field in ⇒ field out)

Coherent transfer function(FT of field in ⇒ FT of field out)

Incoherent impulse response(intensity in ⇒ intensity out)

Incoherent transfer function(FT of intensity in ⇒ FT of intensity out)

( ) (MTF)Function Transfer Modulation :,~ vuH

( ) (OTF)Function Transfer Optical :,~ vuH

Page 33: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-33

Coherent vs incoherent imaging 1f 1f 2f 2f

2a

c2u−

( )uH~

1

c2uu

1c f

auλ

=cu−

1

u

Coherent illumination Incoherent illumination

( )uH

Page 34: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-34

Aberrations: geometricalParaxial

(Gaussian)image point

Non-paraxial rays“overfocus”

Spherical aberration

• Origin of aberrations: nonlinearity of Snell’s law (n sinθ=const., whereas linear relationship would have been nθ=const.)• Aberrations cause practical systems to perform worse than diffraction-limited• Aberrations are best dealt with using optical design software (Code V, Oslo, Zemax); optimized systems usually resolve ~3-5λ (~1.5-2.5µm in the visible)

Page 35: 2.717J/MAS.857J Optical Engineering - MITweb.mit.edu/2.717/www/2.717-wk1-b.pdf · Example: 4F system with circular aperture @ Fourier plane. MIT 2.717J wk1-b p-17 ... (iPSF) where

MIT 2.717Jwk1-b p-35

Aberrations: wave

( )yxh ,limited

ndiffractio

( ) ( ) ( )yxiyxhyxh ,

limitedndiffractioaberrated

aberratione,, ϕ=

Aberration-free impulse response

Aberrations introduce additional phase delay to the impulse response

c2u−

( )uH~

1

c2uu

unaberrated(diffraction

limited)

aberrated

Effect of aberrationson the MTF