2020 Specialist Mathematics Written examination 2...SECTION A continued 2020 SPECMATH EXAM 2 2...

28
SPECIALIST MATHEMATICS Written examination 2 Friday 20 November 2020 Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 2.00 pm (2 hours) QUESTION AND ANSWER BOOK Structure of book Section Number of questions Number of questions to be answered Number of marks A 20 20 20 B 5 5 60 Total 80 Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may be used. Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape. Materials supplied Question and answer book of 23 pages Formula sheet Answer sheet for multiple-choice questions Instructions Write your student number in the space provided above on this page. Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this. Unless otherwise indicated, the diagrams in this book are not drawn to scale. All written responses must be in English. At the end of the examination Place the answer sheet for multiple-choice questions inside the front cover of this book. You may keep the formula sheet. Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2020 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Victorian Certificate of Education 2020 STUDENT NUMBER Letter

Transcript of 2020 Specialist Mathematics Written examination 2...SECTION A continued 2020 SPECMATH EXAM 2 2...

  • SPECIALIST MATHEMATICSWritten examination 2

    Friday 20 November 2020 Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 2.00 pm (2 hours)

    QUESTION AND ANSWER BOOK

    Structure of bookSection Number of

    questionsNumber of questions

    to be answeredNumber of

    marks

    A 20 20 20B 5 5 60

    Total 80

    • Studentsarepermittedtobringintotheexaminationroom:pens,pencils,highlighters,erasers,sharpeners,rulers,aprotractor,setsquares,aidsforcurvesketching,oneboundreference,oneapprovedtechnology(calculatororsoftware)and,ifdesired,onescientificcalculator.CalculatormemoryDOESNOTneedtobecleared.Forapprovedcomputer-basedCAS,fullfunctionalitymaybeused.

    • StudentsareNOTpermittedtobringintotheexaminationroom:blanksheetsofpaperand/orcorrectionfluid/tape.

    Materials supplied• Questionandanswerbookof23pages• Formulasheet• Answersheetformultiple-choicequestions

    Instructions• Writeyourstudent numberinthespaceprovidedaboveonthispage.• Checkthatyournameandstudent numberasprintedonyouranswersheetformultiple-choice

    questionsarecorrect,andsignyournameinthespaceprovidedtoverifythis.• Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.• AllwrittenresponsesmustbeinEnglish.

    At the end of the examination• Placetheanswersheetformultiple-choicequestionsinsidethefrontcoverofthisbook.• Youmaykeeptheformulasheet.

    Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

    ©VICTORIANCURRICULUMANDASSESSMENTAUTHORITY2020

    SUPERVISOR TO ATTACH PROCESSING LABEL HEREVictorian Certificate of Education 2020

    STUDENT NUMBER

    Letter

  • SECTION A – continued

    2020SPECMATHEXAM2 2

    Question 1

    They-interceptofthegraphofy = f(x),where f xx a x

    x( ) =

    −( ) +( )−( )

    32

    ,isalsoastationarypointwhenaequals

    A. −2

    B. − 65

    C. 0

    D. 65

    E. 2

    Question 2

    Afunctionfhastherule f x b x a a b a b( ) cos ( )= − > >

  • SECTION A – continuedTURN OVER

    3 2020SPECMATHEXAM2

    Question 3AtrainistravellingfromStationAtoStationB.ThetrainstartsfromrestatStationAandtravelswithconstantaccelerationfor30secondsuntilitreachesavelocityof10ms−1.Itthentravelsatthisvelocityfor200seconds.Thetrainthenslowsdown,withconstantacceleration,andstopsatStationBhavingtravelledfor260secondsintotal.Letvms−1bethevelocityofthetrainattimetseconds.Thevelocityvasafunctionoftisgivenby

    A. v t

    t

    t

    t

    t

    t

    ( )

    ,

    ,

    ( ),

    =

    ≤ ≤

    < ≤

    < ≤

    131013

    260

    0 30

    30 230

    230 260

    B. v t

    t

    t

    t

    t

    t

    ( )

    ,

    ,

    ( ),

    =

    ≤ ≤

    < ≤

    < ≤

    131013

    230

    0 30

    30 230

    230 260

    C. v tt

    t

    ttt

    ( ),,

    ( ),=

    ≤ ≤< ≤< ≤

    3103 230

    0 3030 230230 260

    D. v tt

    t

    ttt

    ( ),,

    ( ),=

    ≤ ≤< ≤< ≤

    3103 260

    0 3030 230230 260

    E. v t

    t

    t

    t

    t

    t

    ( )

    ,

    ,

    ( ),

    =

    ≤ ≤

    < ≤

    < ≤

    131013

    230

    0 30

    30 200

    200 230

    Question 4

    Let f x xx

    ( ) = −1 overitsimplieddomainandg(x)=cosec2 xfor 02

    <

  • SECTION A – continued

    2020SPECMATHEXAM2 4

    Question 5

    Giventhecomplexnumberz = a + bi,wherea ∈ R\{0}andb ∈ R, 4 2zz

    z z+( )isequivalentto

    A. 12

    +

    Im( )Re( )

    zz

    B. 4 Re( ) Im( )z z×[ ]

    C. 4 2 2Re( ) Im( )z z[ ] + [ ]( ) D. 4 1 2+ +( )

    Re( ) Im( )z z

    E. 2

    [ ]Im( )

    Re( )

    zz

    Question 6ForthecomplexpolynomialP(z)=z3 + az2 + bz + cwithrealcoefficientsa,bandc,P(−2)=0andP(3i)=0.Thevaluesofa,bandcarerespectivelyA. –2,9,−18B. 3,4,12C. 2,9,18D. −3,−4,12E. 2,−9,−18

    Question 7

    Fornon-zerorealconstantsaandb,whereb<0,theexpression12ax x b+( )inpartialfractionformwith

    lineardenominators,whereA,BandCarerealconstants,is

    A. Aax

    Bx Cx b

    +++2

    B. Aax

    Bx b

    Cx b

    ++

    +−

    C. Ax

    Bax b

    Cax b

    ++

    +−

    D. Ax

    Bx b

    Cx b

    ++

    +−

    E. Aax

    B

    x b

    Cx b

    ++( )

    ++2

  • SECTION A – continuedTURN OVER

    5 2020SPECMATHEXAM2

    Question 8Giventhat(x + iy)14 = a + ib,wherex,y,a,b ∈ R,(y−ix)14forallvaluesofxandyisequaltoA. −a−ibB. b−iaC. −b + iaD. −a + ibE. b + ia

  • SECTION A – continued

    2020SPECMATHEXAM2 6

    Question 9P(x,y)isapointonacurve.Thex-interceptofatangenttopointP(x,y)isequaltothey-valueatP.Whichoneofthefollowingslopefieldsbestrepresentsthiscurve?

    y

    x–1 1 2–2

    –2

    –1

    1

    2

    A.

    –2 –1 1 2

    2

    1

    –1

    –2

    y

    x

    B.

    –2 –1 1 2

    2

    1

    –1

    –2

    y

    x

    C.

    –2 –1 1 2

    2

    1

    –1

    –2

    y

    x

    D.

    –2 –1 1 2

    2

    1

    –1

    –2

    y

    x

    E.

    O

    O

    O

    O

    O

  • SECTION A – continuedTURN OVER

    7 2020SPECMATHEXAM2

    Question 10Atankinitiallycontains300gramsofsaltthatisdissolvedin50Lofwater.Asolutioncontaining15gramsofsaltperlitreofwaterispouredintothetankatarateof2Lperminuteandthemixtureinthetankiskeptwellstirred.Atthesametime,5Lofthemixtureflowsoutofthetankperminute.Adifferentialequationrepresentingthemass,mgrams,ofsaltinthetankattimetminutes,foranon-zerovolumeofmixture,is

    A. dmdt

    = 0

    B. dmdt

    mt

    = −−

    550 5

    C. dmdt

    m= −30

    10

    D. dmdt

    mt

    = −−

    30 550 3

    E. dmdt

    mt

    = −−

    30 550 5

    Question 11

    Withasuitablesubstitutionsec

    sec tan

    2

    24

    33 1

    xx x

    dx( )( ) − ( ) +∫π

    π

    canbeexpressedas

    A. 11

    121

    13

    u udu

    −−

    B. 13 3

    131

    3

    u udu

    −( )−

    C. 12

    111

    3

    u udu

    −−

    D. 1

    11

    21

    3

    u udu

    −−

    E. 13 1

    13 2

    4

    3u u

    du−( )

    −+( )

    ∫π

    π

  • SECTION A – continued

    2020SPECMATHEXAM2 8

    Question 12

    Ifdydx

    e x= cos( )andy0 = ewhenx0=0,then,usingEuler’sformulawithstepsize0.1,y3isequalto

    A. e e+ +( )0 1 1 0 1. cos( . )

    B. e e e+ + +( )0 1 1 0 1 0 2. cos( . ) cos( . )

    C. e e e e+ + +( )0 1 0 1 0 2. cos( . ) cos( . )

    D. e e e e+ + +( )0 1 0 1 0 2 0 3. cos( . ) cos( . ) cos( . )

    E. e e e e e+ + + +( )0 1 0 1 0 2 0 3. cos( . ) cos( . ) cos( . )

    Question 13Thevectorsa i j k , b i j k and c i k~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~= + − = + + = +2 3 2λ willbelinearly dependentwhenthevalueofλisA. 1B. 2C. 3D. 4E. 5

    Question 14 ThemagnitudeofthecomponentoftheforceF i j 8k~ ~ ~ ~= + −6 1 thatactsinthedirectiond i j k~ ~ ~ ~= − −2 3 6 is

    A. 9219

    B. 927

    C. 124

    7

    D. 9211

    E. 187

  • SECTION A – continuedTURN OVER

    9 2020SPECMATHEXAM2

    Question 15Twoforces,F i j and F i jA B~ ~ ~ ~ ~ ~= − = +4 2 2 5 ,actonaparticleofmass3kg.Theparticleisinitiallyatrestat

    position i j~ ~+ .Allforcecomponentsaremeasuredinnewtonsanddisplacementsaremeasuredinmetres.

    Thecartesianequationofthepathoftheparticleis

    A. y x=2

    B. y x= −2

    12

    C. yx

    =+( )

    +1

    21

    2

    D. yx

    =−( )

    +1

    21

    2

    E. y x= +2

    12

    Question 16Let a i j k and b i j k~ ~ ~ ~ ~ ~ ~ ~= + + = − +2 2 2 4 4 ,wheretheacuteanglebetweenthesevectorsisθ.

    Thevalueofsin(2θ)is

    A. 19

    B. 4 59

    C. 4 581

    D. 8 581

    E. 2 4625

    Question 17

    Thevelocity,vms–1,ofaparticleattimet ≥0secondsandatpositionx ≥ 1mfromtheoriginis vx

    =1 .

    Theaccelerationoftheparticle,inms–2,whenx=2is

    A. −14

    B. −18

    C. 18

    D. 12

    E. 14

  • 2020SPECMATHEXAM2 10

    END OF SECTION A

    Question 18Aparticleofmassmkilogramshangsfromastringthatisattachedtoafixedpoint.TheparticleisactedonbyahorizontalforceofmagnitudeFnewtons.Thesystemisinequilibriumwhenthestringmakesanangleαtothehorizontal,asshowninthediagrambelow.ThetensioninthestringhasmagnitudeTnewtons.

    m F

    Thevalueoftan(α)is

    A. mgT

    B. T

    mg

    C. TF

    D. F

    mg

    E. mgF

    Question 19Acricketballofmass0.02kg,movingwithvelocity2 10 1i j ms~ ~−

    − ,ishitandafterimpacttravelswithvelocity2 7 1i j ms~ ~−

    − .Themagnitudeofthechangeinmomentumofthecricketball,inkgms−1,isclosesttoA. 0.04B. 0.06C. 0.10D. 0.24E. 0.34

    Question 20Anobjectofmass2kgissuspendedfromaspringbalancethatisinsidealifttravellingdownwards.Ifthereadingonthespringbalanceis30N,theaccelerationoftheliftisA. 5.2ms−2upwards.B. 5.2ms−2downwards.C. 9.8ms−2downwards.D. 10.4ms−2upwards.E. 10.4ms−2downwards.

  • 11 2020SPECMATHEXAM2

    TURN OVER

    CONTINUES OVER PAGE

  • 2020SPECMATHEXAM2 12

    SECTION B – Question 1–continued

    Question 1 (12marks)Aparticlemovesinthex-yplanesuchthatitspositionintermsofxandymetresattsecondsisgivenbytheparametricequations

    x=2sin(2t)

    y=3cos(t)

    wheret≥0.

    a. Findthedistance,inmetres,oftheparticlefromtheoriginwhent = π6. 2marks

    b. i. Expressdydxintermsoftand,hence,findtheequationofthetangenttothepathofthe

    particleatt = πseconds. 3marks

    SECTION B

    Instructions for Section BAnswerallquestionsinthespacesprovided.Unlessotherwisespecified,anexactanswerisrequiredtoaquestion.Inquestionswheremorethanonemarkisavailable,appropriateworkingmust beshown.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.Taketheacceleration due to gravitytohavemagnitudegms–2,whereg=9.8

  • 13 2020SPECMATHEXAM2

    SECTION B – continuedTURN OVER

    ii. Findthevelocity,v~ ,inms–1,oftheparticlewhent = π. 2marks

    iii. Findthemagnitudeoftheacceleration,inms–2,whent = π. 2marks

    c. Findthetime,inseconds,whentheparticlefirstpassesthroughtheorigin. 1mark

    d. Expressthedistance,dmetres,travelledbytheparticlefromt = 0 to t = π6asadefinite

    integralandfindthisdistancecorrecttothreedecimalplaces. 2marks

  • 2020SPECMATHEXAM2 14

    SECTION B – Question 2 –continued

    Question 2 (11marks)Twocomplexnumbers,uandv,aredefinedasu=−2−iandv=−4−3i.

    a. Expresstherelation|z − u |=|z − v |inthecartesianformy = mx + c,wherem,c ∈ R. 3marks

    b. Plotthepointsthatrepresentuandvandtherelation|z − u |=|z − v |ontheArganddiagrambelow. 2marks

    –5

    5

    5–5 O

    Im(z)

    Re(z)

    c. Stateageometricalinterpretationofthegraphof|z − u |=|z − v |inrelationtothepointsthatrepresentuandv. 1mark

  • 15 2020SPECMATHEXAM2

    SECTION B – continuedTURN OVER

    d. i. SketchtheraygivenbyArg( )z u− = π4ontheArganddiagraminpart b. 1mark

    ii. WritedownthefunctionthatdescribestherayArg( )z u− = π4,givingtherulein

    cartesianform. 1mark

    e. Thepointsrepresentinguandvand–5ilieonthecirclegivenby|z – zc|=r,wherezcisthecentreofthecircleandristheradius.

    Findzc intheforma + ib,wherea,b ∈ R,andfindtheradiusr. 3marks

  • 2020SPECMATHEXAM2 16

    SECTION B – Question 3 –continued

    Question 3 (10marks)Letf(x)=x2e−x.

    a. Findanexpressionfor f ′ (x)andstatethecoordinatesofthestationarypointsof f (x). 2marks

    b. Statetheequation(s)ofanyasymptotesof f (x). 1mark

    c. Sketchthegraphofy = f (x)ontheaxesprovidedbelow,labellingthelocalmaximumstationarypointandallpointsofinflectionwiththeircoordinates,correcttotwodecimalplaces. 3marks

    –3

    –2

    –1

    1

    2

    3

    –5 –4 –3 –2 –1 O 1 2 3 4 5

    y

    x

  • 17 2020SPECMATHEXAM2

    SECTION B – continuedTURN OVER

    Letg(x)=xne−x,wheren ∈ Z.

    d. Writedownanexpressionforg″(x). 1mark

    e. i. Findthenon-zerovaluesofxforwhichg″(x)=0. 1mark

    ii. Completethefollowingtablebystatingthevalue(s)ofnforwhichthegraphofg(x)hasthegivennumberofpointsofinflection. 2marks

    Number of points of inflection

    Value(s) of n (where n ∈ Z )

    0

    1

    2

    3

  • 2020SPECMATHEXAM2 18

    SECTION B – Question 4 –continued

    Question 4 (14marks)Apilotisperformingatanairshow.Thepositionofheraeroplaneattimetrelativetoafixedorigin

    Oisgivenby r iA~ ~( ) sin costt t

    = −

    + −

    450 1506

    400 2006

    π π

    j , where i~ ~isaunitvectorina

    horizontaldirection, j~isaunitvectorverticallyup,displacementcomponentsaremeasuredin

    metresandtimetismeasuredinsecondswheret≥0.

    a. Findthemaximumspeedoftheaeroplane.Giveyouranswerinms–1. 3marks

    b. i. UserA~ ( )t toshowthatthecartesianequationofthepathoftheaeroplaneisgivenby

    ( ) ( )x y− + − =45022500

    40040000

    12 2

    . 2marks

  • 19 2020 SPECMATH EXAM 2

    SECTION B – Question 4 – continuedTURN OVER

    ii. Sketch the path of the aeroplane on the axes provided below. Label the position of the aeroplane when t = 0, using coordinates, and use an arrow to show the direction of motion of the aeroplane. 3 marks

    y

    x2000 400 600 800 1000 1200 1400

    800

    600

    400

    200

    A friend of the pilot launches an experimental jet-powered drone to take photographs of the air show. The position of the drone at time t relative to the fixed origin is given by

    r i jD~ ~ ~( ) ( )t t t t= + − +( )30 402 , where t is in seconds and 0 ≤ t ≤ 40, i~ is a unit vector in the same horizontal direction, j

    ~ is a unit vector vertically up, and displacement components are measured in

    metres.

    c. Sketch the path of the drone on the axes provided in part b.ii. Using coordinates, label the points where the path of the drone crosses the path of the aeroplane, correct to the nearest metre. 3 marks

  • 2020SPECMATHEXAM2 20

    SECTION B–continued

    d. Determinewhetherthedronewillmakecontactwiththeaeroplane.Givereasonsforyouranswer. 3marks

  • 21 2020SPECMATHEXAM2

    SECTION B – continuedTURN OVER

    CONTINUES OVER PAGE

  • 2020SPECMATHEXAM2 22

    SECTION B – Question 5–continued

    Question 5 (13marks)Twoobjects,eachofmassmkilograms,areconnectedbyalightinextensiblestringthatpassesoverasmoothpulley,asshownbelow.TheobjectontheplatformisinitiallyatpointAand,whenitisreleased,itmovestowardspointC.ThedistancefrompointAtopointCis10m.Theplatformhasaroughsurfaceand,whenitmovesalongtheplatform,theobjectexperiencesahorizontalforceopposingthemotionofmagnitudeF1newtonsinthesectionABandahorizontalforceopposingthemotionofmagnitudeF2newtonswhenitmovesinthesectionBC.

    m

    m

    A CB

    10 m

    a. Onthediagramabove,markallforcesthatactoneachobjectoncetheobjectontheplatformhasbeenreleasedandthesystemisinmotion. 2marks

    TheforceF1isgivenbyF1 = kmg,k ∈ R+.

    b. i. Showthatanexpressionfortheacceleration,inms–2,oftheobjectontheplatform,in

    termsofk,asitmovesfrompointAtopointBisgivenbyg k1

    2−( ) . 2marks

    ii. Thesystemwillonlybeinmotionforcertainvaluesofk.

    Findthesevaluesofk. 1mark

  • 23 2020SPECMATHEXAM2

    PointBismidwaybetweenpointsAandC.

    c. Find,intermsofk,thetimetaken,inseconds,fortheobjectontheplatformtoreachpointB. 2marks

    d. Express,intermsofk,thespeedvB ,inms–1,oftheobjectontheplatformwhenitreaches

    pointB. 2marks

    e. WhentheobjectontheplatformisatpointB,thestringbreaks.Thevelocityoftheobjectat pointBisvB=2.5ms

    –1.TheforcethatopposesmotionfrompointBtopointCis F2=0.075mg+0.4mv

    2,wherevisthevelocityoftheobjectwhenitisadistanceofxmetresfrompointB.TheobjectontheplatformcomestorestbeforepointC.

    Findtheobject’sdistancefrompointCwhenitcomestorest.Giveyouranswerinmetres,correcttotwodecimalplaces. 4marks

    END OF QUESTION AND ANSWER BOOK

  • SPECIALIST MATHEMATICS

    Written examination 2

    FORMULA SHEET

    Instructions

    This formula sheet is provided for your reference.A question and answer book is provided with this formula sheet.

    Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

    Victorian Certificate of Education 2020

    © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2020

  • SPECMATH EXAM 2

    Specialist Mathematics formulas

    Mensuration

    area of a trapezium 12 a b h+( )

    curved surface area of a cylinder 2π rh

    volume of a cylinder π r2h

    volume of a cone 13π r2h

    volume of a pyramid 13 Ah

    volume of a sphere 43π r3

    area of a triangle 12 bc Asin ( )

    sine rulea

    Ab

    Bc

    Csin ( ) sin ( ) sin ( )= =

    cosine rule c2 = a2 + b2 – 2ab cos (C )

    Circular functions

    cos2 (x) + sin2 (x) = 1

    1 + tan2 (x) = sec2 (x) cot2 (x) + 1 = cosec2 (x)

    sin (x + y) = sin (x) cos (y) + cos (x) sin (y) sin (x – y) = sin (x) cos (y) – cos (x) sin (y)

    cos (x + y) = cos (x) cos (y) – sin (x) sin (y) cos (x – y) = cos (x) cos (y) + sin (x) sin (y)

    tan ( ) tan ( ) tan ( )tan ( ) tan ( )

    x y x yx y

    + =+

    −1tan ( ) tan ( ) tan ( )

    tan ( ) tan ( )x y x y

    x y− =

    −+1

    cos (2x) = cos2 (x) – sin2 (x) = 2 cos2 (x) – 1 = 1 – 2 sin2 (x)

    sin (2x) = 2 sin (x) cos (x) tan ( )tan ( )tan ( )

    2 21 2

    x xx

    =−

  • 3 SPECMATH EXAM

    TURN OVER

    Circular functions – continued

    Function sin–1 or arcsin cos–1 or arccos tan–1 or arctan

    Domain [–1, 1] [–1, 1] R

    Range −

    π π2 2

    , [0, �] −

    π π2 2

    ,

    Algebra (complex numbers)

    z x iy r i r= + = +( ) =cos( ) sin ( ) ( )θ θ θcis

    z x y r= + =2 2 –π < Arg(z) ≤ π

    z1z2 = r1r2 cis (θ1 + θ2)zz

    rr

    1

    2

    1

    21 2= −( )cis θ θ

    zn = rn cis (nθ) (de Moivre’s theorem)

  • SPECMATH EXAM 4

    END OF FORMULA SHEET

    Calculus

    ddx

    x nxn n( ) = −1 x dx n x c nn n=

    ++ ≠ −+∫ 1 1 1

    1 ,

    ddx

    e aeax ax( ) = e dx a e cax ax= +∫ 1

    ddx

    xxe

    log ( )( ) = 1 1x

    dx x ce= +∫ logddx

    ax a axsin ( ) cos( )( ) = sin ( ) cos( )ax dxa

    ax c= − +∫ 1

    ddx

    ax a axcos( ) sin ( )( ) = − cos( ) sin ( )ax dxa

    ax c= +∫ 1

    ddx

    ax a axtan ( ) sec ( )( ) = 2 sec ( ) tan ( )2 1ax dxa

    ax c= +∫ddx

    xx

    sin−( ) =−

    12

    1

    1( ) 1 0

    2 21

    a xdx xa c a−=

    + >

    −∫ sin ,ddx

    xx

    cos−( ) = −−

    12

    1

    1( ) −

    −=

    + >

    −∫ 1 02 2 1a x dxxa c acos ,

    ddx

    xx

    tan−( ) =+

    12

    11

    ( ) aa x

    dx xa c2 21

    +=

    +

    −∫ tan( )

    ( )( ) ,ax b dx

    a nax b c nn n+ =

    ++ + ≠ −+∫ 1 1 1

    1

    ( ) logax b dxa

    ax b ce+ = + +−∫ 1 1

    product rule ddx

    uv u dvdx

    v dudx

    ( ) = +

    quotient rule ddx

    uv

    v dudx

    u dvdx

    v

    =

    2

    chain rule dydx

    dydu

    dudx

    =

    Euler’s method If dydx

    f x= ( ), x0 = a and y0 = b, then xn + 1 = xn + h and yn + 1 = yn + h f (xn)

    acceleration a d xdt

    dvdt

    v dvdx

    ddx

    v= = = =

    2

    221

    2

    arc length 12 2 2

    1

    2

    1

    2

    + ′( ) ′( ) + ′( )∫ ∫f x dx x t y t dtxx

    t

    t( ) ( ) ( )or

    Vectors in two and three dimensions

    r = i + j + kx y z

    r = + + =x y z r2 2 2

    � � � � �ir r i j k= = + +d

    dtdxdt

    dydt

    dzdt

    r r1 2. cos( )= = + +r r x x y y z z1 2 1 2 1 2 1 2θ

    Mechanics

    momentum

    p v= m

    equation of motion

    R a= m

    2020 Specialist Mathematics 2Section A – Multiple-choice questionsSection BFormula sheet