2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in...

123
2019 YEAR IN REVIEW: MACHINE LEARNING IN HEALTHCARE Piyush Mathur, MD, Srinivas R Mummadi, MD, MBI, Ashish K. Khanna, MD, Jacek B. Cywinski, MD, Kamal Maheshwari, MD, Douglas F. Naylor Jr., MD, Francis A. Papay, MD. Specialist contributors: Dr. Michael Burns, MD, Ph.D, Anirban Bhattacharyya, MD, MPH, Avirup Guha, MD, RPVI, FACC, John S Lee, MD, Rajasekhara Mummadi MD, MS, Sandeep Reddy MBBS, PhD, MSc, FAcadmTM, CHIA, Aziz Nazha, MD, Jungwon Cha, PhD, Amit Anand, MD, Srinivas R Mummadi, MD, MBI, Ty Vachon, MD On behalf of Team BrainX and BrainX Community April, 2020 ( https://www.brainxai.org) INTRODUCTION We present a synopsis of publications focused on machine learning (ML) or artificial intelligence (AI) applications in healthcare for the year 2019. We appreciate the work of researchers and authors who have contributed significantly to the advancement of science in this area. METHODOLOGY We did a PubMed search using the terms, “machine learning” or “artificial intelligence” and “2019”, restricted to English language and human subject research. This search resulted in an initial pool of 3,351 articles. Each of these were reviewed individually and exclusions (1,704) were made based on errors in the PubMed search and low scientific or clinical relevance of the individual articles. A large majority of the excluded publications focused on robotics, ontology and basic science topics. 1,647 publications were finally selected, reviewed and categorized into one or more medical specialties. 343 publications were placed into the “General” category. REVIEW Anesthesiology saw applications of machine learning, deep learning, artificial neural networks in predicting clinically useful outcomes like 30-day postoperative mortality, intraoperative hypoxemia, opioid overdose risk. Cardiology saw development of AI enabled ECG waveform classification, prediction of heart failure related readmission and mortality risk. Additional interest was observed in the domain of cardiac imaging. In Critical care, AI development is

Transcript of 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in...

Page 1: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

2019 YEAR IN REVIEW: MACHINE LEARNING IN HEALTHCARE

Piyush Mathur, MD, Srinivas R Mummadi, MD, MBI, Ashish K. Khanna, MD, Jacek B. Cywinski, MD, Kamal Maheshwari, MD, Douglas F. Naylor Jr., MD, Francis A. Papay, MD.

Specialist contributors: Dr. Michael Burns, MD, Ph.D, Anirban Bhattacharyya, MD, MPH, Avirup Guha, MD, RPVI, FACC, John S Lee, MD, Rajasekhara Mummadi MD, MS, Sandeep Reddy MBBS, PhD, MSc, FAcadmTM, CHIA, Aziz Nazha, MD, Jungwon Cha, PhD, Amit Anand, MD, Srinivas R Mummadi, MD, MBI, Ty Vachon, MD

On behalf of Team BrainX and BrainX Community

April, 2020 ( https://www.brainxai.org)

INTRODUCTION

We present a synopsis of publications focused on machine learning (ML) or artificial intelligence (AI) applications in healthcare for the year 2019. We appreciate the work of researchers and authors who have contributed significantly to the advancement of science in this area.

METHODOLOGY

We did a PubMed search using the terms, “machine learning” or “artificial intelligence” and “2019”, restricted to English language and human subject research. This search resulted in an initial pool of 3,351 articles. Each of these were reviewed individually and exclusions (1,704) were made based on errors in the PubMed search and low scientific or clinical relevance of the individual articles. A large majority of the excluded publications focused on robotics, ontology and basic science topics.

1,647 publications were finally selected, reviewed and categorized into one or more medical specialties. 343 publications were placed into the “General” category.

REVIEW

Anesthesiology saw applications of machine learning, deep learning, artificial neural networks in predicting clinically useful outcomes like 30-day postoperative mortality, intraoperative hypoxemia, opioid overdose risk. Cardiology saw development of AI enabled ECG waveform classification, prediction of heart failure related readmission and mortality risk. Additional interest was observed in the domain of cardiac imaging. In Critical care, AI development is

Page 2: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

focused on early identification of sepsis, hypotensive events, acute kidney injury and in AI enabled real time decision support during tele ICU care. Dermatology saw a lot of interest in the topics of AI enabled classification and diagnosis of digital images with the objective of enabling early diagnosis, especially of skin cancers. Medical Education saw some interest in introducing Natural Language Processing (NLP) to medical students. Emergency Medicine saw interest in predicting ED return visits, early identification of patients at risk for sepsis and using NLP techniques to aid triaging based on clinical notes. Endocrinology saw an interest mainly centered on identifying diabetic cohorts and risk of adverse events in diabetes using AI techniques. Classification of thyroid nodules using AI techniques on real time ultrasound images received noteworthy attention. Reported AI/ML research in Gastroenterology continues to be heavily centered on utilizing endoscopy images. Particularly noteworthy is the reporting of randomized controlled trials in this domain. NLP techniques in identifying cohorts at risk for nonalcoholic fatty liver disease were also noted.

Using AI/ML techniques to aid discovery of new drug targets, new antibiotics dominated the General literature. In terms of Dental and Head/Neck medicine, applications continue to be reported utilizing radiological and endoscopic images. Nephrology saw particular interest in prediction of early acute kidney injury and utilizing AI techniques in improving the read of electron microscopy images. Neurology's literature centered on application of AI/ML techniques in improving EEG reads as well as early diagnosis of Parkinsonism. Obstetrics/Gynecology reported interest in predicting postpartum complications including postpartum depression and NLP techniques to identify significant co-morbidities in pregnant women such as depression etc. Oncology saw interest in using AI/ML techniques in utilizing radiology, genetic data to enhance clinical care. Ophthalmology continues to be a leader in utilizing images for predicting outcomes in retinopathy, and glaucoma. Orthopedics/Rheumatology saw interest in utilizing radiological images for early recognition of osteoarthritis, automated detection of hip fractures. Intense activity continues to be reported from Pathology due to its image intensive workflows. Pediatrics literature mirrors the interest seen in adult subspecialties. Physiotherapy literature mainly centered on gait analysis. Psychiatry reported using NLP techniques for predicting patients at risk for suicide as well as using radiological images for early prediction of Alzheimer's disease. Pulmonary medicine reported intense interest in automated AI/ML enabled analysis of polysomnograms [sleep study data] and predicting risk of asthmatic exacerbations. Radiology continues to lead as expected due to its image intensive practice with clinical grade application for diagnosis and decision aids. Surgery reported interest in predicting transplant outcomes such as rejection and using NLP techniques to predict clinically meaningful outcomes.

Page 3: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

Overall imaging, electronic health record data especially text and advanced physiological monitoring data are key drivers for innovations. Despite lot of work clinical grade applications are limited due to limited availability, and lack of synergy between healthcare institutions and industry.

LIMITATIONS

Search was limited to PubMed and with the restrictions mentioned in the methodology section. It is possible that some significant studies or articles might have been missed. BrainX Community’s “LEARN” (https://www.brainxai.org/learn/) section provides an extensive supplement to the review provided here. We welcome any suggestions to include publications that might have been missed. Please contact us via BrainX Community LinkedIn group, BrainX Community webpage or directly using email ([email protected]).

SPECIALITY LIST WITH REFERENCES

Administrative/Quality Improvement 1-76

Anesthesiology 40,77-89

Cardiovascular Medicine 29,90-176

Critical Care 177-208

Dermatology 209-243

Education 57,244-251

Emergency Medicine 181,252-258

Endocrinology 259-275

Gastroenterology 79,276-316

General 10,20,97,98,189,317-561,163,204,307,562-651

Genetics 619,652-764

Page 4: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

Head &Neck/Dental 301,765-784

Nephrology 122,194,203,205,785-796

Neurology 422,797-865

Obstetrics/Gynecology/Reproductive Medicine866-887

Oncology315,600,657,778,782,783,888-987

Ophthalmology988-1043

Orthopedics/Rheumatology50,1044-1062

Pathology904,922,928,932,1063-1135

Pediatrics183,252,254,477,879,1136-1161

Physiotherapy/Rehabilitation Medicine437,1057,1151,1162-1175

Psychiatry and Behavioral Sciences 483,587,884,887,1145,1176-1235

Pulmonary Medicine 201,732,853,1236-1251

R a d i o l o g y /Imaging110,127,409,512,771,890,927,934,947,1055,1190,1197,1237,1252-1488161,170,171,268,270,725,841,859,885,960,967,968,973,97

7,981,982,985-987,1060,1234,1489-1617

Surgery 26,82,187,218,249,266,470,788,789,791,822,856,976,1288,1366,1382,1570,1575,1618-1646

Page 5: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

SPECIALITY ABSTRACTS

Anesthesiology Dr. Michael Burns, MD, Ph.D

Machine learning (ML) and artificial intelligence (AI) applications continue to expand throughout medicine and the field of anesthesiology. In 2019 we saw applications in pain medicine, neuroanesthesia, opioid use, hospital mortality, among others. Of the 14 entries reviewed from 2019, eight were opioid or pain related. Most commonly, machine learning models were applied to solve clinical classification problems, with the most common methods including logistic regressions, neural networks, and random forests. Natural language processing (NLP) was another useful tool dedicated to ML and AI applications. Results from these original scientific studies mostly showed equivalent or improved classifications over existing clinical tools. This review highlights the rapid expansion and utility of ML and AI in the field of anesthesiology. Expansion will continue as researchers become more familiar with ML-specific tools such as Keras and ML-friendly languages such as R and Python.

Dr. Michael Burns is an anesthesiologist and clinical lecturer at the University of Michigan and clinical analytics researcher within the Multicenter Perioperative Outcomes Research Group (MPOG) (https://mpog.org/). Dr. Burns received two Bachelor’s Degrees from the University of Michigan in 2003 (Chemical Engineering and Microbiology), Masters and PhD from the University of Wisconsin (2006 and 2009 in Chemical and Biological Engineering), and an MD from the Feinberg School of Medicine - Northwestern University in 2012. Dr. Burns completed his residency in anesthesiology from the University of Michigan in 2016

and a T32 NIH fellowship in Clinical Analytics in 2019.

Dr. Burns’ research is multifaceted comprising projects in traditional basic sciences, clinical, and computer science spaces, with a focus on creating insight and automation within medicine

Page 6: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

through computer science technologies. This work includes clinical predictive modeling, physician decision making, scheduling, operating room workflow, billing, and quality improvement. Dr. Burns’ computer science training includes familiarity with machine learning and natural language techniques with emphasis on SQL, R, Python, Keras, and TensorFlow. Most recently Dr. Burns has published on his work on machine learning applications for automated CPT coding (PMID: 32028374).

Critical Care Anirban Bhattacharyya, MD, MPH

Intensive Care units (ICUs) generate an immense amount of data compared to rest of the hospital. Early and accurate prediction of disease states, identification of new phenotypes based on clinical outcomes and understanding complex relationships between several patient factors are now possible with: (i) widespread implementation of electronic health records (EHR) and (ii) powerful computers increasing our ability to run complex machine learning algorithms that capture complex non-linear relationships across time. Prediction models for onset of different diseases like Acute Kidney Injury (AKI), Adult respiratory distress syndrome (ARDS), Pneumonia, Sepsis have been developed. Other models have focused on re-stratifying the mortality and morbidity risk once these diseases have occurred or predicting response to therapy or just improving our diagnostic accuracy by intelligently analyzing information from multiple sources. Some of these algorithms show promise with their ability to predict clinical deterioration before clinicians can detect with existing screening tools. Machine learning has allowed us to look beyond categorical variables when assessing risk. Reading through immense text data, natural language processing can help risk stratify patients or predict disease occurrence. With varied disease presentation the diagnoses can be delayed or missed by clinicians and developing models can also prove challenging. To bypass these limitations, investigators have assigned a confidence score to clinician diagnosis and defined disease phenotypes. Besides presentation, heterogeneity can also affect therapeutic responses and historically, several randomized controlled trials have demonstrated poor therapeutic efficacy. With clustering techniques, investigators have identified specific populations that will likely benefit from specific interventions and build precision algorithms specific to these phenotypes. However, as with traditional statistics, algorithms developed with machine learning techniques still suffer from bias due to inaccuracies in data collection, and lack of multi-center validation. Also, many of these algorithms, even when accurate are difficult to implement in real time due to use of very sophisticated nature. Not so surprisingly, 2019 witnessed several successful machine learning models that are built on a solid physiologic rationale with clinically relevant features that are easy to obtain. In addition, investigators are working on improving model interpretability

Page 7: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

and are testing models prospectively that facilitate creation of clinical decision support tools. Early implementation of these efforts has been observed in improving our mechanical ventilation

strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients.

Dr. Bhattacharyya is a critical care medicine trained physician, Associate Staff Physician, Critical Care Medicine, Respiratory Medicine, Cleveland Clinic, Clinical Assistant Professor of Medicine, CCLCM. He has completed a Master’s in Public Health with Biostatistics as his major. His current research efforts focus on creation of and implementation of machine learning based projects to either optimize workflow or to improve understanding of disease processes. Dr Bhattacharyya has also participated in the ESICM and SCCM datathons and was part of the winning teams.

Cardiology Avirup Guha, MD, RPVI, FACC

There has been tremendous research regarding use of AI/ML based technology/methodology in the year 2019 in the field of cardiology. There were 88 manuscripts picked by our automated algorithm for use of machine learning in the field of cardiology. Of these 69 made it into the final list of articles which are included in the annual review. Like last year, the highest quality data was obtained from EKG which resulted in the highest impact manuscripts. Researchers used rhythm changes and heart rate variability to predict hypertension , myocardial infarction and left ventricular dysfunction . Additionally, researchers were able to use SVM, CNN, PCA to classify EKG into normal and arrhythmia categories including atrial fibrillation with greater than 97-99% accuracy . Ventricular arrhythmia onset was identified using a deep learning algorithm .

Cardiac MRI given its high standards of acquisition was the next great data source for ML research. Studies using CNN helped automate LGE quantification , LVEF quantification, studying myo-pericardial mechanics and aortic flow quantification. A new modality which has been used in quantification of coronary obstruction called cardiac CT fractional flow reserve (CT-FFR) was improved even further using ML techniques. Cardiovascular condition specific research using various data sources like CXR, and EMR data helped identify diagnosis, risk factors and complications among those with coronary artery disease, congestive heart failure , pulmonary hypertension and cerebrovascular disease .

Page 8: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

Echocardiogram was another important modality used for ML research despite inter-user variability in quality. Studies using CNN focused on making sure accuracy can be achieved using 2D or 3D echo. Further, echocardiogram was utilized to diagnose early disease, and predict sudden death. CNN was used in unique ways by using heart sounds as source of data to study general cardiovascular health, diagnose congenital heart condition and predict blood pressure. There were various other scattered use cases for use of various ML algorithms discussed in the other papers.

Dr. Guha is an Assistant Professor of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH and a consultant cardiologist in the Harrington Heart and Vascular Institute

Emergency Medicine

John S Lee, MD

Emergency departments are awash in physical chaos. This chaos is very much reflected in the data that the typical emergency physician must ingest and parse. Machine learning techniques provide hope that this chaos can be tamed and clinically useful information can obtained.

Rapid triage in the emergency department is a key competency. Unfortunately, this process has been very dependent on mistake prone human processes that can become overwhelmed by the emergency department's sensory overload. 2 studies used triage data to predict whether patients would eventually need critical care. These studies yielded critical care predictions using machine learning techniques with AUROCs of 0.78-0.87. One of the studies also predicted overall hospitalization with AUCs of 0.73 to 0.80.

An intriguing study used various NLP techniques to analyze free text nursing triage notes to predict disposition. The composition of the limited triage nurses' notes yielded predictions of a

Page 9: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

patient's final disposition with AUROCs of 0.687-0.785. This reinforced the untapped potential of the of unstructured notes.

Beyond identifying and acutely treating patients who need immediate acute medical care, the emergency department can serve as a significant public health resource, particularly as a screening facility to detect future, longitudinal health problems such as falls. One center studied 3 different algorithmic approaches were used to predict falls within 6 months after and ED discharge. The best performing model was a random forest model which achieved an AUROC of 0.78. Based on these results, the authors postulated that they would have to send 12 referrals to a fall clinic to prevent 1 eventual fall.

The bane of the emergency physician is the patient who goes home but then returns soon afterward. These decisions are frequently made heuristically and with limited data. Leveraging data to aid in the decision to send a patient home could help emergency physicians avoid the dreaded conversation with a colleague, "You know that patient you sent home yesterday..." One center studied a tool to predict return to the ED within 120 hours after discharge. They used 2 different models which yielded accuracies of 81-91.3%. At another site, social determinant data was studied to see if it could predict returns to the emergency department both combined with other clinical data and on its own. Social determinant data yielded AUROC performance of only 0.61. Combining social determinant with EHR and HIE data yielded AUC performance of 0.732.

And of course, no review of predictive models in the emergency department would be complete without the obligatory sepsis predictions. Investigators developed a Risk of Sepsis (RoS) score and compared it to a more traditional Sequential Organ Failure Assessment (SOFA). RoS was significantly more sensitive and precise. A Singapore facility compared machine learning assessment of ED patients to predict sepsis. They too were able to generate a model that outperformed more traditional risk stratification tools such as the Quick Sequential Organ Failure Assessment (qSOFA), National Early Warning Score (NEWS), Modified Early Warning Score (MEWS), and Singapore ED Sepsis (SEDS).

Dr. John Lee is an emergency physician and chief medical information officer at Edward-Elmhurst healthcare. He completed his residency training at Cook County Hospital. He has been practicing emergency medicine for more than 20 years and has been actively involved in clinical informatics for 14 years. He is passionate about the use of data and information technology to solve the many ills of our health care system.

Page 10: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

Gastroenterology Rajasekhara Mummadi MD, MS

Published work in the field of Artificial Intelligence ( AI ) and Machine Learning ( ML ) in Gastroenterology and Hepatology in 2019 can be broadly divided into two categories

1. Convoluted Neural Networks ( CNN ) to enhance the detection of gastrointestinal lesions and for real-time histology during endoscopy. Colonoscopy done for Colorectal Cancer (CRC ) screening is one of the most common gastrointestinal ( GI) endoscopy procedures performed across the world. It has been established that the protective effect of a colonoscopy arises from the detection of precancerous polyps. The quality of the procedure and the subsequent decrease in mortality is directly proportional to the Adenoma Detection Rate ( ADR) and Polyp Detection Rate ( PDR). It is not surprising that a significant amount of studies in 2019 focus on the application of Convoluted Neural Networks (CNN ) to enhance real-time detection of polyps during colonoscopy and precancerous lesions during upper GI endoscopy. Wireless Capsule Endoscopy ( WCE ) saw a significant amount of progress in the application of machine learning to improve detection. WCE is a high definition of video footage of the small bowel acquired by an ingested camera that runs for around 4-6 hours. Operator distractibility and fatigue lead to missed lesions. An earlier version of machine learning used a color filter to pick up bleeding lesions. Given the baseline of achievements, this reported progress in algorithms is expected to enhance the detection of lesions. It is interesting to note that Gastroenterology leads the way in Randomized Controlled Trials ( RCTs ) of AI applications in medicine to date, and 3 out of 4 examine the impact of AI on polyp detection in colonoscopy.

2. Enhance Prognosis and Diagnosis of GI diseases: Multiple studies have been done in using machine learning techniques to predict outcomes of chronic gastrointestinal diseases such as Crohn’s disease, Non-Alcoholic Fatty Liver Disease ( NAFLD ), and Hepatitis C. In this segment, ML techniques are expected to outperform traditional regression models by incorporating unstructured data with techniques such as Natural Language Processing. VanVleck, Chan, and colleagues used Natural Language Processing (NLP ) technology to identify patients with NAFLD. Dong et al. used a

Page 11: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

Machine Learning ( ML ) model to predict the risk of surgery in Chinese patients with Crohn’s disease. Zhao and Liu used an ML model based on logistic regression and Support Vector Machine (SVM) to explore the relationship between traditional risk factors (age, weight) and the evolving discipline of the fecal microbiome in predicting the risk of colorectal cancer.

Strengths of the published literature include the reporting of 3 randomized controlled trials. Limitations include a lack of description of integration into daily clinical workflows.

Dr.Mummadi is a board-certified gastroenterologist and the Chief Quality and Population Health Officer for Northwest Permanente, the physician group of Kaiser Northwest. He is passionate about the integration of big data analytics in healthcare delivery to improve care delivery. He leads the organizational governance group charged with evaluating evolving ML technologies in health care

General Sandeep Reddy MBBS PhD MSc FAcadmTM CHIA

The growing utilization of Machine Learning (ML) in various aspects of healthcare research and

delivery has been showcased in a staggering number of peer-reviewed articles in recent years.

The studies outlined in these articles demonstrate the versatility of ML in addressing various

kinds of medical complications. Not just problems, ML methods are being used to pave the way

for innovative medical interventions that would have been previously impractical to implement.

The collection of articles, all published in 2019, listed in this section while having an emphasis

on personalized medicine and drug discovery, also present insights about the use of classical and

novel ML methods in healthcare. Also, there are reviews in this section as to how various

Page 12: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

medical domains are utilizing ML methods to deliver better medical care and improved patient

outcomes.

Drug discovery is a resource-intensive process. Articles listed in this section showcase how ML

can make this process more efficient including how ML can help with drug repositioning (Zong,

N., et al. 2019), support text mining to enable drug discovery (Zheng, S., et al. 2019), and predict

drug target interaction (Yan, X. Y., et al. 2019) amongst other applications. Increasingly ML

methods are driving adoption and delivery of personalized medicine, which involves the

provision of medical treatment tailored to individuals. Zhang, S., et al.(2019) discuss how ML is

supporting personalized medicine components like disease characteristic identification,

therapeutic effect prediction and tailored drug development. Also, Yao, J., et al. (2019) discuss

how the use of ML methods can computationally identify various therapeutic hypotheses by

calculating clinically useful drug targets.

Amongst the ML techniques showcased in the over 300 articles in the section, Natural Language

Processing (NLP) has a certain prominence. Zeng, Z., et al. (2019) discuss how it can be used for

Electronic Health Record phenotyping which in turn can assist with diagnosis and treatment.

Zhu, V. J., et al. (2019) also discuss how NLP pipelines such as data from EHR and medical

reports can reduce social isolation. Further, NLP can foster in-silico drug discovery through text

mining of biomedical science literature as per Zheng, S., et al. (2019).

Other methods discussed in the articles include reinforcement learning, which is exemplified in

the design of a closed-loop control of drug dosing administration (Yazdjerdi, P., et al. 2019), an

unsupervised deep learning-based feature learning to analyse heterogenous patient health data

(Zhou, C., et al. 2019) , support vector machine algorithm to predict blood pressure from

physiological index data (Zhang, B., et al. 2019) and a fuzzy multi-objective linear model to

address medical service organization selection issues and uncertain information (Liao, S., et al.

2019). These are just some of the hundreds of ML models profiled in the articles indicating not

Page 13: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

just the diversity of ML methods but also a rapidly evolving field where novel ML techniques

emerge each year.

This section also presents commentaries about the role of ML and Artificial Intelligence (AI) in

general in healthcare planning, administration and delivery and what it means for clinicians and

patients. These articles complement the translational medicine papers, as they present something

for decision makes to ponder as it is increasingly becoming evident that ML is no fad or fading

technology and has become real and useful to healthcare delivery.

Associate Professor Sandeep Reddy MBBS PhD MSc FAcadmTM CHIA. Sandeep is an Artificial Intelligence (AI) in Healthcare researcher based at the Deakin School of Medicine besides functions as a certified health informatician, and a World Health Organization recognized digital health expert. He has a medical and healthcare management background and has completed machine learning/ health informatics training from various sources. He is currently engaged in research about the safety, quality and explainability of the application of AI in healthcare delivery in addition to developing AI

models to treat and manage chronic diseases. Also, he has authored several articles and books about the use of AI in Medicine. Further, he has set up local and international forums to promote the use of AI in Healthcare in addition to sitting on various international committees focusing on AI in Healthcare.

Oncology Aziz Nazha, MD

Artificial intelligence (AI) and machine learning (ML) had a significant impact on our lives and certainly, this impact started to be seen in medicine. Oncology as a subspecialty can have a great benefit from the application of this technology. Last year, tremendous work has been done to use machine learning and deep learning to improve the diagnostic accuracy, prognosis and treatment

Page 14: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

selection for cancer patients. These efforts included the identification of prostate cancer and other solid tumor cancers in pathology slides using computer vision, to profiling solid tumor cancers using electronic health records. Other attempts included the development of personalized prediction model to predict prognosis of cancer patients that is specific for a given patient. Further, interesting efforts were made to integrate multi-modality approaches using imaging, clinical data and genomic data to predict response to chemotherapy and immunotherapy along with several efforts to develop or design new targeted therapies using deep learning. All these efforts highlight the importance of AI technologies in advancing cancer research and improve patient outcomes.

Dr. Nazha is a Hematologist & Oncologist who practices at the Cleveland Clinic Foundation, OH. His interests are in application of AI & ML techniques to improve the care of his patients. He leads the Cleveland Clinic's Center for Clinical Artificial Intelligence which is coordinating efforts between physicians, researchers, computer scientists and statisticians for exploring AI/ML opportunities in advancing clinical care. He led the creation of a new model that incorporates individual patient genomic and clinical data to better predict

overall survival and the risk of leukemia in patients with myelodysplastic syndrome.

Psychiatry and Behavioral Sciences Jungwon Cha, PhD, Amit Anand, MD

In 2019, Artificial Intelligence (AI) research in mental health has focused on machine learning and Natural Language Processing (NLP). Machine learning-based predictive analysis algorithms have used supervised machine learning methods such as support vector machine, decision tree, random forest, and logistic regression as well as unsupervised machine learning methods like k-means clustering and hierarchical clustering. It should be noted that AI research is rapidly moving more towards deep learning approaches using Convolutional Neural Network (CNN) but only a few mental health studies have reported results using these methods.

AI research in mental health has focused on brain connectivity research using data from structural and functional Magnetic Resonance Imaging (MRI) as well as Electroencephalography (EEG) data to predict psychiatric disorders diagnosis, suicidal behavior as well as several types of addictions. Electronic Health Records (EHR) data has also been used to predict postpartum depression and identify suicidal behavior. Several different machine learning methods using data from structural MRI, resting-state functional MRI, Diffusion Tensor Imaging (DTI), and

Page 15: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

brain morphometry have attempted to classify schizophrenia subjects from other psychiatric disorders as well as from healthy subjects. Machine learning method studies also reported using classification between bipolar from unipolar depression using brain imaging and EEG data. A number of publications related to NLP interpretation of EHR and MRI data have also been reported to identify subjects at risk for suicide. Machine learning methods applied to the brain connectome were also reported for classification of subjects at risk for addictions and to predict relapse of addictive behavior.

LIMITATIONS

Even though considerable progress has been made in the application of AI methods in mental health, many of the studies were limited by a small size which affects the predictive power of the model that was used. Furthermore, differences in the type of methods and models used in different studies make it difficult to compare results across studies.

Jungwon Cha received the B.S. and M.S. degrees in Physics from the Yonsei University, South Korea, in 2006 and 2008, respectively, and the Ph.D. degree in electrical and computer engineering from University of Louisville, USA, in 2018.

In 2018, he started post-doctoral research fellow in the center for behavioral health in the Cleveland Clinic. His current research interests include resting state fMRI, DTI, machine learning, classification, and mood disorders

Dr. Amit Anand is Professor of Medicine at the Cleveland Clinic Lerner College of Medicine. He holds the position of Vice-chair for research for Center for Behavioral Health and directs the Mood and Emotional Disorders Across the Life Span (MEDALS) program at the Cleveland Clinic. Dr. Anand completed his initial medical and psychiatric training from the All India Institute of Medical Sciences and the Royal Australian and New Zealand College of Psychiatrists. In 1992 he came to Yale University School of Medicine where he completed a Clinical Neuroscience fellowship. Subsequently he

joined the Yale University School of Medicine faculty as assistant professor and directed the bipolar disorders clinical and research program there. While at Yale, Dr. Anand completed several innovative brain imaging and pharmacological studies on the biological basis of mood disorders. In 2001 he was offered a tenured professorship appointment at Indiana University School of Medicine and he established the mood disorders clinical and research program there. At Indiana University School of Medicine he conducted pioneering studies of abnormalities in

Page 16: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

brain connectivity in mood disorders and was funded by the National Institutes of Health. Dr. Anand moved to Cleveland Clinic in 2012 where he has established a diverse clinical research program in areas of personalized medicine, brain imaging, and novel treatment trials for mood and other neuropsychiatric disorders. Dr. Anand has obtained several NIH grants as well as private foundation grants and has also conducted numerous clinical trials. He has more than a hundred publications in the areas of psychopharmacology and biomarkers of mood disorders and is nationally and internationally recognized in these areas.

Pulmonary Medicine Srinivas R Mummadi, MD, MBI

Asthma is a strong area of interest. The holy grail of asthma has been to identify patients responsive to a unique class of medicines (ex: inhaled corticosteroids). A study used multiple kernel k-means clustering to identify clusters of patients (based on their responsiveness to inhaled corticosteroids) from the Severe Asthma Research Program cohort (n=349 patients). They could identify 12 variables that could predict the cluster of severe asthmatics. These findings have the potential to aid real time decision support during outpatient evaluations and aid precision medicine efforts. Limitations of this study include the absence of validation efforts and lack of integration with the electronic health record workflows.

2019 has seen a strong interest in using convolutional neural networks to improve efficiency of interpreting sleep studies (n= 6 studies). Fundamental steps of interpreting sleep studies include analyzing vast amounts of visual data for each patient and therefore this development will accelerate efforts in promoting efficiency in the turnaround time of sleep study results. Turnaround time of sleep study results is a well-known indicator of patient satisfaction. Limitations of published literature in this domain include relatively sample size and only one study describing validation efforts.

An area of interest that has seen three efforts is using deep learning techniques for classifying auscultatory lung sounds and breathing patterns. One model could classify with a high degree of accuracy 522 lung auscultation samples from 50 patients. One study used a non-contact Doppler radar to understand patterns in breathing sounds to classify the observations into 6 well known breathing patterns which are suggestive for unique diseases. Potential applications of this line of work include improving the performance of current electronic stethoscopes, teaching, quicker diagnosis during tele-health consultations and risk stratification during first response evaluations.

A particularly interesting effort to predict high cost Chronic Obstructive Pulmonary Disease (COPD) patients was described from China. The authors analyzed data of 186,188 patients with COPD using a smooth Bayesian network to predict future high cost COPD patients. The AUC was 0.80 and outperformed existing machine learning models. It also unearthed interesting patterns such as a “geographic hotbed of high cost COPD patients” and primary hospital care

Page 17: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

being reflective of an increased risk of transitioning to a high cost COPD patient. These are very important efforts as they seek to solve wicked problems on a population health scale.

As expected, efforts at improving chest image interpretation continue to be reported. Inherent limitations of such efforts continue to be a relatively small training sample and lack of descriptions about integrating these tools in the actual workflow of chest radiologists. A study from an academic medical center described a NLP project to understand the prevalence of ground glass opacity (a pulmonary nodule with a high risk of low grade cancer) in their organization. Such work has applications in population health, quality improvement and case detection.

Future efforts should incorporate validation descriptions as well as offer practical examples of workflow integration.

Dr Mummadi is a Staff Physician at the Respiratory Institute and Medical Director of Clinical Informatics, Cleveland Clinic Foundation, OH. He has formal training background and is board certified in Internal Medicine, Pulmonary and Critical Care Medicine, Clinical Informatics and Medical Quality. He has interests in using informatics to improve health care quality and analyzing large outcomes databases. Clinical interests include obstructive lung disease and pleural disease.

Radiology Ty Vachon,MD

The barrier for small hospitals and systems to adopt radiology AI algorithms, clinical or otherwise, remains high. Large, research based, or at least research minded, institutions can work on projects as their appetite dictates. The distribution of the 2019 research continues to reflect this trend. Most of the research, while laser focused on the problem they solve, is not ready to answer usable clinical questions, solve real workflow issues or improve specific disease outcomes.

The nature of AI lends research to initially focus on classification, segmentation and diagnosis however a reasonable number are looking further at treatment response and predictive outcomes, which is refreshing. Understandably, we are still in the relatively early stages of AI as applied to medical imaging and the disease or injury must be first identified prior to re-identified after treatment or evaluated for predictive measures. Even at our early stage, I am encouraged by the

Page 18: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

authors who have worked to demonstrate treatment response and prognosis prediction in brain, vascular, cardiac, liver, prostate, breast and chest.

Choosing a very specific disease entity and associated feedback loop, or predictive therapeutic guidance, can realize direct clinical application. This can improve the time to FDA approval and ultimately utilized on my reading list, and as a practicing radiologist, that is my preferred outcome.

The 5 most researched anatomic regions of 2019 are of no surprise: brain, lung/chest, breast, heart, liver. The next group were head/neck including thyroid, spine, bones and joints and female pelvis. About two-thirds of the studies discussed modality with MRI and CT accounting for nearly all of them at about 100 studies each. Sonography, mammography and PET accounted for the majority of the remaining 60 studies. A handful of studies looked at plain film and fluoroscopy.

For now, the predictable volumetric rendering of CT and MRI with stacked images and known interval seems to be most suitable for algorithm development. Given the wide user variability in sonography it is understandably more difficult to acquire larger training sets, with the exception being breast lesion evaluation. Possibly the strict BIRADS method of reporting has been helpful in the breast ultrasound image acquisition and subsequent utility in algorithm development.

From a quality standpoint it was encouraging to see about one quarter of the studies in 2019 at least partially addressed systems and quality. There are many areas in radiology, with direct and indirect interaction with larger health system, which could be streamlined with algorithm applications to include billing, scheduling, exam protocols, radiation dose, appropriateness and patient education. It would be nice to see more research in these areas as well.

Radiologists are ready to see prudent deployment of well implemented, safe, explainable algorithms, and I am looking forward to the progression of the 2019 research to continue to work toward this goal.

Dr. Vachon has been recognized by the American Medical Association's Physician Innovation Network as an innovator and leader and he has served as an expert panelist on artificial intelligence in medicine. As an AI thought leader, he was interviewed by the Radiological Society of North America at the recent 2019 RSNA trade show. His most recent print publication “A Radiologist’s Introduction to AI and Machine Learning" has been delivered to over 1500 practicing

radiologists worldwide with the goal of educating his peers and advancing our field, one person at a time.

Page 19: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

Bibliography

1. Alba PR, Pa+erson OV, Richman JS, DuVall SL. Automa=c Methods to Extract Prescrip=on Status Quality Measures from Unstructured Health Records. Studies in health technology and informa4cs. 2019;264:15-19.

2. BagaSni F, Karlsson I, Rebane J, Papapetrou P. A classifica=on framework for exploi=ng sparse mul=-variate temporal features with applica=on to adverse drug event detec=on in medical records. BMC Med Inform Decis Mak. 2019;19(1):7.

3. Baghdadi Y, Bourree A, Robert A, et al. A New Approach to Compare the Performance of Two Classifica=on Methods of Causes of Death for Timely Surveillance in France. Studies in health technology and informa4cs. 2019;264:925-929.

4. Bali J, Garg R, Bali RT. Ar=ficial intelligence (AI) in healthcare and biomedical research: Why a strong computa=onal/AI bioethics framework is required? Indian J Ophthalmol. 2019;67(1):3-6.

5. Balyan R, Crossley SA, Brown W, 3rd, et al. Using natural language processing and machine learning to classify health literacy from secure messages: The ECLIPPSE study. PloS one. 2019;14(2):e0212488.

6. Carmen R, Yom-Tov GB, Van Nieuwenhuyse I, Foubert B, Ofran Y. The role of specialized hospital units in infec=on and mortality risk reduc=on among pa=ents with hematological cancers. PloS one. 2019;14(3):e0211694.

7. Chapman AB, Peterson KS, Alba PR, DuVall SL, Pa+erson OV. Detec=ng Adverse Drug Events with Rapidly Trained Classifica=on Models. Drug safety. 2019;42(1):147-156.

8. Cho I, Jin I. Responses of Staff Nurses to an EMR-Based Clinical Decision Support Service for Predic=ng Inpa=ent Fall Risk. Studies in health technology and informa4cs. 2019;264:1650-1651.

9. Clavelle JT, Sweeney CD, Swartwout E, Lekon C, Guney S. Leveraging Technology to Sustain Extraordinary Care: A Qualita=ve Analysis of Meaningful Nurse Recogni=on. J Nurs Adm. 2019;49(6):303-309.

10. Conway M, Hu M, Chapman WW. Recent Advances in Using Natural Language Processing to Address Public Health Research Ques=ons Using Social Media and ConsumerGenerated Data. Yearbook of medical informa4cs. 2019;28(1):208-217.

11. Dandala B, Joopudi V, Devarakonda M. Adverse Drug Events Detec=on in Clinical Notes by Jointly Modeling En==es and Rela=ons Using Neural Networks. Drug safety. 2019;42(1):135-146.

Page 20: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

12. Denecke K, Gabarron E, Grainger R, et al. Ar=ficial Intelligence for Par=cipatory Health: Applica=ons, Impact, and Future Implica=ons. Yearbook of medical informa4cs. 2019;28(1):165-173.

13. Diebolt V, Azancot I, Boissel FH. "Ar=ficial intelligence": Which services, which applica=ons, which results and which development today in clinical research? Which impact on the quality of care? Which recommenda=ons? Therapie. 2019;74(1):155-164.

14. Doupe P, Faghmous J, Basu S. Machine Learning for Health Services Researchers. Value Health. 2019;22(7):808-815.

15. Dreisbach C, Koleck TA, Bourne PE, Bakken S. A systema=c review of natural language processing and text mining of symptoms from electronic pa=ent-authored text data. Int J Med Inform. 2019;125:37-46.

16. Eneanya OA, Fronterre C, Anagbogu I, et al. Mapping the baseline prevalence of lympha=c filariasis across Nigeria. Parasites & vectors. 2019;12(1):440.

17. Goldstein BA, Rigdon J. Using Machine Learning to Iden=fy Heterogeneous Effects in Randomized Clinical Trials-Moving Beyond the Forest Plot and Into the Forest. JAMA Netw Open. 2019;2(3):e190004.

18. Grover D, Bauhoff S, Friedman J. Using supervised learning to select audit targets in performance-based financing in health: An example from Zambia. PloS one. 2019;14(1):e0211262.

19. Hejblum BP, Weber GM, Liao KP, et al. Probabilis=c record linkage of de-iden=fied research datasets with discrepancies using diagnosis codes. Sci Data. 2019;6:180298.

20. Heo SJ, Kim Y, Yun S, et al. Deep Learning Algorithms with Demographic Informa=on Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examina=on Data. Interna4onal journal of environmental research and public health. 2019;16(2).

21. Husnayain A, Fuad A, Lazuardi L. Correla=on between Google Trends on dengue fever and na=onal surveillance report in Indonesia. Glob Health Ac4on. 2019;12(1):1552652.

22. Jagannatha A, Liu F, Liu W, Yu H. Overview of the First Natural Language Processing Challenge for Extrac=ng Medica=on, Indica=on, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0). Drug safety. 2019;42(1):99-111.

23. Kalimeri K, Delfino M, Ca+uto C, et al. Unsupervised extrac=on of epidemic syndromes from par=cipatory influenza surveillance self-reported symptoms. PLoS computa4onal biology. 2019;15(4):e1006173.

24. Kargarfard F, Sami A, Hemmatzadeh F, Ebrahimie E. Iden=fying muta=on posi=ons in all segments of influenza genome enables be+er differen=a=on between pandemic and seasonal strains. Gene. 2019;697:78-85.

25. Klock M, Kang H, Gong Y. Scoring Pa=ent Fall Reports Using Quality Rubric and Machine Learning. Studies in health technology and informa4cs. 2019;264:639-643.

26. Kocbek P, Fijacko N, Soguero-Ruiz C, et al. Maximizing Interpretability and Cost-Effec=veness of Surgical Site Infec=on (SSI) Predic=ve Models Using Feature-Specific Regularized Logis=c Regression on Preopera=ve Temporal Data. Computa4onal and mathema4cal methods in medicine. 2019;2019:2059851.

Page 21: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

27. Kraamwinkel N, Ekbrand H, Davia S, Daoud A. The influence of maternal agency on severe child undernutri=on in conflict-ridden Nigeria: Modeling heterogeneous treatment effects with machine learning. PloS one. 2019;14(1):e0208937.

28. Kramer J, Schreyogg J, Busse R. Classifica=on of hospital admissions into emergency and elec=ve care: a machine learning approach. Health Care Manag Sci. 2019;22(1):85-105.

29. Kri+anawong C, Johnson KW, Tang WW. How ar=ficial intelligence could redefine clinical trials in cardiovascular medicine: lessons learned from oncology. Per Med. 2019;16(2):83-88.

30. Kutafina E, Bechtold I, Kabino K, Jonas SM. Recursive neural networks in hospital bed occupancy forecas=ng. BMC Med Inform Decis Mak. 2019;19(1):39.

31. Kwon JY, Karim ME, Topaz M, Currie LM. Nurses "Seeing Forest for the Trees" in the Age of Machine Learning: Using Nursing Knowledge to Improve Relevance and Performance. Computers, informa4cs, nursing : CIN. 2019;37(4):203-212.

32. Lake IR, Colon-Gonzalez FJ, Barker GC, Morbey RA, Smith GE, Elliot AJ. Machine learning to refine decision making within a syndromic surveillance service. BMC Public Health. 2019;19(1):559.

33. Lam J, Howard BE, Thayer K, Shah RR. Low-calorie sweeteners and health outcomes: A demonstra=on of rapid evidence mapping (rEM). Environ Int. 2019;123:451-458.

34. Lary MA, Allsopp L, Lary DJ, Sterling DA. Using machine learning to examine the rela=onship between asthma and absenteeism. Environ Monit Assess. 2019;191(Suppl 2):332.

35. Lavigne M, Mussa F, Creatore MI, Hoffman SJ, Buckeridge DL. A popula=on health perspec=ve on ar=ficial intelligence. Healthc Manage Forum. 2019;32(4):173-177.

36. Liu J, Wong ZS, Tsui KL, So HY, Kwok A. Exploring Hidden In-Hospital Fall Clusters from Incident Reports Using Text Analy=cs. Studies in health technology and informa4cs. 2019;264:1526-1527.

37. Liu W, Bao C, Zhou Y, et al. Forecas=ng incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. BMC Infect Dis. 2019;19(1):828.

38. Liu Z, He X, Wang L, Zhang Y, Hai Y, Gao R. Chinese Herbal Medicine Hepatotoxicity: The Evalua=on and Recogniza=on Based on Large-scale Evidence Database. Curr Drug Metab. 2019;20(2):138-146.

39. Lo Y, Lynch SF, Urbanowicz RJ, et al. Using Machine Learning on Home Health Care Assessments to Predict Fall Risk. Studies in health technology and informa4cs. 2019;264:684-688.

40. Lo-Ciganic WH, Huang JL, Zhang HH, et al. Evalua=on of Machine-Learning Algorithms for Predic=ng Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescrip=ons. JAMA Netw Open. 2019;2(3):e190968.

41. Lu FS, Ha+ab MW, Clemente CL, Biggerstaff M, San=llana M. Improved state-level influenza nowcas=ng in the United States leveraging Internet-based data and network approaches. Nature communica4ons. 2019;10(1):147.

42. Lu N, Wu Y, Feng L, Song J. Deep Learning for Fall Detec=on: Three-Dimensional CNN Combined With LSTM on Video Kinema=c Data. IEEE journal of biomedical and health informa4cs. 2019;23(1):314-323.

Page 22: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

43. Macedo Hair G, Fonseca Nobre F, Brasil P. Characteriza=on of clinical pa+erns of dengue pa=ents using an unsupervised machine learning approach. BMC Infect Dis. 2019;19(1):649.

44. Meystre SM, Heider PM, Kim Y, Aruch DB, Bri+en CD. Automa=c trial eligibility surveillance based on unstructured clinical data. Int J Med Inform. 2019;129:13-19.

45. Mollalo A, Mao L, Rashidi P, Glass GE. A GIS-Based Ar=ficial Neural Network Model for Spa=al Distribu=on of Tuberculosis across the Con=nental United States. Interna4onal journal of environmental research and public health. 2019;16(1).

46. Mo+a D, Santos AAB, Winkler I, et al. Applica=on of convolu=onal neural networks for classifica=on of adult mosquitoes in the field. PloS one. 2019;14(1):e0210829.

47. Munoz E, Novacek V, Vandenbussche PY. Facilita=ng predic=on of adverse drug reac=ons by using knowledge graphs and mul=-label learning models. Brief Bioinform. 2019;20(1):190-202.

48. Natsiavas P, Jaulent MC, Koutkias V. A Knowledge-Based Plarorm for Assessing Poten=al Adverse Drug Reac=ons at the Point of Care: User Requirements and Design. Studies in health technology and informa4cs. 2019;264:1007-1011.

49. Nguyen A, Hassanzadeh H, Zhang Y, et al. A Decision Support System for Pathology Test Result Reviews in an Emergency Department to Support Pa=ent Safety and Increase Efficiency. Studies in health technology and informa4cs. 2019;264:729-733.

50. Norgeot B, Glicksberg BS, Trupin L, et al. Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Pa=ents With Rheumatoid Arthri=s. JAMA Netw Open. 2019;2(3):e190606.

51. Nwoye CI, Mu+er D, Marescaux J, Padoy N. Weakly supervised convolu=onal LSTM approach for tool tracking in laparoscopic videos. Interna4onal journal of computer assisted radiology and surgery. 2019;14(6):1059-1067.

52. Nyflot MJ, Thammasorn P, Woo+on LS, Ford EC, Chaovalitwongse WA. Deep learning for pa=ent-specific quality assurance: Iden=fying errors in radiotherapy delivery by radiomic analysis of gamma images with convolu=onal neural networks. Medical physics. 2019;46(2):456-464.

53. Otoki= A. Using informa=cs to improve healthcare quality. Interna4onal journal of health care quality assurance. 2019;32(2):425-430.

54. Patriarca R, Falegnami A, Bilo+a F. Embracing simplexity: the role of ar=ficial intelligence in peri-procedural medical safety. Expert review of medical devices. 2019;16(2):77-79.

55. Rodriguez-Gonzalez A, Zanin M, Menasalvas-Ruiz E. Public Health and Epidemiology Informa=cs: Can Ar=ficial Intelligence Help Future Global Challenges? An Overview of An=microbial Resistance and Impact of Climate Change in Disease Epidemiology. Yearbook of medical informa4cs. 2019;28(1):224-231.

56. Rodriguez-Gonzalez CG, Herranz-Alonso A, Escudero-Vilaplana V, Ais-Larisgoi=a MA, Iglesias-Peinado I, Sanjurjo-Saez M. Robo=c dispensing improves pa=ent safety, inventory management, and staff sa=sfac=on in an outpa=ent hospital pharmacy. Journal of evalua4on in clinical prac4ce. 2019;25(1):28-35.

Page 23: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

57. Salt J, Harik P, Barone MA. Leveraging Natural Language Processing: Toward Computer-Assisted Scoring of Pa=ent Notes in the USMLE Step 2 Clinical Skills Exam. Acad Med. 2019;94(3):314-316.

58. San=so S, Perez A, Casillas A. Smoothing dense spaces for improved rela=on extrac=on between drugs and adverse reac=ons. Int J Med Inform. 2019;128:39-45.

59. Santos H, Ulbrich A, Woloszyn V, Vieira R. DDC-Outlier: Preven=ng Medica=on Errors Using Unsupervised Learning. IEEE journal of biomedical and health informa4cs. 2019;23(2):874-881.

60. Shahid N, Rappon T, Berta W. Applica=ons of ar=ficial neural networks in health care organiza=onal decision-making: A scoping review. PloS one. 2019;14(2):e0212356.

61. Shiima Y, Wong ZS. Classifica=on Scheme for Incident Reports of Medica=on Errors. Studies in health technology and informa4cs. 2019;265:113-118.

62. Simon C, Davidsen K, Hansen C, Seymour E, Barnkob MB, Olsen LR. BioReader: a text mining tool for performing classifica=on of biomedical literature. BMC bioinforma4cs. 2019;19(Suppl 13):57.

63. Tang Y, Yang J, Ang PS, et al. Detec=ng adverse drug reac=ons in discharge summaries of electronic medical records using Readpeer. Int J Med Inform. 2019;128:62-70.

64. Thiebaut R, Cossin S. Ar=ficial Intelligence for Surveillance in Public Health. Yearbook of medical informa4cs. 2019;28(1):232-234.

65. Wang X, Williams C, Liu ZH, Croghan J. Big data management challenges in health research-a literature review. Brief Bioinform. 2019;20(1):156-167.

66. Woelbert E, Kirtley A, Balmer N, Dix S. How much is spent on mental health research: developing a system for categorising grant funding in the UK. Lancet Psychiatry. 2019;6(5):445-452.

67. Wu W, An SY, Guan P, Huang DS, Zhou BS. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks. BMC Infect Dis. 2019;19(1):414.

68. Wunnava S, Qin X, Kakar T, Sen C, Rundensteiner EA, Kong X. Adverse Drug Event Detec=on from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding. Drug safety. 2019;42(1):113-122.

69. Yang C, Ambayo H, Baets B, et al. An Ontology to Standardize Research Output of Nutri=onal Epidemiology: From Paper-Based Standards to Linked Content. Nutrients. 2019;11(6).

70. Yang X, Bian J, Gong Y, Hogan WR, Wu Y. MADEx: A System for Detec=ng Medica=ons, Adverse Drug Events, and Their Rela=ons from Clinical Notes. Drug safety. 2019;42(1):123-133.

71. Yera A, Muguerza J, Arbelaitz O, et al. Modelling the interac=ve behaviour of users with a medica=on safety dashboard in a primary care seSng. Int J Med Inform. 2019;129:395-403.

72. Zhang T, Lin H, Ren Y, et al. Adverse drug reac=on detec=on via a mul=hop self-a+en=on mechanism. BMC bioinforma4cs. 2019;20(1):479.

73. Zhao J, Deng F, Cai Y, Chen J. Long short-term memory - Fully connected (LSTM-FC) neural network for PM2.5 concentra=on predic=on. Chemosphere. 2019;220:486-492.

Page 24: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

74. Zhao Y, Li J, Zhang M, et al. Machine Learning Models for the Hearing Impairment Predic=on in Workers Exposed to Complex Industrial Noise: A Pilot Study. Ear Hear. 2019;40(3):690-699.

75. Zheng C, Yu W, Xie F, et al. The use of natural language processing to iden=fy Tdap-related local reac=ons at five health care systems in the Vaccine Safety Datalink. Int J Med Inform. 2019;127:27-34.

76. Zhou X, Ni Y, Xie G, et al. Analysis of the Health Informa=on Needs of Diabe=cs in China. Studies in health technology and informa4cs. 2019;264:487-491.

77. Fritz BA, Cui Z, Zhang M, et al. Deep-learning model for predic=ng 30-day postopera=ve mortality. Bri4sh journal of anaesthesia. 2019;123(5):688-695.

78. Gambus PL, Jaramillo S. Machine learning in anaesthesia: reac=ve, proac=ve... predic=ve! Bri4sh journal of anaesthesia. 2019;123(4):401-403.

79. Geng W, Tang H, Sharma A, Zhao Y, Yan Y, Hong W. An ar=ficial neural network model for predic=on of hypoxemia during seda=on for gastrointes=nal endoscopy. J Int Med Res. 2019;47(5):2097-2103.

80. Gu Y, Liang Z, Hagihira S. Use of Mul=ple EEG Features and Ar=ficial Neural Network to Monitor the Depth of Anesthesia. Sensors (Basel, Switzerland). 2019;19(11).

81. Gudelis M, Lacasta Garcia JD, Trujillano Cabello JJ. Diagnosis of pain in the right iliac fossa. A new diagnos=c score based on Decision-Tree and Ar=ficial Neural Network Methods. Cir Esp. 2019;97(6):329-335.

82. Hill BL, Brown R, Gabel E, et al. An automated machine learning-based model predicts postopera=ve mortality using readily-extractable preopera=ve electronic health record data. Bri4sh journal of anaesthesia. 2019;123(6):877-886.

83. Jiang M, Mieronkoski R, Syrjala E, et al. Acute pain intensity monitoring with the classifica=on of mul=ple physiological parameters. J Clin Monit Comput. 2019;33(3):493-507.

84. Lee J, Mawla I, Kim J, et al. Machine learning-based predic=on of clinical pain using mul=modal neuroimaging and autonomic metrics. Pain. 2019;160(3):550-560.

85. Lim H, Kim B, Noh GJ, Yoo SK. A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal. Sensors (Basel, Switzerland). 2019;19(2).

86. Masters ET, Ramaprasan A, Mardekian J, et al. Natural Language Processing-Iden=fied Problem Opioid Use and Its Associated Health Care Costs. J Pain Palliat Care Pharmacother. 2018;32(2-3):106-115.

87. Meier ML, Vrana A, Humphreys BK, Seifritz E, Stampfli P, Schweinhardt P. Pain-Related Fear-Dissociable Neural Sources of Different Fear Constructs. eNeuro. 2018;5(6).

88. Owari Y, Miyatake N. Predic=on of Chronic Lower Back Pain Using the Hierarchical Neural Network: Comparison with Logis=c Regression-A Pilot Study. Medicina (Kaunas). 2019;55(6).

89. Ramaswamy SM, Kuizenga MH, Weerink MAS, Vereecke HEM, Struys M, Nagaraj SB. Novel drug-independent seda=on level es=ma=on based on machine learning of quan=ta=ve frontal electroencephalogram features in healthy volunteers. Bri4sh journal of anaesthesia. 2019;123(4):479-487.

90. Abbasi J. AI Iden=fies Implanted Cardiac Devices. Jama. 2019;321(18):1759.

Page 25: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

91. Acharya UR, Faust O, Ciaccio EJ, et al. Applica=on of nonlinear methods to discriminate frac=onated electrograms in paroxysmal versus persistent atrial fibrilla=on. Computer methods and programs in biomedicine. 2019;175:163-178.

92. Alqudah AM, Albadarneh A, Abu-Qasmieh I, Alquran H. Developing of robust and high accurate ECG beat classifica=on by combining Gaussian mixtures and wavelets features. Australasian physical & engineering sciences in medicine. 2019;42(1):149-157.

93. Aspuru J, Ochoa-Brust A, Felix RA, et al. Segmenta=on of the ECG Signal by Means of a Linear Regression Algorithm. Sensors (Basel, Switzerland). 2019;19(4).

94. Athanasiou L, Nezami FR, Edelman ER. Posi=on Paper Computa=onal Cardiology. IEEE journal of biomedical and health informa4cs. 2019;23(1):4-11.

95. ASa ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contrac=le dysfunc=on using an ar=ficial intelligence-enabled electrocardiogram. Nat Med. 2019;25(1):70-74.

96. ASa ZI, Noseworthy PA, Lopez-Jimenez F, et al. An ar=ficial intelligence-enabled ECG algorithm for the iden=fica=on of pa=ents with atrial fibrilla=on during sinus rhythm: a retrospec=ve analysis of outcome predic=on. Lancet (London, England). 2019;394(10201):861-867.

97. Awan SE, Bennamoun M, Sohel F, Sanfilippo FM, Dwivedi G. Machine learning-based predic=on of heart failure readmission or death: implica=ons of choosing the right model and the right metrics. ESC Heart Fail. 2019;6(2):428-435.

98. Ayatollahi H, Gholamhosseini L, Salehi M. Predic=ng coronary artery disease: a comparison between two data mining algorithms. BMC Public Health. 2019;19(1):448.

99. Balabaeva K, Kovalchuk S, Metsker O. Dynamic Features Impact on the Quality of Chronic Heart Failure Predic=ve Modelling. Studies in health technology and informa4cs. 2019;261:179-184.

100. Balanescu DV, Monlezun DJ, Donisan T, et al. A Cancer Paradox: Machine-Learning Backed Propensity-Score Analysis of Coronary Angiography Findings in Cardio-Oncology. J Invasive Cardiol. 2019;31(1):21-26.

101. Biswas D, Everson L, Liu M, et al. CorNET: Deep Learning Framework for PPG-Based Heart Rate Es=ma=on and Biometric Iden=fica=on in Ambulant Environment. IEEE transac4ons on biomedical circuits and systems. 2019;13(2):282-291.

102. Bizopoulos P, Koutsouris D. Deep Learning in Cardiology. IEEE Rev Biomed Eng. 2019;12:168-193.

103. Bra+ A, Kim J, Pollie M, et al. Machine learning derived segmenta=on of phase velocity encoded cardiovascular magne=c resonance for fully automated aor=c flow quan=fica=on. J Cardiovasc Magn Reson. 2019;21(1):1.

104. Budzianowski J, Hiczkiewicz J, Burchardt P, et al. Predictors of atrial fibrilla=on early recurrence following cryoballoon abla=on of pulmonary veins using sta=s=cal assessment and machine learning algorithms. Heart Vessels. 2019;34(2):352-359.

105. Chen R, Lu A, Wang J, et al. Using machine learning to predict one-year cardiovascular events in pa=ents with severe dilated cardiomyopathy. European journal of radiology. 2019;117:178-183.

Page 26: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

106. Chowdhury MEH, Alzoubi K, Khandakar A, et al. Wearable Real-Time Heart A+ack Detec=on and Warning System to Reduce Road Accidents. Sensors (Basel, Switzerland). 2019;19(12).

107. Chowdhury MEH, Khandakar A, Alzoubi K, et al. Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring. Sensors (Basel, Switzerland). 2019;19(12).

108. Cikes M, Sanchez-Mar=nez S, Clagge+ B, et al. Machine learning-based phenogrouping in heart failure to iden=fy responders to cardiac resynchroniza=on therapy. Eur J Heart Fail. 2019;21(1):74-85.

109. Coult J, Blackwood J, Sherman L, Rea TD, Kudenchuk PJ, Kwok H. Ventricular Fibrilla=on Waveform Analysis During Chest Compressions to Predict Survival From Cardiac Arrest. Circ Arrhythm Electrophysiol. 2019;12(1):e006924.

110. Curiale AH, Colavecchia FD, Mato G. Automa=c quan=fica=on of the LV func=on and mass: A deep learning approach for cardiovascular MRI. Computer methods and programs in biomedicine. 2019;169:37-50.

111. Duan H, Sun Z, Dong W, Huang Z. U=lizing dynamic treatment informa=on for MACE predic=on of acute coronary syndrome. BMC Med Inform Decis Mak. 2019;19(1):5.

112. Dudchenko P, Dudchenko A, Kopanitsa G. Heart Disease Dataset Clusteriza=on. Studies in health technology and informa4cs. 2019;261:162-167.

113. Erdenebayar U, Kim H, Park JU, Kang D, Lee KJ. Automa=c Predic=on of Atrial Fibrilla=on Based on Convolu=onal Neural Network Using a Short-term Normal Electrocardiogram Signal. J Korean Med Sci. 2019;34(7):e64.

114. Ghadimi B, Nejat A, Nourbakhsh SA, Naderi N. Mul=-Objec=ve Gene=c Algorithm Assisted by an Ar=ficial Neural Network Metamodel for Shape Op=miza=on of a Centrifugal Blood Pump. Ar4ficial organs. 2019;43(5):E76-e93.

115. Gordon M, Williams C. PVC Detec=on Using a Convolu=onal Autoencoder and Random Forest Classifier. Pac Symp Biocomput. 2019;24:42-53.

116. Goto S, Kimura M, Katsumata Y, et al. Ar=ficial intelligence to predict needs for urgent revasculariza=on from 12-leads electrocardiography in emergency pa=ents. PloS one. 2019;14(1):e0210103.

117. Han C, Shi L. Automated interpretable detec=on of myocardial infarc=on fusing energy entropy and morphological features. Computer methods and programs in biomedicine. 2019;175:9-23.

118. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detec=on and classifica=on in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65-69.

119. Hendriks JML, Fabritz L. AI can now iden=fy atrial fibrilla=on through sinus rhythm. Lancet (London, England). 2019;394(10201):812-813.

120. Hu P, Xia E, Li S, et al. Network-Based Predic=on of Major Adverse Cardiac Events in Acute Coronary Syndromes from Imbalanced EMR Data. Studies in health technology and informa4cs. 2019;264:1480-1481.

121. Huang KH, Tan F, Wang TD, Yang YJ. A Highly Sensi=ve Pressure-Sensing Array for Blood Pressure Es=ma=on Assisted by Machine-Learning Techniques. Sensors (Basel, Switzerland). 2019;19(4).

Page 27: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

122. Ibrahim NE, McCarthy CP, Shrestha S, et al. A clinical, proteomics, and ar=ficial intelligence-driven model to predict acute kidney injury in pa=ents undergoing coronary angiography. Clin Cardiol. 2019;42(2):292-298.

123. Jafari MH, Girgis H, Van Woudenberg N, et al. Automa=c biplane lek ventricular ejec=on frac=on es=ma=on with mobile point-of-care ultrasound using mul=-task learning and adversarial training. Interna4onal journal of computer assisted radiology and surgery. 2019;14(6):1027-1037.

124. Jahmunah V, Oh SL, Wei JKE, et al. Computer-aided diagnosis of conges=ve heart failure using ECG signals - A review. Physica medica : PM : an interna4onal journal devoted to the applica4ons of physics to medicine and biology : official journal of the Italian Associa4on of Biomedical Physics (AIFB). 2019;62:95-104.

125. Ji Y, Zhang S, Xiao W. Electrocardiogram Classifica=on Based on Faster Regions with Convolu=onal Neural Network. Sensors (Basel, Switzerland). 2019;19(11).

126. Jovanovic S, Jovanovic M, Skoric T, et al. A Mobile Crowd Sensing Applica=on for Hypertensive Pa=ents. Sensors (Basel, Switzerland). 2019;19(2).

127. Jun TJ, Kang SJ, Lee JG, et al. Automated detec=on of vulnerable plaque in intravascular ultrasound images. Medical & biological engineering & compu4ng. 2019;57(4):863-876.

128. Karnan H, Sivakumaran N, Manivel R. An Efficient Cardiac Arrhythmia Onset Detec=on Technique Using a Novel Feature Rank Score Algorithm. Journal of medical systems. 2019;43(6):167.

129. King JM, Bergeron CA, Taylor CE. Finite state machine implementa=on for lek ventricle modeling and control. Biomedical engineering online. 2019;18(1):10.

130. Krebs J, Krug M, Fe+e G, et al. Iden=fying Heart Failure Pa=ents by Medical Text Classifica=on. Studies in health technology and informa4cs. 2019;258:251-252.

131. Kwon JM, Kim KH, Jeon KH, Park J. Deep learning for predic=ng in-hospital mortality among heart disease pa=ents based on echocardiography. Echocardiography. 2019;36(2):213-218.

132. Lee S, Lee G, Jeon G. Sta=s=cal Approaches Based on Deep Learning Regression for Verifica=on of Normality of Blood Pressure Es=mates. Sensors (Basel, Switzerland). 2019;19(9).

133. Lee T, Kim J, Uh Y, Lee H. Deep neural network for es=ma=ng low density lipoprotein cholesterol. Clinica chimica acta; interna4onal journal of clinical chemistry. 2019;489:35-40.

134. Lei J, Wang YG, Bha+a L, et al. Ventricular geometry-regularized QRSd predicts cardiac resynchroniza=on therapy response: machine learning from crosstalk between electrocardiography and echocardiography. The interna4onal journal of cardiovascular imaging. 2019;35(7):1221-1229.

135. Leopold JA, Maron BA. Precision Medicine in Pulmonary Arterial Hypertension. Circ Res. 2019;124(6):832-833.

136. Lozoya RC, Berte B, Cochet H, Jais P, Ayache N, Sermesant M. Model-Based Feature Augmenta=on for Cardiac Abla=on Target Learning From Images. IEEE transac4ons on bio-medical engineering. 2019;66(1):30-40.

Page 28: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

137. Luneburg N, Reiss N, Feldmann C, et al. Photographic LVAD Driveline Wound Infec=on Recogni=on Using Deep Learning. Studies in health technology and informa4cs. 2019;260:192-199.

138. Mahajan SM, Ghani R. Using Ensemble Machine Learning Methods for Predic=ng Risk of Readmission for Heart Failure. Studies in health technology and informa4cs. 2019;264:243-247.

139. Mahajan SM, Ghani R. Combining Structured and Unstructured Data for Predic=ng Risk of Readmission for Heart Failure Pa=ents. Studies in health technology and informa4cs. 2019;264:238-242.

140. Maragatham G, Devi S. LSTM Model for Predic=on of Heart Failure in Big Data. Journal of medical systems. 2019;43(5):111.

141. Metsker O, Yakovlev A, Ilin A, Kovalchuk S. Echocardiography Popula=on Study in Russian Federa=on for 4P Medicine Using Machine Learning. Studies in health technology and informa4cs. 2019;261:137-142.

142. Minchole A, Rodriguez B. Ar=ficial intelligence for the electrocardiogram. Nat Med. 2019;25(1):22-23.

143. Moon S, Liu S, Sco+ CG, et al. Automated extrac=on of sudden cardiac death risk factors in hypertrophic cardiomyopathy pa=ents by natural language processing. Int J Med Inform. 2019;128:32-38.

144. Ngo LH. Using a Deep Learning Network to Diagnose Conges=ve Heart Failure. Radiology. 2019;290(2):523-524.

145. Ni H, Wang Y, Xu G, Shao Z, Zhang W, Zhou X. Mul=scale Fine-Grained Heart Rate Variability Analysis for Recognizing the Severity of Hypertension. Computa4onal and mathema4cal methods in medicine. 2019;2019:4936179.

146. Niu Y, Qin L, Wang X. Myocardium Detec=on by Deep SSAE Feature and Within-Class Neighborhood Preserved Support Vector Classifier and Regressor. Sensors (Basel, Switzerland). 2019;19(8).

147. Nogueira DM, Ferreira CA, Gomes EF, Jorge AM. Classifying Heart Sounds Using Images of Mo=fs, MFCC and Temporal Features. Journal of medical systems. 2019;43(6):168.

148. Nous FMA, Coenen A, Boersma E, et al. Comparison of the Diagnos=c Performance of Coronary Computed Tomography Angiography-Derived Frac=onal Flow Reserve in Pa=ents With Versus Without Diabetes Mellitus (from the MACHINE Consor=um). Am J Cardiol. 2019;123(4):537-543.

149. Oliveira BR, Abreu CCE, Duarte MAQ, Vieira Filho J. Geometrical features for premature ventricular contrac=on recogni=on with analy=c hierarchy process based machine learning algorithms selec=on. Computer methods and programs in biomedicine. 2019;169:59-69.

150. Ostvik A, Smistad E, Aase SA, Haugen BO, Lovstakken L. Real-Time Standard View Classifica=on in Transthoracic Echocardiography Using Convolu=onal Neural Networks. Ultrasound in medicine & biology. 2019;45(2):374-384.

151. Pan F, He P, Chen F, Zhang J, Wang H, Zheng D. A novel deep learning based automa=c auscultatory method to measure blood pressure. Int J Med Inform. 2019;128:71-78.

Page 29: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

152. Park J, Kim JW, Ryu B, Heo E, Jung SY, Yoo S. Pa=ent-Level Predic=on of Cardio-Cerebrovascular Events in Hypertension Using Na=onwide Claims Data. J Med Internet Res. 2019;21(2):e11757.

153. Payrovnaziri SN, Barre+ LA, Bis D, Bian J, He Z. Enhancing Predic=on Models for One-Year Mortality in Pa=ents with Acute Myocardial Infarc=on and Post Myocardial Infarc=on Syndrome. Studies in health technology and informa4cs. 2019;264:273-277.

154. Pelc M, Khoma Y, Khoma V. ECG Signal as Robust and Reliable Biometric Marker: Datasets and Algorithms Comparison. Sensors (Basel, Switzerland). 2019;19(10).

155. Pfaller MR, Hormann JM, Weigl M, et al. The importance of the pericardium for cardiac biomechanics: from physiology to computa=onal modeling. Biomech Model Mechanobiol. 2019;18(2):503-529.

156. Pieszko K, Hiczkiewicz J, Budzianowski P, et al. Predic=ng Long-Term Mortality aker Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers. Dis Markers. 2019;2019:9056402.

157. Rastegar S, Gholamhosseini H, Lowe A, Mehdipour F, Linden M. Es=ma=ng Systolic Blood Pressure Using Convolu=onal Neural Networks. Studies in health technology and informa4cs. 2019;261:143-149.

158. Su J, Hu J, Jiang J, et al. Extrac=on of risk factors for cardiovascular diseases from Chinese electronic medical records. Computer methods and programs in biomedicine. 2019;172:1-10.

159. Swea+ AJ, Hedlin HK, Balasubramanian V, et al. Discovery of Dis=nct Immune Phenotypes Using Machine Learning in Pulmonary Arterial Hypertension. Circ Res. 2019;124(6):904-919.

160. Sze SK. Ar=ficially intelligent proteomics improves cardiovascular risk assessment. EBioMedicine. 2019;40:23-24.

161. Tao Q, Yan W, Wang Y, et al. Deep Learning-based Method for Fully Automa=c Quan=fica=on of Lek Ventricle Func=on from Cine MR Images: A Mul=vendor, Mul=center Study. Radiology. 2019;290(1):81-88.

162. Thompson WR, Reinisch AJ, Unterberger MJ, Schriefl AJ. Ar=ficial Intelligence-Assisted Ausculta=on of Heart Murmurs: Valida=on by Virtual Clinical Trial. Pediatr Cardiol. 2019;40(3):623-629.

163. Ukil A, Jara AJ, Marin L. Data-Driven Automated Cardiac Health Management with Robust Edge Analy=cs and De-Risking. Sensors (Basel, Switzerland). 2019;19(12).

164. Vernon ST, Hansen T, Ko+ KA, Yang JY, O'Sullivan JF, Figtree GA. U=lizing state-of-the-art "omics" technology and bioinforma=cs to iden=fy new biological mechanisms and biomarkers for coronary artery disease. Microcircula4on. 2019;26(2):e12488.

165. Volpato V, Mor-Avi V, Narang A, et al. Automated, machine learning-based, 3D echocardiographic quan=fica=on of lek ventricular mass. Echocardiography. 2019;36(2):312-319.

166. Wang H, Li Y, Ning H, Wilkins J, Lloyd-Jones D, Luo Y. Using Machine Learning to Integrate Socio-Behavioral Factors in Predic=ng Cardiovascular-Related Mortality Risk. Studies in health technology and informa4cs. 2019;264:433-437.

Page 30: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

167. Wang L, Zhou X. Detec=on of Conges=ve Heart Failure Based on LSTM-Based Deep Network via Short-Term RR Intervals. Sensors (Basel, Switzerland). 2019;19(7).

168. Wardziak L, Kruk M, Pleban W, et al. Coronary CTA enhanced with CTA based FFR analysis provides higher diagnos=c value than invasive coronary angiography in pa=ents with intermediate coronary stenosis. Journal of cardiovascular computed tomography. 2019;13(1):62-67.

169. Wu CC, Hsu WD, Islam MM, et al. An ar=ficial intelligence approach to early predict non-ST-eleva=on myocardial infarc=on pa=ents with chest pain. Computer methods and programs in biomedicine. 2019;173:109-117.

170. Yu M, Lu Z, Shen C, et al. The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning-based FFRCT, or high-risk plaque features? European radiology. 2019;29(7):3647-3657.

171. Zabihollahy F, White JA, Ukwa+a E. Convolu=onal neural network-based approach for segmenta=on of lek ventricle myocardial scar from 3D late gadolinium enhancement MR images. Medical physics. 2019;46(4):1740-1751.

172. Zhang B, Bi N, Zhang C, Gao X, Lv Z. Robust EOG-based saccade recogni=on using mul=-channel blind source deconvolu=on. Biomedizinische Technik Biomedical engineering. 2019;64(3):309-324.

173. Zhang J. Op=mize the comprehensive evalua=on of hemodynamical significance by coronary CT angiography. Interna4onal journal of cardiology. 2019;274:403.

174. Zhou S, AbdelWahab A, Sapp JL, Warren JW, Horacek BM. Localiza=on of Ventricular Ac=va=on Origin from the 12-Lead ECG: A Comparison of Linear Regression with Non-Linear Methods of Machine Learning. Annals of biomedical engineering. 2019;47(2):403-412.

175. Zhu W, Chen X, Wang Y, Wang L. Arrhythmia Recogni=on and Classifica=on Using ECG Morphology and Segment Feature Analysis. IEEE/ACM transac4ons on computa4onal biology and bioinforma4cs. 2019;16(1):131-138.

176. Zouri M, Zouri N, Ferworn A. An Ontology Approach for Knowledge Representa=on of ECG Data. Studies in health technology and informa4cs. 2019;257:520-525.

177. Castela Forte J, Perner A, van der Horst ICC. The use of clustering algorithms in cri=cal care research to unravel pa=ent heterogeneity. Intensive Care Med. 2019;45(7):1025-1028.

178. Chan A, Chien I, Moseley E, et al. Deep learning algorithms to iden=fy documenta=on of serious illness conversa=ons during intensive care unit admissions. Palliat Med. 2019;33(2):187-196.

179. Chang A. Precision Intensive Care: A Real-Time Ar=ficial Intelligence Strategy for the Future. Pediatr Crit Care Med. 2019;20(2):194-195.

180. De-Arteaga M, Chen J, Huggins P, Elmer J, Clermont G, Dubrawski A. Predic=ng neurological recovery with Canonical Autocorrela=on Embeddings. PloS one. 2019;14(1):e0210966.

181. Delahanty RJ, Alvarez J, Flynn LM, Sherwin RL, Jones SS. Development and Evalua=on of a Machine Learning Model for the Early Iden=fica=on of Pa=ents at Risk for Sepsis. Ann Emerg Med. 2019;73(4):334-344.

Page 31: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

182. Donald R, Howells T, Piper I, et al. Forewarning of hypotensive events using a Bayesian ar=ficial neural network in neurocri=cal care. J Clin Monit Comput. 2019;33(1):39-51.

183. Ghazal S, Sauthier M, Brossier D, Bouachir W, Jouvet PA, Noumeir R. Using machine learning models to predict oxygen satura=on following ven=lator support adjustment in cri=cally ill children: A single center pilot study. PloS one. 2019;14(2):e0198921.

184. Guilamet MCV, Bernauer M, Micek ST, Kollef MH. Cluster analysis to define dis=nct clinical phenotypes among sep=c pa=ents with bloodstream infec=ons. Medicine. 2019;98(16):e15276.

185. Hsieh MH, Hsieh MJ, Cheng AC, et al. Predic=ng weaning difficulty for planned extuba=on pa=ents with an ar=ficial neural network. Medicine. 2019;98(40):e17392.

186. Islam MM, Nasrin T, Walther BA, Wu CC, Yang HC, Li YC. Predic=on of sepsis pa=ents using machine learning approach: A meta-analysis. Computer methods and programs in biomedicine. 2019;170:1-9.

187. Jauk S, Kramer D, Stark G, et al. Development of a Machine Learning Model Predic=ng an ICU Admission for Pa=ents with Elec=ve Surgery and Its Prospec=ve Valida=on in Clinical Prac=ce. Studies in health technology and informa4cs. 2019;264:173-177.

188. Kaji DA, Zech JR, Kim JS, et al. An a+en=on based deep learning model of clinical events in the intensive care unit. PloS one. 2019;14(2):e0211057.

189. Kamaleswaran R, Akbilgic O, Hallman MA, West AN, Davis RL, Shah SH. Ar=ficial Intelligence: Progress Towards an Intelligent Clinical Support System. Pediatr Crit Care Med. 2019;20(4):399.

190. Kindle RD, Badawi O, Celi LA, Sturland S. Intensive Care Unit Telemedicine in the Era of Big Data, Ar=ficial Intelligence, and Computer Clinical Decision Support Systems. Crit Care Clin. 2019;35(3):483-495.

191. Knaus WA, Marks RD. New Phenotypes for Sepsis: The Promise and Problem of Applying Machine Learning and Ar=ficial Intelligence in Clinical Research. Jama. 2019;321(20):1981-1982.

192. Komorowski M, Lemyze M. Informing future intensive care trials with machine learning. Bri4sh journal of anaesthesia. 2019;123(1):14-16.

193. Liao YH, Wang ZC, Zhang FG, Abbod MF, Shih CH, Shieh JS. Machine Learning Methods Applied to Predict Ven=lator-Associated Pneumonia with Pseudomonas aeruginosa Infec=on via Sensor Array of Electronic Nose in Intensive Care Unit. Sensors (Basel, Switzerland). 2019;19(8).

194. Lin K, Hu Y, Kong G. Predic=ng in-hospital mortality of pa=ents with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55-61.

195. Lovejoy CA, Buch V, Maruthappu M. Ar=ficial intelligence in the intensive care unit. Crit Care. 2019;23(1):7.

196. Manna T, Swetapadma A, Abdar M. Decision Tree Predic=ve Learner-Based Approach for False Alarm Detec=on in ICU. Journal of medical systems. 2019;43(7):191.

197. Masino AJ, Harris MC, Forsyth D, et al. Machine learning models for early sepsis recogni=on in the neonatal intensive care unit using readily available electronic health record data. PloS one. 2019;14(2):e0212665.

Page 32: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

198. Menon DK, Chennu S. Inver=ng the Turing Test - Machine Learning to Detect Cogni=on in the ICU. The New England journal of medicine. 2019;380(26):2575-2576.

199. Nunez Reiz A, Mar=nez Sagas= F, Alvarez Gonzalez M, et al. Big data and machine learning in cri=cal care: Opportuni=es for collabora=ve research. Med Intensiva. 2019;43(1):52-57.

200. Reamaroon N, Sjoding MW, Lin K, Iwashyna TJ, Najarian K. Accoun=ng for Label Uncertainty in Machine Learning for Detec=on of Acute Respiratory Distress Syndrome. IEEE journal of biomedical and health informa4cs. 2019;23(1):407-415.

201. Rehm GB, Kuhn BT, Nguyen J, Anderson NR, Chuah CN, Adams JY. Improving Mechanical Ven=lator Clinical Decision Support Systems with a Machine Learning Classifier for Determining Ven=lator Mode. Studies in health technology and informa4cs. 2019;264:318-322.

202. Scquizzato T, Gazzato A. Adop=ng a smart toothbrush with ar=ficial intelligence may improve oral care in pa=ents admi+ed to the intensive care unit. Crit Care. 2019;23(1):223.

203. Sun M, Baron J, Dighe A, et al. Early Predic=on of Acute Kidney Injury in Cri=cal Care SeSng Using Clinical Notes and Structured Mul=variate Physiological Measurements. Studies in health technology and informa4cs. 2019;264:368-372.

204. van Wyk F, Khojandi A, Mohammed A, Begoli E, Davis RL, Kamaleswaran R. A minimal set of physiomarkers in con=nuous high frequency data streams predict adult sepsis onset earlier. Int J Med Inform. 2019;122:55-62.

205. Xu Z, Luo Y, Adekkana+u P, et al. Stra=fied Mortality Predic=on of Pa=ents with Acute Kidney Injury in Cri=cal Care. Studies in health technology and informa4cs. 2019;264:462-466.

206. Zeiberg D, Prahlad T, Nallamothu BK, Iwashyna TJ, Wiens J, Sjoding MW. Machine learning for pa=ent risk stra=fica=on for acute respiratory distress syndrome. PloS one. 2019;14(3):e0214465.

207. Zhou M, Sharma R, Zhu H, et al. Rapid breath analysis for acute respiratory distress syndrome diagnos=cs using a portable two-dimensional gas chromatography device. Anal Bioanal Chem. 2019;411(24):6435-6447.

208. Zimmerman LP, Reyfman PA, Smith ADR, et al. Early predic=on of acute kidney injury following ICU admission using a mul=variate panel of physiological measurements. BMC Med Inform Decis Mak. 2019;19(Suppl 1):16.

209. Abdar M, Wijayaningrum VN, Hussain S, et al. IAPSO-AIRS: A novel improved machine learning-based system for wart disease treatment. Journal of medical systems. 2019;43(7):220.

210. Arac=ngi S, Pellacani G. Computa=onal neural network in melanocy=c lesions diagnosis: ar=ficial intelligence to improve diagnosis in dermatology? Eur J Dermatol. 2019;29(S1):4-7.

211. Bobrova M, Taranik M, Kopanitsa G. Using Neural Networks for Diagnosing in Dermatology. Studies in health technology and informa4cs. 2019;261:211-216.

Page 33: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

212. Dascalu A, David EO. Skin cancer detec=on by deep learning and sound analysis algorithms: A prospec=ve clinical study of an elementary dermoscope. EBioMedicine. 2019;43:107-113.

213. Eyerich K, Brown SJ, Perez White BE, et al. Human and computa=onal models of atopic derma==s: A review and perspec=ves by an expert panel of the Interna=onal Eczema Council. J Allergy Clin Immunol. 2019;143(1):36-45.

214. Garcia-Arroyo JL, Garcia-Zapirain B. Segmenta=on of skin lesions in dermoscopy images using fuzzy classifica=on of pixels and histogram thresholding. Computer methods and programs in biomedicine. 2019;168:11-19.

215. Giuste F, Vizcarra JC, Gutman DA. Digital imaging applica=ons and informa=cs in dermatology. Semin Cutan Med Surg. 2019;38(1):E43-e48.

216. Gonzalez-Diaz I. DermaKNet: Incorpora=ng the Knowledge of Dermatologists to Convolu=onal Neural Networks for Skin Lesion Diagnosis. IEEE journal of biomedical and health informa4cs. 2019;23(2):547-559.

217. Hosseinzadeh Kassani S, Hosseinzadeh Kassani P. A compara=ve study of deep learning architectures on melanoma detec=on. Tissue & cell. 2019;58:76-83.

218. Hsu JT, Chen YW, Ho TW, et al. Chronic wound assessment and infec=on detec=on method. BMC Med Inform Decis Mak. 2019;19(1):99.

219. Hulstaert E, Hulstaert L. Ar=ficial intelligence in dermato-oncology: a joint clinical and data science perspec=ve. Interna4onal journal of dermatology. 2019;58(8):989-990.

220. Jahanifar M, Zamani Tajeddin N, Mohammadzadeh Asl B, Gooya A. Supervised Saliency Map Driven Segmenta=on of Lesions in Dermoscopic Images. IEEE journal of biomedical and health informa4cs. 2019;23(2):509-518.

221. Jiang B, Cui L, Zi Y, Jia Y, He C. Skin surface lipid differences in sensi=ve skin caused by psychological stress and dis=nguished by support vector machine. J Cosmet Dermatol. 2019;18(4):1121-1127.

222. Kawahara J, Hamarneh G. Fully Convolu=onal Neural Networks to Detect Clinical Dermoscopic Features. IEEE journal of biomedical and health informa4cs. 2019;23(2):578-585.

223. Khan MA, Akram T, Sharif M, et al. Construc=on of saliency map and hybrid set of features for efficient segmenta=on and classifica=on of skin lesion. Microscopy research and technique. 2019;82(6):741-763.

224. Kromenacker B, Maarouf M, Shi VY. Augmented Intelligence in Dermatology: Fantasy or Future? Dermatology. 2019;235(3):250-252.

225. Li H, He X, Zhou F, et al. Dense Deconvolu=onal Network for Skin Lesion Segmenta=on. IEEE journal of biomedical and health informa4cs. 2019;23(2):527-537.

226. Li HM, Xiao YJ, Min ZS, Tan C. Iden=fica=on and interac=on analysis of key genes and microRNAs in atopic derma==s by bioinforma=cs analysis. Clin Exp Dermatol. 2019;44(3):257-264.

227. Madooei A, Drew MS, Hajimirsadeghi H. Learning to Detect Blue-White Structures in Dermoscopy Images With Weak Supervision. IEEE journal of biomedical and health informa4cs. 2019;23(2):779-786.

Page 34: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

228. Marka A, Carter JB, Toto E, Hassanpour S. Automated detec=on of nonmelanoma skin cancer using digital images: a systema=c review. BMC Med Imaging. 2019;19(1):21.

229. Nida N, Irtaza A, Javed A, Yousaf MH, Mahmood MT. Melanoma lesion detec=on and segmenta=on using deep region based convolu=onal neural network and fuzzy C-means clustering. Int J Med Inform. 2019;124:37-48.

230. Parad JE, Liao W. Bioinforma=c applica=ons in psoriasis: gene=cs, transcriptomics, and microbiomics. Semin Cutan Med Surg. 2019;38(1):E3-e11.

231. Petrie T, Samatham R, Witkowski AM, Esteva A, Leachman SA. Melanoma Early Detec=on: Big Data, Bigger Picture. J Invest Dermatol. 2019;139(1):25-30.

232. R DS, A S. Deep Learning Based Skin Lesion Segmenta=on and Classifica=on of Melanoma Using Support Vector Machine (SVM). Asian Pacific journal of cancer preven4on : APJCP. 2019;20(5):1555-1561.

233. Schlessinger DI, Chhor G, Gevaert O, Swe+er SM, Ko J, Novoa RA. Ar=ficial intelligence and dermatology: opportuni=es, challenges, and future direc=ons. Semin Cutan Med Surg. 2019;38(1):E31-37.

234. Schnalzer B, Alcalde B. Skin Lesion Detec=on with Support Vector Machines on iOS Devices. Studies in health technology and informa4cs. 2019;264:1417-1418.

235. Schneider SL, Kohli I, Hamzavi IH, Council ML, Rossi AM, Ozog DM. Emerging imaging technologies in dermatology: Part I: Basic principles. Journal of the American Academy of Dermatology. 2019;80(4):1114-1120.

236. Schneider SL, Kohli I, Hamzavi IH, Council ML, Rossi AM, Ozog DM. Emerging imaging technologies in dermatology: Part II: Applica=ons and limita=ons. Journal of the American Academy of Dermatology. 2019;80(4):1121-1131.

237. Surowka G, Ogorzalek M. Resolu=on invariant wavelet features of melanoma studied by SVM classifiers. PloS one. 2019;14(2):e0211318.

238. Tschandl P, Rosendahl C, Akay BN, et al. Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolu=onal Neural Networks. JAMA Dermatol. 2019;155(1):58-65.

239. van de Kerkhof PCM. Augmenta=on of Understanding in Clinical Prac=se and Big Data Analy=cs. Dermatology. 2019;235(3):253-254.

240. Verma AK, Pal S, Kumar S. Classifica=on of Skin Disease using Ensemble Data Mining Techniques. Asian Pacific journal of cancer preven4on : APJCP. 2019;20(6):1887-1894.

241. Walker BN, Rehg JM, Kalra A, et al. Dermoscopy diagnosis of cancerous lesions u=lizing dual deep learning algorithms via visual and audio (sonifica=on) outputs: Laboratory and prospec=ve observa=onal studies. EBioMedicine. 2019;40:176-183.

242. Yuan Y, Lo YC. Improving Dermoscopic Image Segmenta=on with Enhanced Convolu=onal-Deconvolu=onal Networks. IEEE journal of biomedical and health informa4cs. 2019;23(2):519-526.

243. Zhai Y, Cao H, Deng W, Gan J, Piuri V, Zeng J. BeautyNet: Joint Mul=scale CNN and Transfer Learning Method for Unconstrained Facial Beauty Predic=on. Computa4onal intelligence and neuroscience. 2019;2019:1910624.

244. Chary M, Parikh S, Manini AF, Boyer EW, Radeos M. A Review of Natural Language Processing in Medical Educa=on. West J Emerg Med. 2019;20(1):78-86.

Page 35: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

245. Herrera-Alcantara O, Barrera-Animas AY, Gonzalez-Mendoza M, Castro-Espinoza F. Monitoring Student Ac=vi=es with Smartwatches: On the Academic Performance Enhancement. Sensors (Basel, Switzerland). 2019;19(7).

246. Jhala M, Mathur J. The associa=on between deep learning approach and case based learning. BMC Med Educ. 2019;19(1):106.

247. Pinto Dos Santos D, Giese D, Brodehl S, et al. Medical students' aStude towards ar=ficial intelligence: a mul=centre survey. European radiology. 2019;29(4):1640-1646.

248. Sheikh AY, Fann JI. Ar=ficial Intelligence: Can Informa=on be Transformed into Intelligence in Surgical Educa=on? Thorac Surg Clin. 2019;29(3):339-350.

249. Verrier ED. The Surgeon as Educator. Thorac Surg Clin. 2019;29(3):227-232. 250. Yang W, Hebert D, Kim S, Kang B. MCRDR Knowledge-Based 3D Dialogue Simula=on in

Clinical Training and Assessment. Journal of medical systems. 2019;43(7):200. 251. Yang YY, Shulruf B. Expert-led and ar=ficial intelligence (AI) system-assisted tutoring

course increase confidence of Chinese medical interns on suturing and ligature skills: prospec=ve pilot study. J Educ Eval Health Prof. 2019;16:7.

252. Bergese I, Frigerio S, Clari M, et al. An Innova=ve Model to Predict Pediatric Emergency Department Return Visits. Pediatr Emerg Care. 2019;35(3):231-236.

253. Chiew CJ, Liu N, Tagami T, Wong TH, Koh ZX, Ong MEH. Heart rate variability based machine learning models for risk predic=on of suspected sepsis pa=ents in the emergency department. Medicine. 2019;98(6):e14197.

254. Goto T, Camargo CA, Jr., Faridi MK, Freishtat RJ, Hasegawa K. Machine Learning-Based Predic=on of Clinical Outcomes for Children During Emergency Department Triage. JAMA Netw Open. 2019;2(1):e186937.

255. Pa+erson BW, Engstrom CJ, Sah V, et al. Training and Interpre=ng Machine Learning Algorithms to Evaluate Fall Risk Aker Emergency Department Visits. Med Care. 2019;57(7):560-566.

256. Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA, Jr., Hasegawa K. Emergency department triage predic=on of clinical outcomes using machine learning models. Crit Care. 2019;23(1):64.

257. Sterling NW, Patzer RE, Di M, Schrager JD. Predic=on of emergency department pa=ent disposi=on based on natural language processing of triage notes. Int J Med Inform. 2019;129:184-188.

258. Vest JR, Ben-Assuli O. Predic=on of emergency department revisits using area-level social determinants of health measures and health informa=on exchange informa=on. Int J Med Inform. 2019;129:205-210.

259. Alcala-Rmz V, Zanella-Calzada LA, Galvan-Tejada CE, et al. Iden=fica=on of Diabe=c Pa=ents through Clinical and Para-Clinical Features in Mexico: An Approach Using Deep Neural Networks. Interna4onal journal of environmental research and public health. 2019;16(3).

260. Basu S, Narayanaswamy R. A Predic=on Model for Uncontrolled Type 2 Diabetes Mellitus Incorpora=ng Area-level Social Determinants of Health. Med Care. 2019;57(8):592-600.

Page 36: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

261. Cappon G, FacchineS A, Sparacino G, Georgiou P, Herrero P. Classifica=on of Postprandial Glycemic Status with Applica=on to Insulin Dosing in Type 1 Diabetes-An In Silico Proof-of-Concept. Sensors (Basel, Switzerland). 2019;19(14).

262. Choi BG, Rha SW, Kim SW, Kang JH, Park JY, Noh YK. Machine Learning for the Predic=on of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabe=c Pa=ents with Cardiovascular Risks. Yonsei Med J. 2019;60(2):191-199.

263. Derevitskii I, Funkner A, Metsker O, Kovalchuk S. Graph-Based Predic=ve Modelling of Chronic Disease Development: Type 2 DM Case Study. Studies in health technology and informa4cs. 2019;261:150-155.

264. Kim E, Caraballo PJ, Castro MR, Pieczkiewicz DS, Simon GJ. Towards more Accessible Precision Medicine: Building a more Transferable Machine Learning Model to Support Prognos=c Decisions for Micro- and Macrovascular Complica=ons of Type 2 Diabetes Mellitus. Journal of medical systems. 2019;43(7):185.

265. Kumazaki H, Warren Z, Swanson A, et al. Brief Report: Evalua=ng the U=lity of Varied Technological Agents to Elicit Social A+en=on from Children with Au=sm Spectrum Disorders. J Au4sm Dev Disord. 2019;49(4):1700-1708.

266. Liu Y, Liu X, Hong X, et al. Predic=on of Recurrence aker Transsphenoidal Surgery for Cushing's Disease: The Use of Machine Learning Algorithms. Neuroendocrinology. 2019;108(3):201-210.

267. Oviedo S, Contreras I, Quiros C, Gimenez M, Conget I, Vehi J. Risk-based postprandial hypoglycemia forecas=ng using supervised learning. Int J Med Inform. 2019;126:1-8.

268. Prochazka A, Gula= S, Holinka S, Smutek D. Classifica=on of Thyroid Nodules in Ultrasound Images Using Direc=on-Independent Features Extracted by Two-Threshold B inary Decompos i=on. Technology in cancer research & t reatment . 2019;18:1533033819830748.

269. Serazetdinova L, Garra+ J, Baylis A, Stergiadis S, Collison M, Davis S. How should we turn data into decisions in AgriFood? J Sci Food Agric. 2019;99(7):3213-3219.

270. Song J, Chai YJ, Masuoka H, et al. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine. 2019;98(15):e15133.

271. Torrent-Fontbona F, Lopez B. Personalized Adap=ve CBR Bolus Recommender System for Type 1 Diabetes. IEEE journal of biomedical and health informa4cs. 2019;23(1):387-394.

272. Verburg F, Reiners C. Sonographic diagnosis of thyroid cancer with support of AI. Nat Rev Endocrinol. 2019;15(6):319-321.

273. Xiong XL, Zhang RX, Bi Y, Zhou WH, Yu Y, Zhu DL. Machine Learning Models in Type 2 Diabetes Risk Predic=on: Results from a Cross-sec=onal Retrospec=ve Study in Chinese Adults. Curr Med Sci. 2019;39(4):582-588.

274. Yadav DC, Pal S. To Generate an Ensemble Model for Women Thyroid Predic=on Using Data Mining Techniques. Asian Pacific journal of cancer preven4on : APJCP. 2019;20(4):1275-1281.

275. Yoffe L, Polsky A, Gilam A, et al. Early diagnosis of gesta=onal diabetes mellitus using circula=ng microRNAs. Eur J Endocrinol. 2019;181(5):565-577.

Page 37: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

276. Ahmad OF, Soares AS, Mazomenos E, et al. Ar=ficial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future direc=ons. Lancet Gastroenterol Hepatol. 2019;4(1):71-80.

277. Alaskar H, Hussain A, Al-Aseem N, Liatsis P, Al-Jumeily D. Applica=on of Convolu=onal Neural Networks for Automated Ulcer Detec=on in Wireless Capsule Endoscopy Images. Sensors (Basel, Switzerland). 2019;19(6).

278. Allwood G, Du X, Webberley KM, Osseiran A, Marshall BJ. Advances in Acous=c Signal Processing Techniques for Enhanced Bowel Sound Analysis. IEEE Rev Biomed Eng. 2019;12:240-253.

279. Aoki T, Yamada A, Aoyama K, et al. Automa=c detec=on of erosions and ulcera=ons in wireless capsule endoscopy images based on a deep convolu=onal neural network. Gastrointes4nal endoscopy. 2019;89(2):357-363.e352.

280. Blanes-Vidal V, Baatrup G, Nadimi ES. Addressing priority challenges in the detec=on and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta oncologica (Stockholm, Sweden). 2019;58(sup1):S29-s36.

281. Budykina A, Rauzina S, Bogdanov A, Zarubina T. Ontologic Model of Diagnos=cs and Treatment of Gastrointes=nal Bleedings of Unknown Origin. Studies in health technology and informa4cs. 2019;262:190-193.

282. Byrne MF. Ar=ficial intelligence and the future of endoscopy: should we be quietly excited? Endoscopy. 2019;51(6):511-512.

283. Byrne MF, Chapados N, Soudan F, et al. Real-=me differen=a=on of adenomatous and hyperplas=c diminu=ve colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68(1):94-100.

284. Canbay A, Kalsch J, Neumann U, et al. Non-invasive assessment of NAFLD as systemic disease-A machine learning perspec=ve. PloS one. 2019;14(3):e0214436.

285. Ding Z, Shi H, Zhang H, et al. Gastroenterologist-Level Iden=fica=on of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology. 2019;157(4):1044-1054.e1045.

286. Dong Y, Xu L, Fan Y, et al. A novel surgical predic=ve model for Chinese Crohn's disease pa=ents. Medicine. 2019;98(46):e17510.

287. Ebigbo A, Mendel R, Probst A, et al. Computer-aided diagnosis using deep learning in the evalua=on of early oesophageal adenocarcinoma. Gut. 2019;68(7):1143-1145.

288. Gatos I, Tsan=s S, Spiliopoulos S, et al. Temporal stability assessment in shear wave elas=city images validated by deep learning neural network for chronic liver disease fibrosis stage assessment. Medical physics. 2019;46(5):2298-2309.

289. Guimaraes P, Keller A, Fehlmann T, Lammert F, Casper M. Deep-learning based detec=on of gastric precancerous condi=ons. Gut. 2020;69(1):4-6.

290. Horie Y, Yoshio T, Aoyama K, et al. Diagnos=c outcomes of esophageal cancer by ar=ficial intelligence using convolu=onal neural networks. Gastrointes4nal endoscopy. 2019;89(1):25-32.

Page 38: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

291. Ishioka M, Hirasawa T, Tada T. Detec=ng gastric cancer from video images using convolu=onal neural networks. Diges4ve endoscopy : official journal of the Japan Gastroenterological Endoscopy Society. 2019;31(2):e34-e35.

292. Konerman MA, Beste LA, Van T, et al. Machine learning models to predict disease progression among veterans with hepa==s C virus. PloS one. 2019;14(1):e0208141.

293. Kumagai Y, Takubo K, Kawada K, et al. Diagnosis using deep-learning ar=ficial intelligence based on the endocytoscopic observa=on of the esophagus. Esophagus. 2019;16(2):180-187.

294. Leenhardt R, Vasseur P, Li C, et al. A neural network algorithm for detec=on of GI angiectasia during small-bowel capsule endoscopy. Gastrointes4nal endoscopy. 2019;89(1):189-194.

295. Lv J, Guo L, Wang JH, et al. Biomarker iden=fica=on and trans-regulatory network analyses in esophageal adenocarcinoma and Barre+'s esophagus. World journal of gastroenterology. 2019;25(2):233-244.

296. Maeda Y, Kudo SE, Mori Y, et al. Fully automated diagnos=c system with ar=ficial intelligence using endocytoscopy to iden=fy the presence of histologic inflamma=on associated with ulcera=ve coli=s (with video). Gastrointes4nal endoscopy. 2019;89(2):408-415.

297. Mori Y. Ar=ficial intelligence and colonoscopy: the =me is ripe to begin clinical trials. Endoscopy. 2019;51(3):219-220.

298. Mori Y, Berzin TM, Kudo SE. Ar=ficial intelligence for early gastric cancer: early promise and the path ahead. Gastrointes4nal endoscopy. 2019;89(4):816-817.

299. Ozawa T, Ishihara S, Fujishiro M, et al. Novel computer-assisted diagnosis system for endoscopic disease ac=vity in pa=ents with ulcera=ve coli=s. Gastrointes4nal endoscopy. 2019;89(2):416-421.e411.

300. Poon NC, Sung JJ. Self-driving cars and AI-assisted endoscopy: Who should take the responsibility when things go wrong? J Gastroenterol Hepatol. 2019;34(4):625-626.

301. Rees CJ, Koo S. Ar=ficial intelligence - upping the game in gastrointes=nal endoscopy? Nat Rev Gastroenterol Hepatol. 2019;16(10):584-585.

302. Ruffle JK, Farmer AD, Aziz Q. Ar=ficial Intelligence-Assisted Gastroenterology- Promises and Piralls. Am J Gastroenterol. 2019;114(3):422-428.

303. Shanmuga Sundaram P, Santhiyakumari N. An Enhancement of Computer Aided Approach for Colon Cancer Detec=on in WCE Images Using ROI Based Color Histogram and SVM2. Journal of medical systems. 2019;43(2):29.

304. Speiser JL, Karvellas CJ, Wolf BJ, Chung D, Koch DG, Durkalski VL. Predic=ng daily outcomes in acetaminophen-induced acute liver failure pa=ents with machine learning techniques. Computer methods and programs in biomedicine. 2019;175:111-120.

305. Togashi K. Applica=ons of ar=ficial intelligence to endoscopy prac=ce: The view from Japan Diges=ve Disease Week 2018. Diges4ve endoscopy : official journal of the Japan Gastroenterological Endoscopy Society. 2019;31(3):270-272.

306. Trindade AJ, McKinley MJ, Fan C, Legge+ CL, Kahn A, Pleskow DK. Endoscopic Surveillance of Barre+'s Esophagus Using Volumetric Laser Endomicroscopy With Ar=ficial Intelligence Image Enhancement. Gastroenterology. 2019;157(2):303-305.

Page 39: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

307. Van Vleck TT, Chan L, Coca SG, et al. Augmented intelligence with natural language processing applied to electronic health records for iden=fying pa=ents with non-alcoholic fa+y liver disease at risk for disease progression. Int J Med Inform. 2019;129:334-341.

308. Vieira PM, Silva CP, Costa D, Vaz IF, Rolanda C, Lima CS. Automa=c Segmenta=on and Detec=on of Small Bowel Angioectasias in WCE Images. Annals of biomedical engineering. 2019;47(6):1446-1462.

309. Wang P, Berzin TM, Glissen Brown JR, et al. Real-=me automa=c detec=on system increases colonoscopic polyp and adenoma detec=on rates: a prospec=ve randomised controlled study. Gut. 2019;68(10):1813-1819.

310. Weidemann CT, Kahana MJ. Dynamics of brain ac=vity reveal a unitary recogni=on signal. J Exp Psychol Learn Mem Cogn. 2019;45(3):440-451.

311. Wu CC, Yeh WC, Hsu WD, et al. Predic=on of fa+y liver disease using machine learning algorithms. Computer methods and programs in biomedicine. 2019;170:23-29.

312. Xu J, Jing M, Wang S, Yang C, Chen X. A review of medical image detec=on for cancers in diges=ve system based on ar=ficial intelligence. Expert review of medical devices. 2019;16(10):877-889.

313. Yang YJ, Bang CS. Applica=on of ar=ficial intelligence in gastroenterology. World journal of gastroenterology. 2019;25(14):1666-1683.

314. Zhang X, Chen F, Yu T, et al. Real-=me gastric polyp detec=on using convolu=onal neural networks. PloS one. 2019;14(3):e0214133.

315. Zhao D, Liu H, Zheng Y, He Y, Lu D, Lyu C. A reliable method for colorectal cancer predic=on based on feature selec=on and support vector machine. Medical & biological engineering & compu4ng. 2019;57(4):901-912.

316. Zhu Y, Wang QC, Xu MD, et al. Applica=on of convolu=onal neural network in the diagnosis of the invasion depth of gastric cancer based on conven=onal endoscopy. Gastrointes4nal endoscopy. 2019;89(4):806-815.e801.

317. Ascent of machine learning in medicine. Nat Mater. 2019;18(5):407. 318. Medicine in the digital age. Nat Med. 2019;25(1):1. 319. Abbasi J. Be+er Cholera Counts Through Machine Learning Models. Jama.

2019;321(14):1343. 320. Abbo+ B. Deeper learning. Nat Med. 2019;25(1):9-11. 321. Abdeddaim S, Vimard S, Soualmia LF. The MeSH-Gram Neural Network Model: Extending

Word Embedding Vectors with MeSH Concepts for Seman=c Similarity. Studies in health technology and informa4cs. 2019;264:5-9.

322. Aboy M, Liddell K, Crespo C, et al. How does emerging patent case law in the US and Europe affect precision medicine? Nature biotechnology. 2019;37(10):1118-1125.

323. Adam TJ, Chi CL. Big Data Cohort Extrac=on for Personalized Sta=n Treatment and Machine Learning. Methods in molecular biology (Cli_on, NJ). 2019;1939:255-272.

324. Afshar M, Phillips A, Karnik N, et al. Natural language processing and machine learning to iden=fy alcohol misuse from the electronic health record in trauma pa=ents: development and internal valida=on. J Am Med Inform Assoc. 2019;26(3):254-261.

Page 40: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

325. Ahmad T, Freeman JV, Asselbergs FW. Can advanced analy=cs fix modern medicine's problem of uncertainty, imprecision, and inaccuracy? Eur J Heart Fail. 2019;21(1):86-89.

326. Akbilgic O, Davis RL. The Promise of Machine Learning: When Will it be Delivered? J Card Fail. 2019;25(6):484-485.

327. Alansary A, Oktay O, Li Y, et al. Evalua=ng reinforcement learning agents for anatomical landmark detec=on. Medical image analysis. 2019;53:156-164.

328. Allen B. The Role of the FDA in Ensuring the Safety and Efficacy of Ar=ficial Intelligence Sokware and Devices. Journal of the American College of Radiology : JACR. 2019;16(2):208-210.

329. Aminololama-Shakeri S, Lopez JE. The Doctor-Pa=ent Rela=onship With Ar=ficial Intelligence. AJR Am J Roentgenol. 2019;212(2):308-310.

330. Aramaki E, Miyabe M, Honda C, et al. KOTOBAKARI Study: Using Natural Language Processing of Pa=ent Short Narra=ves to Detect Cancer Related Cogni=ve Impairment. Studies in health technology and informa4cs. 2019;264:1111-1115.

331. Arji G, Safdari R, Rezaeizadeh H, Abbassian A, Mokhtaran M, Hossein Aya= M. A systema=c literature review and classifica=on of knowledge discovery in tradi=onal medicine. Computer methods and programs in biomedicine. 2019;168:39-57.

332. Arora P, Boyne D, Slater JJ, Gupta A, Brenner DR, Druzdzel MJ. Bayesian Networks for Risk Predic=on Using Real-World Data: A Tool for Precision Medicine. Value Health. 2019;22(4):439-445.

333. Awale M, Reymond JL. Web-Based Tools for Polypharmacology Predic=on. Methods in molecular biology (Cli_on, NJ). 2019;1888:255-272.

334. Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman KL. Review of Medical Decision Support and Machine-Learning Methods. Vet Pathol. 2019;56(4):512-525.

335. Baig M, Hua N, Zhang E, et al. Predic=ng Pa=ents at Risk of 30-Day Unplanned Hospital Readmission. Studies in health technology and informa4cs. 2019;266:20-24.

336. Baig MA, Alzahrani SJ. Revisi=ng the Skills of a Healthcare Data Scien=st as a Field Expert. Studies in health technology and informa4cs. 2019;262:43-46.

337. Baig MA, Alzahrani SJ. Developing a Framework for a Healthcare Data Science Hub; Challenges and Lessons Learned. Studies in health technology and informa4cs. 2019;262:27-30.

338. Bates M. Health Care Chatbots Are Here to Help. IEEE pulse. 2019;10(3):12-14. 339. Becker M, Kasper S, Bockmann B, Jockel KH, Virchow I. Natural language processing of

German clinical colorectal cancer notes for guideline-based treatment evalua=on. Int J Med Inform. 2019;127:141-146.

340. Beeksma M, Verberne S, van den Bosch A, Das E, Hendrickx I, Groenewoud S. Predic=ng life expectancy with a long short-term memory recurrent neural network using electronic medical records. BMC Med Inform Decis Mak. 2019;19(1):36.

341. Behera B, Joshi R, Anil Vishnu GK, Bhalerao S, Pandya HJ. Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer pa=ents. J Breath Res. 2019;13(2):024001.

342. Ben Guebila M, Thiele I. Predic=ng gastrointes=nal drug effects using contextualized metabolic models. PLoS computa4onal biology. 2019;15(6):e1007100.

Page 41: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

343. Benkler Y. Don't let industry write the rules for AI. Nature. 2019;569(7755):161. 344. Bernstein J. Not the Last Word: Big Data Will Make You Confront Big Ethical Ques=ons-

Here's Why. Clin Orthop Relat Res. 2019;477(2):284-287. 345. Besler E, Cur=s Wang Y, T CC, A VS. Real-=me monitoring radiofrequency abla=on using

tree-based ensemble learning models. Int J Hyperthermia. 2019;36(1):428-437. 346. Bigeard E, Thiessard F, Grabar N. Detec=ng Drug Non-Compliance in Internet Fora Using

Informa=on Retrieval and Machine Learning Approaches. Studies in health technology and informa4cs. 2019;264:30-34.

347. Biot J. How will clinical prac=ce be impacted by ar=ficial intelligence? Eur J Dermatol. 2019;29(S1):8-10.

348. Blagec K, Xu H, Agibetov A, Samwald M. Neural sentence embedding models for seman=c similarity es=ma=on in the biomedical domain. BMC bioinforma4cs. 2019;20(1):178.

349. Blobel B, Ruotsalainen P. Healthcare Transforma=on Towards Personalized Medicine - Chances and Challenges. Studies in health technology and informa4cs. 2019;261:3-21.

350. Bloomrosen M, Berner ES. Findings from the 2019 Interna=onal Medical Informa=cs Associa=on Yearbook Sec=on on Health Informa=on Management. Yearbook of medical informa4cs. 2019;28(1):65-68.

351. Bona JP, Prior FW, Zozus MN, Brochhausen M. Enhancing Clinical Data and Clinical Research Data with Biomedical Ontologies - Insights from the Knowledge Representa=on Perspec=ve. Yearbook of medical informa4cs. 2019;28(1):140-151.

352. Borelli E, Paolini G, Antoniazzi F, et al. HABITAT: An IoT Solu=on for Independent Elderly. Sensors (Basel, Switzerland). 2019;19(5).

353. Bose E, Magan= S, Bowles KH, Brueshoff BL, Monsen KA. Machine Learning Methods for Iden=fying Cri=cal Data Elements in Nursing Documenta=on. Nurs Res. 2019;68(1):65-72.

354. Boubin M, Shrestha S. Microcontroller Implementa=on of Support Vector Machine for Detec=ng Blood Glucose Levels Using Breath Vola=le Organic Compounds. Sensors (Basel, Switzerland). 2019;19(10).

355. Bouzille G, Morival C, Westerlynck R, et al. An Automated Detec=on System of Drug-Drug Interac=ons from Electronic Pa=ent Records Using Big Data Analy=cs. Studies in health technology and informa4cs. 2019;264:45-49.

356. Brdicka R. Ar=ficial intelligence and modern informa=on and communica=on technologies entering medicine. Cas Lek Cesk. 2019;158(2):87-91.

357. Brieux HFM, Orozco S, Lanfranconi M, et al. Recovery Medica=on from Free Text to a Structured Form. Studies in health technology and informa4cs. 2019;264:1540-1541.

358. Bruno A, Costan=no G, Sartori L, Radi M. The In Silico Drug Discovery Toolbox: A p p l i ca= o n s i n L e a d D i s cove r y a n d O p= m i za= o n . C u r r M e d C h e m . 2019;26(21):3838-3873.

359. Carrillo-de-Albornoz J, Aker A, Kur=c E, Plaza L. Beyond opinion classifica=on: Extrac=ng facts, opinions and experiences from health forums. PloS one. 2019;14(1):e0209961.

Page 42: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

360. Casciuc I, Horvath D, Gryniukova A, et al. Pros and cons of virtual screening based on public "Big Data": In silico mining for new bromodomain inhibitors. European journal of medicinal chemistry. 2019;165:258-272.

361. Celi LA, Ci= L, Ghassemi M, Pollard TJ. The PLOS ONE collec=on on machine learning in health and biomedicine: Towards open code and open data. PloS one. 2019;14(1):e0210232.

362. Cene VH, Tosin M, Machado J, Balbinot A. Open Database for Accurate Upper-Limb Intent Detec=on Using Electromyography and Reliable Extreme Learning Machines. Sensors (Basel, Switzerland). 2019;19(8).

363. Chen L, Song L, Shao Y, Li D, Ding K. Using natural language processing to extract clinically useful informa=on from Chinese electronic medical records. Int J Med Inform. 2019;124:6-12.

364. Chen ML, Doddi A, Royer J, et al. Beyond mul=drug resistance: Leveraging rare variants with machine and sta=s=cal learning models in Mycobacterium tuberculosis resistance predic=on. EBioMedicine. 2019;43:356-369.

365. Chen PC, Liu Y, Peng L. How to develop machine learning models for healthcare. Nat Mater. 2019;18(5):410-414.

366. Chen S, Ji Z, Wu H, Xu Y. A Non-Invasive Con=nuous Blood Pressure Es=ma=on Approach Based on Machine Learning. Sensors (Basel, Switzerland). 2019;19(11).

367. Cheung DS, Grubenhoff JA. Machine Learning in Clinical Medicine S=ll Finding Its Way. JAMA Netw Open. 2019;2(1):e186926.

368. Chicco D, Rovelli C. Computa=onal predic=on of diagnosis and feature selec=on on mesothelioma pa=ent health records. PloS one. 2019;14(1):e0208737.

369. Chirila OS, Chirila CB, Stoicu-Tivadar L. Named En=ty Recogni=on and Classifica=on for Medical Prospectuses. Studies in health technology and informa4cs. 2019;262:284-287.

370. Choi H, Kang H, Chung KC, Park H. Development and applica=on of a comprehensive machine learning program for predic=ng molecular biochemical and pharmacological proper=es. Phys Chem Chem Phys. 2019;21(9):5189-5199.

371. Collazos-Huertas D, Cardenas-Pena D, Castellanos-Dominguez G. Instance-Based Representa=on Using Mul=ple Kernel Learning for Predic=ng Conversion to Alzheimer Disease. Interna4onal journal of neural systems. 2019;29(2):1850042.

372. Combi C, Zorzi M, Pozzani G, Arzenton E, MoreS U. Normalizing Spontaneous Reports Into MedDRA: Some Experiments With MagiCoder. IEEE journal of biomedical and health informa4cs. 2019;23(1):95-102.

373. Crown WH. Real-World Evidence, Causal Inference, and Machine Learning. Value Health. 2019;22(5):587-592.

374. Cypko MA, Stoehr M. Digital pa=ent models based on Bayesian networks for clinical treatment decision support. Minim Invasive Ther Allied Technol. 2019;28(2):105-119.

375. Danilov G, Shifrin M, Strunina U, Pronkina T, Potapov A. An Informa=on Extrac=on Algorithm for Detec=ng Adverse Events in Neurosurgery Using Documents Wri+en in a Natural Rich-in-Morphology Language. Studies in health technology and informa4cs. 2019;262:194-197.

Page 43: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

376. De la Fuente C, Weinstein A, Guzman-Venegas R, et al. Use of accelerometers for automa=c regional chest movement recogni=on during =dal breathing in healthy subjects. Journal of electromyography and kinesiology : official journal of the Interna4onal Society of Electrophysiological Kinesiology. 2019;47:105-112.

377. De San=s S, Moratal D, Canals S. Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis. Neuroscience. 2019;403:145-149.

378. Dermody G, Fritz R. A conceptual framework for clinicians working with ar=ficial intelligence and health-assis=ve Smart Homes. Nurs Inq. 2019;26(1):e12267.

379. Deschepper M, Eeckloo K, Vogelaers D, Waegeman W. A hospital wide predic=ve model for unplanned readmission using hierarchical ICD data. Computer methods and programs in biomedicine. 2019;173:177-183.

380. Didelot X, Pouwels KB. Machine-learning-assisted selec=on of an=bio=c prescrip=on. Nat Med. 2019;25(7):1033-1034.

381. Digan W, Wack M, Looten V, Neuraz A, Burgun A, Rance B. Evalua=ng the Impact of Text Duplica=ons on a Corpus of More than 600,000 Clinical Narra=ves in a French Hospital. Studies in health technology and informa4cs. 2019;264:103-107.

382. Ding DY, Simpson C, Pfohl S, Kale DC, Jung K, Shah NH. The Effec=veness of Mul=task Learning for Phenotyping with Electronic Health Records Data. Pac Symp Biocomput. 2019;24:18-29.

383. Dorr D, Bejan CA, Pizzimen= C, Singh S, Storer M, Quinones A. Iden=fying Pa=ents with Significant Problems Related to Social Determinants of Health with Natural Language Processing. Studies in health technology and informa4cs. 2019;264:1456-1457.

384. Dowie J, Kaltok MK. The Evalua=on of Decision Support Tools Needs to Be Preference Context-Sensi=ve. Studies in health technology and informa4cs. 2019;265:163-168.

385. Ekins S, Puhl AC, Zorn KM, et al. Exploi=ng machine learning for end-to-end drug discovery and development. Nat Mater. 2019;18(5):435-441.

386. El-Sappagh S, Ali F, Hendawi A, Jang JH, Kwak KS. A mobile health monitoring-and-treatment system based on integra=on of the SSN sensor ontology and the HL7 FHIR standard. BMC Med Inform Decis Mak. 2019;19(1):97.

387. Emanuel EJ, Wachter RM. Ar=ficial Intelligence in Health Care: Will the Value Match the Hype? Jama. 2019;321(23):2281-2282.

388. Engchuan W, Dimopoulos AC, Tyrovolas S, et al. Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA). Medical science monitor : interna4onal medical journal of experimental and clinical research. 2019;25:1994-2001.

389. Enshaeifar S, Zoha A, Skillman S, et al. Machine learning methods for detec=ng urinary tract infec=on and analysing daily living ac=vi=es in people with demen=a. PloS one. 2019;14(1):e0209909.

390. Esna Ashari Z, Brayton KA, Broschat SL. Using an op=mal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila. PloS one. 2019;14(1):e0202312.

391. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-29.

Page 44: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

392. Etehadtavakol M, Emrani Z, Ng EYK. Rapid extrac=on of the ho+est or coldest regions of medical thermographic images. Medical & biological engineering & compu4ng. 2019;57(2):379-388.

393. Fillinger S, de la Garza L, Peltzer A, Kohlbacher O, Nahnsen S. Challenges of big data integra=on in the life sciences. Anal Bioanal Chem. 2019;411(26):6791-6800.

394. Finlayson SG, Bowers JD, Ito J, Zi+rain JL, Beam AL, Kohane IS. Adversarial a+acks on medical machine learning. Science. 2019;363(6433):1287-1289.

395. Flynn A. Using ar=ficial intelligence in health-system pharmacy prac=ce: Finding new pa+erns that ma+er. Am J Health Syst Pharm. 2019;76(9):622-627.

396. Frith KH. Ar=ficial Intelligence: What Does It Mean for Nursing? Nurs Educ Perspect. 2019;40(4):261.

397. Fritz RL, Dermody G. A nurse-driven method for developing ar=ficial intelligence in "smart" homes for aging-in-place. Nurs Outlook. 2019;67(2):140-153.

398. Fukuoka Y. Machine Learning Approach for Predic=ng New Uses of Exis=ng Drugs and Evalua=on of Their Reliabili=es. Methods in molecular biology (Cli_on, NJ). 2019;1903:269-279.

399. Fuller R, Hansen A. Disrup=on Ahead: Naviga=ng and Leading the Future of Nursing. Nurs Adm Q. 2019;43(3):212-221.

400. Gao Z, Fu G, Ouyang C, et al. edge2vec: Representa=on learning using edge seman=cs for biomedical knowledge discovery. BMC bioinforma4cs. 2019;20(1):306.

401. Gardes J, Maldivi C, Boisset D, Aubourg T, Vuillerme N, Demongeot J. Maxwell(R): An Unsupervised Learning Approach for 5P Medicine. Studies in health technology and informa4cs. 2019;264:1464-1465.

402. Glicksberg BS, Li L, Chen R, Dudley J, Chen B. Leveraging Big Data to Transform Drug Discovery. Methods in molecular biology (Cli_on, NJ). 2019;1939:91-118.

403. Grabar N, Grouin C. A Year of Papers Using Biomedical Texts: Findings from the Sec=on on Natural Language Processing of the IMIA Yearbook. Yearbook of medical informa4cs. 2019;28(1):218-222.

404. Gronsbell J, Minnier J, Yu S, Liao K, Cai T. Automated feature selec=on of predictors in electronic medical records data. Biometrics. 2019;75(1):268-277.

405. Hague DC. Benefits, Piralls, and Poten=al Bias in Health Care AI. N C Med J. 2019;80(4):219-223.

406. Halbersberg D, Lerner B. Young driver fatal motorcycle accident analysis by jointly maximizing accuracy and informa=on. Accident; analysis and preven4on. 2019;129:350-361.

407. Halminen O, Tenhunen H, Heliste A, Seppala T. Factors Affec=ng Venture Funding of Healthcare AI Companies. Studies in health technology and informa4cs. 2019;262:268-271.

408. Han W, Huang Z, Li S, Jia Y. Distribu=on-Sensi=ve Unbalanced Data Oversampling Method for Medical Diagnosis. Journal of medical systems. 2019;43(2):39.

409. Handelman GS, Kok HK, Chandra RV, et al. Peering Into the Black Box of Ar=ficial Intelligence: Evalua=on Metrics of Machine Learning Methods. AJR Am J Roentgenol. 2019;212(1):38-43.

Page 45: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

410. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A. Mul=task learning and benchmarking with clinical =me series data. Sci Data. 2019;6(1):96.

411. Hasanpur K, Nassiri M, Hosseini Salekdeh G. The compara=ve analysis of phenotypic and whole transcriptome gene expression data of ascites suscep=ble versus ascites resistant chickens. Mol Biol Rep. 2019;46(1):793-804.

412. Hassler AP, Menasalvas E, Garcia-Garcia FJ, Rodriguez-Manas L, Holzinger A. Importance of medical data preprocessing in predic=ve modeling and risk factor discovery for the frailty syndrome. BMC Med Inform Decis Mak. 2019;19(1):33.

413. Hatz S, Spangler S, Bender A, et al. Iden=fica=on of pharmacodynamic biomarker hypotheses through l i terature analys is with IBM Watson. PloS one. 2019;14(4):e0214619.

414. Haux R. Some Thoughts on Extended Collabora=on of En==es with Natural and with Ar=ficial Intelligence in Health Care and Beyond. Studies in health technology and informa4cs. 2019;262:1-6.

415. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The prac=cal implementa=on of ar=ficial intelligence technologies in medicine. Nat Med. 2019;25(1):30-36.

416. Hekler EB, Klasnja P, Chevance G, Golaszewski NM, Lewis D, Sim I. Why we need a small data paradigm. BMC Med. 2019;17(1):133.

417. Hernandez JPT. Network Diffusion and Technology Acceptance of A Nurse Chatbot for Chronic Disease Self-Management Support : A Theore=cal Perspec=ve. J Med Invest. 2019;66(1.2):24-30.

418. Honavar VG. Machine learning in clinical care: Quo vadis? Indian J Ophthalmol. 2019;67(7):985-986.

419. Hu Y, Zhao T, Zhang N, Zhang Y, Cheng L. A Review of Recent Advances and Research on Drug Target Iden=fica=on Methods. Curr Drug Metab. 2019;20(3):209-216.

420. Hu Z, Jiang C, Sun F, et al. Ar=fact correc=on in low-dose dental CT imaging using Wasserstein genera=ve adversarial networks. Medical physics. 2019;46(4):1686-1696.

421. Hung AJ. Can machine-learning algorithms replace conven=onal sta=s=cs? BJU Int. 2019;123(1):1.

422. Hung CY, Lin CH, Lan TH, Peng GS, Lee CC. Development of an intelligent decision support system for ischemic stroke risk assessment in a popula=on-based electronic health record database. PloS one. 2019;14(3):e0213007.

423. Hussain OA, Junejo KN. Predic=ng treatment outcome of drug-suscep=ble tuberculosis pa=ents using machine-learning models. Inform Health Soc Care. 2019;44(2):135-151.

424. Isozaki A, Mikami H, Hiramatsu K, et al. A prac=cal guide to intelligent image-ac=vated cell sor=ng. Nat Protoc. 2019;14(8):2370-2415.

425. Israni ST, Verghese A. Humanizing Ar=ficial Intelligence. Jama. 2019;321(1):29-30. 426. Izukura R, Kandabashi T, Wakata Y, et al. The Development of an Electronic Phenotyping

Algorithm for Iden=fying Rhabdomyolysis Pa=ents in the MID-NET Database. Studies in health technology and informa4cs. 2019;264:1498-1499.

427. Jackson RC, Balhoff JP, Douglass E, Harris NL, Mungall CJ, Overton JA. ROBOT: A Tool for Automa=ng Ontology Workflows. BMC bioinforma4cs. 2019;20(1):407.

Page 46: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

428. Jadczyk T, Kiwic O, Khandwalla RM, et al. Feasibility of a voice-enabled automated plarorm for medical data collec=on: CardioCube. Int J Med Inform. 2019;129:388-393.

429. Jahn K, Freiberger E, Eskofier BM, Bollheimer C, Klucken J. Balance and mobility in geriatric pa=ents : Assessment and treatment of neurological aspects. Z Gerontol Geriatr. 2019;52(4):316-323.

430. Janda M, Soyer HP. Can clinical decision making be enhanced by ar=ficial intelligence? Br J Dermatol. 2019;180(2):247-248.

431. Jang HJ, Cho KO. Applica=ons of deep learning for the analysis of medical data. Arch Pharm Res. 2019;42(6):492-504.

432. Jauk S, Kramer D, Quehenberger F, et al. Informa=on Adapted Machine Learning Models for Predic=on in Clinical Workflow. Studies in health technology and informa4cs. 2019;260:65-72.

433. Jung WM, Park IS, Lee YS, et al. Characteriza=on of hidden rules linking symptoms and selec=on of acupoint using an ar=ficial neural network model. Front Med. 2019;13(1):112-120.

434. Kagawa R, Shinohara E, Imai T, Kawazoe Y, Ohe K. Bias of Inaccurate Disease Men=ons in Electronic Health Record-based Phenotyping. Int J Med Inform. 2019;124:90-96.

435. Kamel Boulos MN, Peng G, VoPham T. An overview of GeoAI applica=ons in health and healthcare. Interna4onal journal of health geographics. 2019;18(1):7.

436. Kan HJ, Kharrazi H, Chang HY, Bodycombe D, Lemke K, Weiner JP. Exploring the use of machine learning for risk adjustment: A comparison of standard and penalized linear regression models in predic=ng health care costs in older adults. PloS one. 2019;14(3):e0213258.

437. Kan YC, Kuo YC, Lin HC. Personalized Rehabilita=on Recogni=on for Ubiquitous Healthcare Measurements. Sensors (Basel, Switzerland). 2019;19(7).

438. Kang YJ, Yoo JI, Ha YC. Sarcopenia feature selec=on and risk predic=on using machine learning: A cross-sec=onal study. Medicine. 2019;98(43):e17699.

439. Kangasniemi M, Karki S, Colley N, Vou=lainen A. The use of robots and other automated devices in nurses' work: An integra=ve review. Int J Nurs Pract. 2019;25(4):e12739.

440. Karako K, Chen Y, Tang W. On medical applica=on of neural networks trained with various types of data. Biosci Trends. 2019;12(6):553-559.

441. Kartoun U. The Trade-off of Applying Simple vs. Advanced Imputa=on Techniques in Predic=on Modeling. Journal of medical systems. 2019;43(5):142.

442. Kartoun U. Toward an accelerated adop=on of data-driven findings in medicine : Research, skep=cism, and the need to speed up public visibility of data-driven findings. Medicine, health care, and philosophy. 2019;22(1):153-157.

443. Kerschke P, Hoos HH, Neumann F, Trautmann H. Automated Algorithm Selec=on: Survey and Perspec=ves. Evol Comput. 2019;27(1):3-45.

444. Keskinbora KH. Medical ethics considera=ons on ar=ficial intelligence. J Clin Neurosci. 2019;64:277-282.

445. Khanji C, Lalonde L, Bareil C, Lussier MT, Perreault S, Schnitzer ME. Lasso Regression for the Predic=on of Intermediate Outcomes Related to Cardiovascular Disease Preven=on Using the TRANSIT Quality Indicators. Med Care. 2019;57(1):63-72.

Page 47: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

446. Kha+ak FK, Jeblee S, Crampton N, Mamdani M, Rudzicz F. AutoScribe: Extrac=ng Clinically Per=nent Informa=on from Pa=ent-Clinician Dialogues. Studies in health technology and informa4cs. 2019;264:1512-1513.

447. Kim E, Choi AS, Nam H. Drug reposi=oning of herbal compounds via a machine-learning approach. BMC bioinforma4cs. 2019;20(Suppl 10):247.

448. Kim J, Ahn I. Weekly ILI pa=ent ra=o change predic=on using news ar=cles with support vector machine. BMC bioinforma4cs. 2019;20(1):259.

449. Kim J, Kim JJ, Lee H. DigChem: Iden=fica=on of disease-gene-chemical rela=onships from Medline abstracts. PLoS computa4onal biology. 2019;15(5):e1007022.

450. Kim Y, Meystre SM. A Study of Medical Problem Extrac=on for Be+er Disease Management. Studies in health technology and informa4cs. 2019;264:193-197.

451. Kirsch A. A unifying computa=onal model of decision making. Cogn Process. 2019;20(2):243-259.

452. Klischies D, Kohlschein C, Werner CJ, Jonas SM. Evalua=on of Deep Clustering for Diariza=on of Aphasic Speech. Studies in health technology and informa4cs. 2019;260:81-88.

453. Kokciyan N, Chapman M, Balatsoukas P, et al. A Collabora=ve Decision Support Tool for Managing Chronic Condi=ons. Studies in health technology and informa4cs. 2019;264:644-648.

454. Koren G, Souroujon D, Shaul R, et al. "A pa=ent like me" - An algorithm-based program to inform pa=ents on the likely condi=ons people with symptoms like theirs have. Medicine. 2019;98(42):e17596.

455. Koutkias V, Bouaud J. Contribu=ons on Clinical Decision Support from the 2018 Literature. Yearbook of medical informa4cs. 2019;28(1):135-137.

456. Krishnamoorthy S, Murugesan K. Protec=ng the Privacy of Cancer Pa=ents Using Fuzzy Associa=on Rule Hiding. Asian Pacific journal of cancer preven4on : APJCP. 2019;20(5):1437-1443.

457. Kris=ansen TB. Erroneous data and drug industry bias can impair machine learning algorithms. Bmj. 2019;367:l6042.

458. Kritz F. Technology Is Transforming Work for Nurses and Care for Pa=ents. Am J Nurs. 2019;119(3):18-19.

459. Kuang Z, Bao Y, Thomson J, et al. A Machine-Learning-Based Drug Repurposing Approach Using Baseline Regulariza=on. Methods in molecular biology (Cli_on, NJ). 2019;1903:255-267.

460. Kucuk McGinty H, Visser U, Schurer S. How to Develop a Drug Target Ontology: KNowledge Acquisi=on and Representa=on Methodology (KNARM). Methods in molecular biology (Cli_on, NJ). 2019;1939:49-69.

461. Kuru K, Ansell D, Jones M, De Goede C, Leather P. Feasibility study of intelligent autonomous determina=on of the bladder voiding need to treat bedweSng using ultrasound and smartphone ML techniques : Intelligent autonomous treatment of bedweSng. Medical & biological engineering & compu4ng. 2019;57(5):1079-1097.

462. Kuziemsky C, Maeder AJ, John O, et al. Role of Ar=ficial Intelligence within the Telehealth Domain. Yearbook of medical informa4cs. 2019;28(1):35-40.

Page 48: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

463. Kwok R. Deep learning powers a mo=on-tracking revolu=on. Nature. 2019;574(7776):137-138.

464. Lamurias A, Ruas P, Couto FM. PPR-SSM: personalized PageRank and seman=c similarity measures for en=ty linking. BMC bioinforma4cs. 2019;20(1):534.

465. Lamurias A, Sousa D, Clarke LA, Couto FM. BO-LSTM: classifying rela=ons via long short-term memory networks along biomedical ontologies. BMC bioinforma4cs. 2019;20(1):10.

466. Lapao LV. Ar=ficial intelligence: is it a friend or foe of physicians? Einstein (Sao Paulo). 2019;17(2):eED4982.

467. Lau AYS, Staccini P. Ar=ficial Intelligence in Health: New Opportuni=es, Challenges, and Prac=cal Implica=ons. Yearbook of medical informa4cs. 2019;28(1):174-178.

468. Lee G, Park C, Ahn J. Novel deep learning model for more accurate predic=on of drug-drug interac=on effects. BMC bioinforma4cs. 2019;20(1):415.

469. Lee HM, Yu MS, Kazmi SR, et al. Computa=onal determina=on of hERG-related cardiotoxicity of drug candidates. BMC bioinforma4cs. 2019;20(Suppl 10):250.

470. Lee SM, Kim HP, Jeon K, Lee SH, Seo JK. Automa=c 3D cephalometric annota=on system using shadowed 2D image-based machine learning. Phys Med Biol. 2019;64(5):055002.

471. Leeming G, Ainsworth J, Clikon DA. Blockchain in health care: hype, trust, and digital health. Lancet (London, England). 2019;393(10190):2476-2477.

472. Lemke HU, Melzer A. Back to the roots of AI and their relevance for health care today. Minim Invasive Ther Allied Technol. 2019;28(2):65-68.

473. Li X, Wang H, He H, Du J, Chen J, Wu J. Intelligent diagnosis with Chinese electronic medical records based on convolu=onal neural networks. BMC bioinforma4cs. 2019;20(1):62.

474. Li Y, Jin R, Luo Y. Classifying rela=ons in clinical narra=ves using segment graph convolu=onal and recurrent neural networks (Seg-GCRNs). J Am Med Inform Assoc. 2019;26(3):262-268.

475. Li Z, Miao Q, Yan F, Meng Y, Zhou P. Machine Learning in Quan=ta=ve Protein-pep=de Affinity Predic=on: Implica=ons for Therapeu=c Pep=de Design. Curr Drug Metab. 2019;20(3):170-176.

476. Li Z, Yang Z, Shen C, Xu J, Zhang Y, Xu H. Integra=ng shortest dependency path and sentence sequence into a deep learning framework for rela=on extrac=on in clinical text. BMC Med Inform Decis Mak. 2019;19(Suppl 1):22.

477. Liang H, Tsui BY, Ni H, et al. Evalua=on and accurate diagnoses of pediatric diseases using ar=ficial intelligence. Nat Med. 2019;25(3):433-438.

478. Liang X, Zhu W, Lv Z, Zou Q. Molecular Compu=ng and Bioinforma=cs. Molecules (Basel, Switzerland). 2019;24(13).

479. Liang Z, Liu J, Ou A, Zhang H, Li Z, Huang JX. Deep genera=ve learning for automated EHR diagnosis of tradi=onal Chinese medicine. Computer methods and programs in biomedicine. 2019;174:17-23.

480. Liao S, Tu H, Hu C, et al. Fuzzy mul=-objec=ve medical service organiza=on selec=on model considering limited resources and stochas=c demand in emergency management. PloS one. 2019;14(3):e0212308.

Page 49: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

481. Lim H, He D, Qiu Y, Krawczuk P, Sun X, Xie L. Ra=onal discovery of dual-indica=on mul=-target PDE/Kinase inhibitor for precision an=-cancer therapy using structural systems pharmacology. PLoS computa4onal biology. 2019;15(6):e1006619.

482. Lim H, Xie L. Omics Data Integra=on and Analysis for Systems Pharmacology. Methods in molecular biology (Cli_on, NJ). 2019;1939:199-214.

483. Lin E, Tsai SJ. Machine Learning in Neural Networks. Adv Exp Med Biol. 2019;1192:127-137.

484. Lin YC, Huang WT, Ou SC, et al. Neural network analysis of Chinese herbal medicine prescrip=ons for pa=ents with colorectal cancer. Complement Ther Med. 2019;42:279-285.

485. Linnen DT, Javed PS, D'Alfonso JN. Ripe for Disrup=on? Adop=ng Nurse-Led Data Science and Ar=ficial Intelligence to Predict and Reduce Hospital-Acquired Outcomes in the Learning Health System. Nurs Adm Q. 2019;43(3):246-255.

486. Liu L, Fu L, Zhang JW, et al. Three-Level Hepatotoxicity Predic=on System Based on Adverse Hepa=c Effects. Mol Pharm. 2019;16(1):393-408.

487. Liu S, Cheng W, Qian L, Zhou G. Combining rela=on extrac=on with func=on detec=on for BEL statement extrac=on. Database : the journal of biological databases and cura4on. 2019;2019.

488. Liu Y, Chen PC, Krause J, Peng L. How to Read Ar=cles That Use Machine Learning: Users' Guides to the Medical Literature. Jama. 2019;322(18):1806-1816.

489. Liu Z, Wang X, Chen Q, Tang B, Xu H. Temporal indexing of medical en=ty in Chinese clinical notes. BMC Med Inform Decis Mak. 2019;19(Suppl 1):17.

490. London AJ. Ar=ficial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Has4ngs Cent Rep. 2019;49(1):15-21.

491. Lori Shahreza M, Ghadiri N, Green JR. Heter-LP: A Heterogeneous Label Propaga=on Method for Drug Reposi=oning. Methods in molecular biology (Cli_on, NJ). 2019;1903:291-316.

492. Lu Y, Jia Z, Zeng X, et al. Renal Biopsy Recommenda=on Based on Text Understanding. Studies in health technology and informa4cs. 2019;264:689-693.

493. Lv B, Chen J, Liu B, Dong C. AO-BBO: A Novel Op=miza=on Algorithm and Its Applica=on in Plant Drug Extrac=on. Current topics in medicinal chemistry. 2019;19(2):139-145.

494. Lynch KE, Alba P, Viernes B, DuVall SL. Using Enriched Samples for Semi-Automated Vocabulary Expansion to Iden=fy Rare Events in Clinical Text: Sexual Orienta=on as a Use Case. Studies in health technology and informa4cs. 2019;264:1532-1533.

495. Lyu J, Wang S, Balius TE, et al. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566(7743):224-229.

496. Lyudovyk O, Weng C. SNOMEDtxt: Natural Language Genera=on from SNOMED Ontology. Studies in health technology and informa4cs. 2019;264:1263-1267.

497. Maddox TM, Rumsfeld JS, Payne PRO. Ques=ons for Ar=ficial Intelligence in Health Care. Jama. 2019;321(1):31-32.

498. Maier A, Syben C, Lasser T, Riess C. A gentle introduc=on to deep learning in medical image processing. Z Med Phys. 2019;29(2):86-101.

Page 50: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

499. Majta J, Odrzywolek K, Milanovic B, et al. Iden=fica=on of Differen=a=ng Metabolic Pathways between Infant Gut Microbiome Popula=ons Reveals Deple=on of Func=on-Level Adapta=on to Human Milk in the Finnish Popula=on. mSphere. 2019;4(2).

500. Mak KK, Pichika MR. Ar=ficial intelligence in drug development: present status and future prospects. Drug discovery today. 2019;24(3):773-780.

501. Mandl KD, Manrai AK. Poten=al Excessive Tes=ng at Scale: Biomarkers, Genomics, and Machine Learning. Jama. 2019;321(8):739-740.

502. Mangione W, Samudrala R. Iden=fying Protein Features Responsible for Improved Drug Repurposing Accuracies Using the CANDO Plarorm: Implica=ons for Drug Design. Molecules (Basel, Switzerland). 2019;24(1).

503. Manning CL. Ar=ficial intelligence could bring relevant guidelines into every consulta=on. Bmj. 2019;366:l4788.

504. Manogaran G, Shakeel PM, Fouad H, et al. Wearable IoT Smart-Log Patch: An Edge Compu=ng-Based Bayesian Deep Learning Network System for Mul= Access Physical Monitoring System. Sensors (Basel, Switzerland). 2019;19(13).

505. Mao C, Zhao Y, Sun M, Luo Y. Are My EHRs Private Enough? Event-Level Privacy Protec=on. IEEE/ACM transac4ons on computa4onal biology and bioinforma4cs. 2019;16(1):103-112.

506. MargaglioS G, Bolle T. Machine learning & forensic science. Forensic Sci Int. 2019;298:138-139.

507. Maslen H. Responsible Use of Machine Learning Classifiers in Clinical Prac=ce. J Law Med. 2019;27(1):37-49.

508. McGrow K. Ar=ficial intelligence: Essen=als for nursing. Nursing. 2019;49(9):46-49. 509. Mei J, Xia E. Knowledge Learning Symbiosis for Developing Risk Predic=on Models from

Regional EHR Repositories. Studies in health technology and informa4cs. 2019;264:258-262.

510. Meng HY, Jin WL, Yan CK, Yang H. The Applica=on of Machine Learning Techniques in Clinical Drug Therapy. Curr Comput Aided Drug Des. 2019;15(2):111-119.

511. Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW, Perkins DL. U=lizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks. PLoS computa4onal biology. 2019;15(2):e1006693.

512. Milanese G, Mannil M, Mar=ni K, Maurer B, Alkadhi H, Frauenfelder T. Quan=ta=ve CT texture analysis for diagnosing systemic sclerosis: Effect of itera=ve reconstruc=ons and radia=on doses. Medicine. 2019;98(29):e16423.

513. Minarro-Gimenez JA, Cornet R, Jaulent MC, et al. Quan=ta=ve analysis of manual annota=on of clinical text samples. Int J Med Inform. 2019;123:37-48.

514. Mintz Y, Brodie R. Introduc=on to ar=ficial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73-81.

515. Mirza B, Wang W, Wang J, Choi H, Chung NC, Ping P. Machine Learning and Integra=ve Analysis of Biomedical Big Data. Genes (Basel). 2019;10(2).

516. Morgan DJ, Bame B, Zimand P, et al. Assessment of Machine Learning vs Standard Predic=on Rules for Predic=ng Hospital Readmissions. JAMA Netw Open. 2019;2(3):e190348.

Page 51: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

517. Muller L, Gangadharaiah R, Klein SC, et al. An open access medical knowledge base for community driven diagnos=c decision support system development. BMC Med Inform Decis Mak. 2019;19(1):93.

518. Murray SG, Ava= A, Schmajuk G, Yazdany J. Automated and flexible iden=fica=on of complex disease: building a model for systemic lupus erythematosus using noisy labeling. J Am Med Inform Assoc. 2019;26(1):61-65.

519. Mwanga EP, Mapua SA, Siria DJ, et al. Using mid-infrared spectroscopy and supervised machine-learning to iden=fy vertebrate blood meals in the malaria vector, Anopheles arabiensis. Malar J. 2019;18(1):187.

520. Nam Y, Kim M, Chang HS, Shin H. Drug repurposing with network reinforcement. BMC bioinforma4cs. 2019;20(Suppl 13):383.

521. Nebeker C, Torous J, Bartle+ Ellis RJ. Building the case for ac=onable ethics in digital health research supported by ar=ficial intelligence. BMC Med. 2019;17(1):137.

522. Nelson GS. Bias in Ar=ficial Intelligence. N C Med J. 2019;80(4):220-222. 523. Ngiam KY. Braving the new world of ar=ficial intelligence. Nat Med. 2019;25(1):13. 524. Nguyen DQ, Verspoor K. From POS tagging to dependency parsing for biomedical event

extrac=on. BMC bioinforma4cs. 2019;20(1):72. 525. Njage PMK, Leekitcharoenphon P, Hald T. Improving hazard characteriza=on in microbial

risk assessment using next genera=on sequencing data and machine learning: Predic=ng clinical outcomes in shigatoxigenic Escherichia coli. Int J Food Microbiol. 2019;292:72-82.

526. Norgeot B, Glicksberg BS, Bu+e AJ. A call for deep-learning healthcare. Nat Med. 2019;25(1):14-15.

527. Obeid JS, Heider PM, Weeda ER, et al. Impact of De-Iden=fica=on on Clinical Text Classifica=on Using Tradi=onal and Deep Learning Classifiers. Studies in health technology and informa4cs. 2019;264:283-287.

528. Oliver N, Mayora O, Marschollek M. Machine Learning and Data Analy=cs in Pervasive Health. Methods of informa4on in medicine. 2018;57(4):194-196.

529. Padmanabhan R, Meskin N, Haddad WM. Op=mal adap=ve control of drug dosing using integral reinforcement learning. Math Biosci. 2019;309:131-142.

530. Palmer E, Klapaukh R, Harris S, Singer M. Intelligently learning from data. Crit Care. 2019;23(1):136.

531. Pang S, Du A, Orgun MA, Yu Z. A novel fused convolu=onal neural network for biomedical image classifica=on. Medical & biological engineering & compu4ng. 2019;57(1):107-121.

532. Par OE, Akcapinar Sezer E, Sever H. Clinical Decision Support Systems: From the Perspec=ve of Small and Imbalanced Data Set. Studies in health technology and informa4cs. 2019;262:344-347.

533. Parikh RB, Obermeyer Z, Navathe AS. Regula=on of predic=ve analy=cs in medicine. Science. 2019;363(6429):810-812.

534. Patel J, Siddiqui Z, Krishnan A, Thyvalikakath TP. Leveraging Electronic Dental Record Data to Classify Pa=ents Based on Their Smoking Intensity. Methods of informa4on in medicine. 2018;57(5-06):253-260.

Page 52: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

535. Pereira J, Diaz O. Using Health Chatbots for Behavior Change: A Mapping Study. Journal of medical systems. 2019;43(5):135.

536. Phloyphisut P, Pornpu+apong N, Sriswasdi S, Chuangsuwanich E. MHCSeqNet: a deep neural network model for universal MHC binding predic=on. BMC bioinforma4cs. 2019;20(1):270.

537. Pirnejad H, Amiri P, Niazkhani Z, et al. Preven=ng poten=al drug-drug interac=ons through aler=ng decision support systems: A clinical context based methodology. Int J Med Inform. 2019;127:18-26.

538. Plante A, Shore DM, Morra G, Khelashvili G, Weinstein H. A Machine Learning Approach for the Discovery of Ligand-Specific Func=onal Mechanisms of GPCRs. Molecules (Basel, Switzerland). 2019;24(11).

539. Plisson F, Piggo+ AM. Predic=ng Blood(-)Brain Barrier Permeability of Marine-Derived Kinase Inhibitors Using Ensemble Classifiers Reveals Poten=al Hits for Neurodegenera=ve Disorders. Mar Drugs. 2019;17(2).

540. Pohlmeyer CW, Gonzalez VD, Irrinki A, et al. Iden=fica=on of NK Cell Subpopula=ons That Differen=ate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control. J Virol. 2019;93(7).

541. Poon HK, Yap WS, Tee YK, Lee WK, Goi BM. Hierarchical gated recurrent neural network with adversarial and virtual adversarial training on text classifica=on. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;119:299-312.

542. Powell K, Fishman EK, Horton KM, Johnson PT, Rowe SP. What Health Care Can Learn From Self-Driving Vehicles. Journal of the American College of Radiology : JACR. 2019;16(2):261-263.

543. Prakash A, Saha SK. A study on use of the web for automa=c answering of remedy finding ques=ons of common users. Technology and health care : official journal of the European Society for Engineering and Medicine. 2019;27(1):23-35.

544. Price WN, 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43.

545. Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to es=mate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20(1):2.

546. Qian S, Liang S, Yu H. Leveraging gene=c interac=ons for adverse drug-drug interac=on predic=on. PLoS computa4onal biology. 2019;15(5):e1007068.

547. Raffenaud A, Gurupur V, Fernandes SL, Yeung T. U=lizing telemedicine in oncology seSngs: Pa=ent favourability rates and percep=ons of use analysis using Chi-Square and neural networks. Technology and health care : official journal of the European Society for Engineering and Medicine. 2019;27(2):115-127.

548. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. The New England journal of medicine. 2019;380(14):1347-1358.

549. Ramon E, Belanche-Munoz L, Perez-Enciso M. HIV drug resistance predic=on with weighted categorical kernel func=ons. BMC bioinforma4cs. 2019;20(1):410.

550. Rashid M, Chow EK. Ar=ficial Intelligence-Driven Designer Drug Combina=ons: From Drug Development to Personalized Medicine. SLAS Technol. 2019;24(1):124-125.

Page 53: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

551. Rawson TM, Ahmad R, Toumazou C, Georgiou P, Holmes AH. Ar=ficial intelligence can improve decision-making in infec=on management. Nat Hum Behav. 2019;3(6):543-545.

552. Raymond D. Using Ar=ficial Intelligence to Combat Informa=on Overload in Research. IEEE pulse. 2019;10(1):18-21.

553. Reinke T. Digi=zed Health Opens RWE Floodgates. Can Ar=ficial Intelligence Harness the Power? Manag Care. 2019;28(4):18-19.

554. Reiswich A, Haag M. Evalua=on of Chatbot Prototypes for Taking the Virtual Pa=ent's History. Studies in health technology and informa4cs. 2019;260:73-80.

555. Renganathan V. Overview of ar=ficial neural network models in the biomedical domain. Bra4sl Lek Listy. 2019;120(7):536-540.

556. Riley P. Three piralls to avoid in machine learning. Nature. 2019;572(7767):27-29. 557. Roder J, Oliveira C, Net L, Tsypin M, Lins=d B, Roder H. A dropout-regularized classifier

development approach op=mized for precision medicine test discovery from omics data. BMC bioinforma4cs. 2019;20(1):325.

558. Roehrs A, da Costa CA, Righi RDR, Rigo SJ, Wichman MH. Toward a Model for Personal Health Record Interoperability. IEEE journal of biomedical and health informa4cs. 2019;23(2):867-873.

559. Ronicke S, Hirsch MC, Turk E, Larionov K, Tientcheu D, Wagner AD. Can a decision support system accelerate rare disease diagnosis? Evalua=ng the poten=al impact of Ada DX in a retrospec=ve study. Orphanet J Rare Dis. 2019;14(1):69.

560. Rotemberg V, Halpern A, Dusza S, Codella NC. The role of public challenges and data sets towards algorithm development, trust, and use in clinical prac=ce. Semin Cutan Med Surg. 2019;38(1):E38-e42.

561. Ruan T, Huang Y, Liu X, Xia Y, Gao J. QAnalysis: a ques=on-answer driven analy=c tool on knowledge graphs for leveraging electronic medical records for clinical research. BMC Med Inform Decis Mak. 2019;19(1):82.

562. Ryan P, Luz S, Albert P, Vogel C, Normand C, Elwyn G. Using ar=ficial intelligence to assess clinicians' communica=on skills. Bmj. 2019;364:l161.

563. Safavi K, Mathews SC, Bates DW, Dorsey ER, Cohen AB. Top-Funded Digital Health Companies And Their Impact On High-Burden, High-Cost Condi=ons. Health Aff (Millwood). 2019;38(1):115-123.

564. Sanal MG, Paul K, Kumar S, Ganguly NK. Ar=ficial Intelligence and Deep Learning: The Future of Medicine and Medical Prac=ce. J Assoc Physicians India. 2019;67(4):71-73.

565. Santos GL, Endo PT, Monteiro KHC, Rocha EDS, Silva I, Lynn T. Accelerometer-Based Human Fall Detec=on Using Convolu=onal Neural Networks. Sensors (Basel, Switzerland). 2019;19(7).

566. Sarker A, Gonzalez-Hernandez G, Perrone J. Towards Automa=ng Loca=on-Specific Opioid Toxicosurveillance from Twi+er via Data Science Methods. Studies in health technology and informa4cs. 2019;264:333-337.

567. Schork NJ. Ar=ficial Intelligence and Personalized Medicine. Cancer Treat Res. 2019;178:265-283.

Page 54: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

568. Shen Y, Li Y, Zheng HT, Tang B, Yang M. Enhancing ontology-driven diagnos=c reasoning with a symptom-dependency-aware Naive Bayes classifier. BMC bioinforma4cs. 2019;20(1):330.

569. Shen Y, Yuan K, Dai J, Tang B, Yang M, Lei K. KGDDS: A System for Drug-Drug Similarity Measure in Therapeu=c Subs=tu=on based on Knowledge Graph Cura=on. Journal of medical systems. 2019;43(4):92.

570. Smail-Tabbone M, Rance B. Contribu=ons from the 2018 Literature on Bioinforma=cs and Transla=onal Informa=cs. Yearbook of medical informa4cs. 2019;28(1):190-193.

571. Smallman M. Policies designed for drugs won't work for AI. Nature. 2019;567(7746):7. 572. Smets E, De Raedt W, Van Hoof C. Into the Wild: The Challenges of Physiological Stress

Detec=on in Laboratory and Ambulatory SeSngs. IEEE journal of biomedical and health informa4cs. 2019;23(2):463-473.

573. Soboczenski F, Trikalinos TA, Kuiper J, Bias RG, Wallace BC, Marshall IJ. Machine learning to help researchers evaluate biases in clinical trials: a prospec=ve, randomized user study. BMC Med Inform Decis Mak. 2019;19(1):96.

574. Sohail MN, Ren J, Uba Muhammad M. A Euclidean Group Assessment on Semi-Supervised Clustering for Healthcare Clinical Implica=ons Based on Real-Life Data. Interna4onal journal of environmental research and public health. 2019;16(9).

575. Song D, Chen Y, Min Q, et al. Similarity-based machine learning support vector machine predictor of drug-drug interac=ons with improved accuracies. J Clin Pharm Ther. 2019;44(2):268-275.

576. Song Q, Zheng YJ, Yang J. Effects of Food Contamina=on on Gastrointes=nal Morbidity: Comparison of Different Machine-Learning Methods. Interna4onal journal of environmental research and public health. 2019;16(5).

577. Stephenson N, Shane E, Chase J, et al. Survey of Machine Learning Techniques in Drug Discovery. Curr Drug Metab. 2019;20(3):185-193.

578. Stoldt JP, Price M, Weber J. Towards a Clinical Analy=cs Adop=on Maturity Framework for Primary Care. Studies in health technology and informa4cs. 2019;257:399-403.

579. Su+on JR, Mahajan R, Akbilgic O, Kamaleswaran R. PhysOnline: An Open Source Machine Learning Pipeline for Real-Time Analysis of Streaming Physiological Waveform. IEEE journal of biomedical and health informa4cs. 2019;23(1):59-65.

580. Tao Y, Chen YJ, Fu X, Jiang B, Zhang Y. Evolu=onary Ensemble Learning Algorithm to Modeling of Warfarin Dose Predic=on for Chinese. IEEE journal of biomedical and health informa4cs. 2019;23(1):395-406.

581. Taranik M, Kopanitsa G. Using Machine Learning for Personalized Pa=ent Adherence Level Determina=on. Studies in health technology and informa4cs. 2019;261:174-178.

582. Teschendorff AE. Avoiding common piralls in machine learning omic data science. Nat Mater. 2019;18(5):422-427.

583. The L. iHuman: a futuris=c vision for the human experience. Lancet (London, England). 2019;394(10203):979.

584. Ting DS, Rim TH, Choi YS, Ledsam JR. Deep Learning in Medicine. Are We Ready? Ann Acad Med Singapore. 2019;48(1):1-4.

Page 55: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

585. Tomiazzi JS, Pereira DR, Judai MA, Antunes PA, Favareto APA. Performance of machine-learning algorithms to pa+ern recogni=on and classifica=on of hearing impairment in Brazilian farmers exposed to pes=cide and/or cigare+e smoke. Environ Sci Pollut Res Int. 2019;26(7):6481-6491.

586. Tong ST, Sopory P. Does integral affect influence inten=ons to use ar=ficial intelligence for skin cancer screening? A test of the affect heuris=c. Psychol Health. 2019;34(7):828-849.

587. Topaz M, Murga L, Bar-Bachar O, Cato K, Collins S. Extrac=ng Alcohol and Substance Abuse Status from Clinical Notes: The Added Value of Nursing Data. Studies in health technology and informa4cs. 2019;264:1056-1060.

588. Topaz M, Murga L, Grossman C, et al. Iden=fying Diabetes in Clinical Notes in Hebrew: A Novel Text Classifica=on Approach Based on Word Embedding. Studies in health technology and informa4cs. 2019;264:393-397.

589. Topol EJ. Deep learning detects impending organ injury in the clinic. Nature. 2019;572(7767):36-37.

590. Uddin MA, Lee YK. Feature Fusion of Deep Spa=al Features and Handcraked Spa=otemporal Features for Human Ac=on Recogni=on. Sensors (Basel, Switzerland). 2019;19(7).

591. Unger M, Black D, Fischer NM, Neumuth T, Glaser B. Design and evalua=on of an eye tracking support system for the scrub nurse. The interna4onal journal of medical robo4cs + computer assisted surgery : MRCAS. 2019;15(1):e1954.

592. Vamathevan J, Clark D, Czodrowski P, et al. Applica=ons of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463-477.

593. Vangay P, Hillmann BM, Knights D. Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classifica=on tasks. GigaScience. 2019;8(5).

594. Veeranki SPK, Hayn D, Jauk S, et al. An Improvised Classifica=on Model for Predic=ng Delirium. Studies in health technology and informa4cs. 2019;264:1566-1567.

595. Veeranki SPK, Kramer D, Hayn D, et al. Is Regular Re-Training of a Predic=ve Delirium Model Necessary Aker Deployment in Rou=ne Care? Studies in health technology and informa4cs. 2019;260:186-191.

596. Vis=sen ST, Johnson AEW, Scheeren TWL. Predic=ng vital sign deteriora=on with ar=ficial intelligence or machine learning. J Clin Monit Comput. 2019;33(6):949-951.

597. Wakamiya S, Morita M, Kano Y, Ohkuma T, Aramaki E. Tweet Classifica=on Toward Twi+er-Based Disease Surveillance: New Data, Methods, and Evalua=ons. J Med Internet Res. 2019;21(2):e12783.

598. Wang DL, Lv YL, Ren DT, Li LH. Research on massive informa=on query and intelligent analys is method in a complex large-scale system. Math Biosci Eng. 2019;16(4):2906-2926.

599. Wang H, Wu Z, Xing EP. Removing Confounding Factors Associated Weights in Deep Neural Networks Improves the Predic=on Accuracy for Healthcare Applica=ons. Pac Symp Biocomput. 2019;24:54-65.

600. Wang P, Garza M, Zozus M. Cancer Phenotype Development: A Literature Review. Studies in health technology and informa4cs. 2019;257:468-472.

Page 56: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

601. Wang P, Pullen D, Garza M, Walden A, Zozus M. Data Profiling in Support of En=ty Resolu=on of Mul=-Ins=tu=onal EHR Data. Studies in health technology and informa4cs. 2019;257:479-483.

602. Wang X, Lyu J, Dong L, Xu K. Mul=task learning for biomedical named en=ty recogni=on with cross-sharing structure. BMC bioinforma4cs. 2019;20(1):427.

603. Wang X, Yang S, Tang M, Yin H, Huang H, He L. HypernasalityNet: Deep recurrent neural network for automa=c hypernasality detec=on. Int J Med Inform. 2019;129:1-12.

604. Wang Y, Fan X, Chen L, et al. Mapping anatomical related en==es to human body parts based on wikipedia in discharge summaries. BMC bioinforma4cs. 2019;20(1):430.

605. Wang Y, Sohn S, Liu S, et al. A clinical text classifica=on paradigm using weak supervision and deep representa=on. BMC Med Inform Decis Mak. 2019;19(1):1.

606. Wang Y, Yella J, Jegga AG. Transcriptomic Data Mining and Repurposing for Computa=onal Drug Discovery. Methods in molecular biology (Cli_on, NJ). 2019;1903:73-95.

607. Wang Y, Zhang XS, Chen L. Systems biology intertwines with single cell and AI. BMC bioinforma4cs. 2019;20(Suppl 7):204.

608. Watson DS, Krutzinna J, Bruce IN, et al. Clinical applica=ons of machine learning algorithms: beyond the black box. Bmj. 2019;364:l886.

609. Weinstein JN. Ar=ficial Intelligence: Have You Met Your New Friends; Siri, Cortona, Alexa, Dot, Spot, and Puck. Spine. 2019;44(1):1-4.

610. Weng SF, Vaz L, Qureshi N, Kai J. Predic=on of premature all-cause mortality: A prospec=ve general popula=on cohort study comparing machine-learning and standard epidemiological approaches. PloS one. 2019;14(3):e0214365.

611. Wiegand T, Krishnamurthy R, Kuglitsch M, et al. WHO and ITU establish benchmarking process for ar=ficial intell igence in health. Lancet (London, England). 2019;394(10192):9-11.

612. Wiens J, Saria S, Sendak M, et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med. 2019;25(9):1337-1340.

613. Wong ZSY, Zhou J, Zhang Q. Ar=ficial Intelligence for infec=ous disease Big Data Analy=cs. Infect Dis Health. 2019;24(1):44-48.

614. Workman TE, Shao Y, Divita G, Zeng-Treitler Q. An efficient prototype method to iden=fy and correct misspellings in clinical text. BMC research notes. 2019;12(1):42.

615. Wu J. The Next Era: Flourish of Na=onal Health Care & Medicine with the World Leading Ar=ficial Intelligence. Chin Med Sci J. 2019;34(2):69-70.

616. Xiong CZ, Su M. IARNN-Based Seman=c-Containing Double-Level Embedding Bi-LSTM for Ques=on-and-Answer Matching. Computa4onal intelligence and neuroscience. 2019;2019:6074840.

617. Xu C, Jackson SA. Machine learning and complex biological data. Genome biology. 2019;20(1):76.

618. Xu F, Zhu J, Sun N, et al. Development and valida=on of predic=on models for hypertension risks in rural Chinese popula=ons. Journal of global health. 2019;9(2):020601.

Page 57: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

619. Xu J, Yang P, Xue S, et al. Transla=ng cancer genomics into precision medicine with ar=ficial intelligence: applica=ons, challenges and future perspec=ves. Human gene4cs. 2019;138(2):109-124.

620. Xue X, Hang Z, Tang Z. Interac=ve biomedical ontology matching. PloS one. 2019;14(4):e0215147.

621. Yamada K, Mori S. The day when computers read between lines. Japanese journal of radiology. 2019;37(5):351-353.

622. Yan XY, Zhang SW, He CR. Predic=on of drug-target interac=on by integra=ng diverse heterogeneous informa=on source with mul=ple kernel learning and clustering methods. Computa4onal biology and chemistry. 2019;78:460-467.

623. Yang E, Scheff JD, Shen SC, et al. A late-binding, distributed, NoSQL warehouse for integra=ng pa=ent data from clinical trials. Database : the journal of biological databases and cura4on. 2019;2019.

624. Yang HC, Poly TN, Jack Li YC. Deep into Pa=ent care: An automated deep learning approach for reshaping pa=ent care in clinical seSng. Computer methods and programs in biomedicine. 2019;168:A1-a2.

625. Yang W, Liu X, Wang K, Hu J, Geng G, Feng J. Sex Determina=on of Three-Dimensional Skull Based on Improved Backpropaga=on Neural Network. Computa4onal and mathema4cal methods in medicine. 2019;2019:9163547.

626. Yao J, Hurle MR, Nelson MR, Agarwal P. Predic=ng clinically promising therapeu=c hypotheses using tensor factoriza=on. BMC bioinforma4cs. 2019;20(1):69.

627. Yao Y, Xu H, Li M, Qi Z, Liao B. Recent Advances on Predic=on of Human Papillomaviruses Risk Types. Curr Drug Metab. 2019;20(3):236-243.

628. Yazdjerdi P, Meskin N, Al-Naemi M, Al Moustafa AE, Kovacs L. Reinforcement learning-based control of tumor growth under an=-angiogenic therapy. Computer methods and programs in biomedicine. 2019;173:15-26.

629. Yelin I, Snitser O, Novich G, et al. Personal clinical history predicts an=bio=c resistance of urinary tract infec=ons. Nat Med. 2019;25(7):1143-1152.

630. Yoon W, So CH, Lee J, Kang J. CollaboNet: collabora=on of deep neural networks for biomedical named en=ty recogni=on. BMC bioinforma4cs. 2019;20(Suppl 10):249.

631. Yuan Y, Jia K. FusionA+: Deep Fusional A+en=on Networks for Mul=-Channel Biomedical Signals. Sensors (Basel, Switzerland). 2019;19(11).

632. Zeng Z, Deng Y, Li X, Naumann T, Luo Y. Natural Language Processing for EHR-Based Computa=onal Phenotyping. IEEE/ACM transac4ons on computa4onal biology and bioinforma4cs. 2019;16(1):139-153.

633. Zhan S, Wu J, Han N, Wen J, Fang X. Unsupervised feature extrac=on by low-rank and sparsity preserving embedding. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;109:56-66.

634. Zhang B, Cao P. Classifica=on of high dimensional biomedical data based on feature selec=on using redundant removal. PloS one. 2019;14(4):e0214406.

635. Zhang B, Ren H, Huang G, Cheng Y, Hu C. Predic=ng blood pressure from physiological index data using the SVR algorithm. BMC bioinforma4cs. 2019;20(1):109.

Page 58: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

636. Zhang S, Bamakan SMH, Qu Q, Li S. Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspec=ve. IEEE Rev Biomed Eng. 2019;12:194-208.

637. Zhang T, Liu P, Zhang Y, et al. Combining informa=on from mul=ple bone turnover markers as diagnos=c indices for osteoporosis using support vector machines. Biomarkers. 2019;24(2):120-126.

638. Zhang Z, Ishida S, Tagashira S, Fukuda A. Danger-Pose Detec=on System Using Commodity Wi-Fi for Bathroom Monitoring. Sensors (Basel, Switzerland). 2019;19(4).

639. Zhao HY, Che C, Jin B, Wei XP. A viral protein iden=fying framework based on temporal convolu=onal network. Math Biosci Eng. 2019;16(3):1709-1717.

640. Zhao K, So HC. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. Methods in molecular biology (Cli_on, NJ). 2019;1903:219-237.

641. Zhao X, Zhang X, Cai Z, et al. Chaos enhanced grey wolf op=miza=on wrapped ELM for diagnosis of paraquat-poisoned pa=ents. Computa4onal biology and chemistry. 2019;78:481-490.

642. Zheng S, Dharssi S, Wu M, Li J, Lu Z. Text Mining for Drug Discovery. Methods in molecular biology (Cli_on, NJ). 2019;1939:231-252.

643. Zheng Y, Peng H, Ghosh S, Lan C, Li J. Inverse similarity and reliable nega=ve samples for drug side-effect predic=on. BMC bioinforma4cs. 2019;19(Suppl 13):554.

644. Zhou C, Jia Y, Motani M. Op=mizing Autoencoders for Learning Deep Representa=ons From Health Data. IEEE journal of biomedical and health informa4cs. 2019;23(1):103-111.

645. Zhou H, Lang C, Liu Z, Ning S, Lin Y, Du L. Knowledge-guided convolu=onal networks for chemical-disease rela=on extrac=on. BMC bioinforma4cs. 2019;20(1):260.

646. Zhou Z, Firestone C. Humans can decipher adversarial images. Nature communica4ons. 2019;10(1):1334.

647. Zhu T, Pimentel MAF, Clifford GD, Clikon DA. Unsupervised Bayesian Inference to Fuse Biosignal Sensory Es=mates for Personalizing Care. IEEE journal of biomedical and health informa4cs. 2019;23(1):47-58.

648. Zhu VJ, Lenert LA, Bunnell BE, Obeid JS, Jefferson M, Halbert CH. Automa=cally iden=fying social isola=on from clinical narra=ves for pa=ents with prostate Cancer. BMC Med Inform Decis Mak. 2019;19(1):43.

649. Zitkus V, Butkiene R, Butleris R, Maskeliunas R, Damasevicius R, Wozniak M. Minimalis=c Approach to Coreference Resolu=on in Lithuanian Medical Records. Computa4onal and mathema4cal methods in medicine. 2019;2019:9079840.

650. Zong N, Wong RSN, Ngo V. Tripar=te Network-Based Repurposing Method Using Deep Learning to Compute Similari=es for Drug-Target Predic=on. Methods in molecular biology (Cli_on, NJ). 2019;1903:317-328.

651. Zou Y, O'Neill SM, Larkin NK, et al. Machine Learning-Based Integra=on of High-Resolu=on Wildfire Smoke Simula=ons and Observa=ons for Regional Health Impact Assessment. Interna4onal journal of environmental research and public health. 2019;16(12).

652. Deep learning for genomics. Nat Genet. 2019;51(1):1.

Page 59: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

653. Adabor ES, Acquaah-Mensah GK. Machine learning approaches to decipher hormone and HER2 receptor status phenotypes in breast cancer. Brief Bioinform. 2019;20(2):504-514.

654. Afshar S, Afshar S, Warden E, Manochehri H, Saidijam M. Applica=on of Ar=ficial Neural Network in miRNA Biomarker Selec=on and Precise Diagnosis of Colorectal Cancer. Iranian biomedical journal. 2019;23(3):175-183.

655. Alam T, Islam MT, Househ M, Bouzerdoum A, Kawsar FA. DeepDSSR: Deep Learning Structure for Human Donor Splice Sites Recogni=on. Studies in health technology and informa4cs. 2019;262:236-239.

656. A+rill H, Gaudet P, Huntley RP, et al. Annota=on of gene product func=on from high-throughput studies using the Gene Ontology. Database : the journal of biological databases and cura4on. 2019;2019.

657. Ayyad SM, Saleh AI, Labib LM. Gene expression cancer classifica=on using modified K-Nearest Neighbors technique. Bio Systems. 2019;176:41-51.

658. Bae H, Lee B, Kwon S, Yoon S. DNA Steganalysis Using Deep Recurrent Neural Networks. Pac Symp Biocomput. 2019;24:88-99.

659. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Mishra NK, Guda C, Radhakrishna U. Deep Learning/Ar=ficial Intelligence and Blood-Based DNA Epigenomic Predic=on of Cerebral Palsy. Interna4onal journal of molecular sciences. 2019;20(9).

660. Best MG, In 't Veld S, Sol N, Wurdinger T. RNA sequencing and swarm intelligence-enhanced classifica=on algorithm development for blood-based disease diagnos=cs using spliced blood platelet RNA. Nat Protoc. 2019;14(4):1206-1234.

661. Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang DC. mACPpred: A Support Vector Machine-Based Meta-Predictor for Iden=fica=on of An=cancer Pep=des. Interna4onal journal of molecular sciences. 2019;20(8).

662. Boudellioua I, Kulmanov M, Schofield PN, Gkoutos GV, Hoehndorf R. DeepPVP: phenotype-based priori=za=on of causa=ve variants using deep learning. BMC bioinforma4cs. 2019;20(1):65.

663. Carlberg C, Neme A. Machine learning approaches infer vitamin D signaling: Cri=cal impact of vitamin D receptor binding within topologically associated domains. J Steroid Biochem Mol Biol. 2019;185:103-109.

664. Caron B, Luo Y, Rausell A. NCBoost classifies pathogenic non-coding variants in Mendelian diseases through supervised learning on purifying selec=on signals in humans. Genome biology. 2019;20(1):32.

665. Chen B, Zheng Y, Liang Y. Analysis of Poten=al Genes and Pathways Involved in the Pathogenesis of Acne by Bioinforma=cs. BioMed research interna4onal. 2019;2019:3739086.

666. Chen K, Wei Z, Zhang Q, et al. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Res. 2019;47(7):e41.

667. Chen KM, Cofer EM, Zhou J, Troyanskaya OG. Selene: a PyTorch-based deep learning library for sequence data. Nat Methods. 2019;16(4):315-318.

Page 60: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

668. Chereda H, Bleckmann A, Kramer F, Leha A, Beissbarth T. U=lizing Molecular Network Informa=on via Graph Convolu=onal Neural Networks to Predict Metasta=c Event in Breast Cancer. Studies in health technology and informa4cs. 2019;267:181-186.

669. Chitrala KN, NagarkaS M, NagarkaS P, Yeguvapalli S. Analysis of the TP53 Deleterious Single Nucleo=de Polymorphisms Impact on Estrogen Receptor Alpha-p53 Interac=on: A Machine Learning Approach. Interna4onal journal of molecular sciences. 2019;20(12).

670. Colbran LL, Chen L, Capra JA. Sequence Characteris=cs Dis=nguish Transcribed Enhancers from Promoters and Predict Their Breadth of Ac=vity. Gene4cs. 2019;211(4):1205-1217.

671. Danter WR. DeepNEU: cellular reprogramming comes of age - a machine learning plarorm with applica=on to rare diseases research. Orphanet J Rare Dis. 2019;14(1):13.

672. Djordjevic D, Tang JYS, Chen YX, et al. Discovery of perturba=on gene targets via free text metadata mining in Gene Expression Omnibus. Computa4onal biology and chemistry. 2019;80:152-158.

673. Dong J, Xu M. A 19miRNA Support Vector Machine classifier and a 6miRNA risk score system designed for ovarian cancer pa=ents. Oncology reports. 2019;41(6):3233-3243.

674. Du J, Jia P, Dai Y, Tao C, Zhao Z, Zhi D. Gene2vec: distributed representa=on of genes based on co-expression. BMC genomics. 2019;20(Suppl 1):82.

675. Eraslan G, Avsec Z, Gagneur J, Theis FJ. Deep learning: new computa=onal modelling techniques for genomics. Nat Rev Genet. 2019;20(7):389-403.

676. Esteban-Medina M, Pena-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanis=c models. BMC bioinforma4cs. 2019;20(1):370.

677. Fu H, Yang Y, Wang X, Wang H, Xu Y. DeepUbi: a deep learning framework for predic=on of ubiqui=na=on sites in proteins. BMC bioinforma4cs. 2019;20(1):86.

678. Gao R, Wang M, Zhou J, et al. Predic=on of Enzyme Func=on Based on Three Parallel Deep CNN and Amino Acid Muta=on. Interna4onal journal of molecular sciences. 2019;20(11).

679. Gessulat S, Schmidt T, Zolg DP, et al. Prosit: proteome-wide predic=on of pep=de tandem mass spectra by deep learning. Nat Methods. 2019;16(6):509-518.

680. Goksuluk D, Zararsiz G, Korkmaz S, et al. MLSeq: Machine learning interface for RNA-sequencing data. Computer methods and programs in biomedicine. 2019;175:223-231.

681. Grabowski P, Rappsilber J. A Primer on Data Analy=cs in Func=onal Genomics: How to Move from Data to Insight? Trends Biochem Sci. 2019;44(1):21-32.

682. Gurovich Y, Hanani Y, Bar O, et al. Iden=fying facial phenotypes of gene=c disorders using deep learning. Nat Med. 2019;25(1):60-64.

683. Han Y, Yang J, Qian X, et al. DriverML: a machine learning algorithm for iden=fying driver genes in cancer sequencing studies. Nucleic Acids Res. 2019;47(8):e45.

684. Hassan H, Shanak S. GOTrapper: a tool to navigate through branches of gene ontology hierarchy. BMC bioinforma4cs. 2019;20(1):20.

685. Islamaj Dogan R, Kim S, Chatr-Aryamontri A, et al. Overview of the BioCrea=ve VI Precision Medicine Track: mining protein interac=ons and muta=ons for precision medicine. Database : the journal of biological databases and cura4on. 2019;2019.

Page 61: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

686. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predic=ng Splicing from Primary Sequence with Deep Learning. Cell. 2019;176(3):535-548.e524.

687. Johnson KW, Glicksberg BS, Shameer K, et al. A transcriptomic model to predict increase in fibrous cap thickness in response to high-dose sta=n treatment: Valida=on by serial intracoronary OCT imaging. EBioMedicine. 2019;44:41-49.

688. Kadali S, Naushad SM, Radha Rama Devi A, Bodiga VL. Biochemical, machine learning and molecular approaches for the differen=al diagnosis of Mucopolysaccharidoses. Mol Cell Biochem. 2019;458(1-2):27-37.

689. Kaiser TM, Burger PB. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets. Molecules (Basel, Switzerland). 2019;24(11).

690. Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019;20(5):273-282.

691. Kistenev YV, Vrazhnov DA, Nikolaev VV, Sandykova EA, Krivova NA. Analysis of Collagen Spa=al Structure Using Mul=photon Microscopy and Machine Learning Methods. Biochemistry (Mosc). 2019;84(Suppl 1):S108-s123.

692. Konishi H, Komura D, Katoh H, et al. Capturing the differences between humoral immunity in the normal and tumor environments from repertoire-seq of B-cell receptors using supervised machine learning. BMC bioinforma4cs. 2019;20(1):267.

693. Kuleshov V, Ding J, Vo C, et al. A machine-compiled database of genome-wide associa=on studies. Nature communica4ons. 2019;10(1):3341.

694. Laengsri V, Nantasenamat C, Schaduangrat N, Nuchnoi P, PrachayasiSkul V, Shoombuatong W. TargetAn=Angio: A Sequence-Based Tool for the Predic=on and Analysis of An=-Angiogenic Pep=des. Interna4onal journal of molecular sciences. 2019;20(12).

695. Laing EE, Moller-Levet CS, Dijk DJ, Archer SN. Iden=fying and valida=ng blood mRNA biomarkers for acute and chronic insufficient sleep in humans: a machine learning approach. Sleep. 2019;42(1).

696. Li B, Kang X, Zhao D, et al. Machine Learning Models Combined with Virtual Screening and Molecular Docking to Predict Human Topoisomerase I Inhibitors. Molecules (Basel, Switzerland). 2019;24(11).

697. Li W, Wong WH, Jiang R. DeepTACT: predic=ng 3D chroma=n contacts via bootstrapping deep learning. Nucleic Acids Res. 2019;47(10):e60.

698. Liang C, Yu S, Luo J. Adap=ve mul=-view mul=-label learning for iden=fying disease-associated candidate miRNAs. PLoS computa4onal biology. 2019;15(4):e1006931.

699. Liang CA, Chen L, Wahed A, Nguyen AND. Proteomics Analysis of FLT3-ITD Muta=on in Acute Myeloid Leukemia Using Deep Learning Neural Network. Ann Clin Lab Sci. 2019;49(1):119-126.

700. Liu F, Xing L, Zhang X, Zhang X. A Four-Pseudogene Classifier Iden=fied by Machine Learning Serves as a Novel Prognos=c Marker for Survival of Osteosarcoma. Genes (Basel). 2019;10(6).

701. Liu L, Tang L, Jin X, Zhou W. A Mul=-Label Supervised Topic Model Condi=oned on Arbitrary Features for Gene Func=on Predic=on. Genes (Basel). 2019;10(1).

Page 62: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

702. Liu Q, Fang L, Yu G, Wang D, Xiao CL, Wang K. Detec=on of DNA base modifica=ons by deep recurrent neural network on Oxford Nanopore sequencing data. Nature communica4ons. 2019;10(1):2449.

703. Liu T, Porter J, Zhao C, et al. TADKB: Family classifica=on and a knowledge base of topologically associa=ng domains. BMC genomics. 2019;20(1):217.

704. Liu Y, Wang X, Liu B. A comprehensive review and comparison of exis=ng computa=onal methods for intrinsically disordered protein and region predic=on. Brief Bioinform. 2019;20(1):330-346.

705. Liu Z, Huang R, Roberts R, Tong W. Toxicogenomics: A 2020 Vision. Trends Pharmacol Sci. 2019;40(2):92-103.

706. Lo C, Marculescu R. MetaNN: accurate classifica=on of host phenotypes from metagenomic data using neural networks. BMC bioinforma4cs. 2019;20(Suppl 12):314.

707. Lopez-Rincon A, Mar=nez-Archundia M, Mar=nez-Ruiz GU, Schoenhuth A, Tonda A. Automa=c discovery of 100-miRNA signature for cancer classifica=on using ensemble feature selec=on. BMC bioinforma4cs. 2019;20(1):480.

708. Lovino M, Urgese G, Macii E, Di Cataldo S, Ficarra E. A Deep Learning Approach to the Screening of Oncogenic Gene Fusions in Humans. Interna4onal journal of molecular sciences. 2019;20(7).

709. Mensah GA, Yu W, Barfield WL, Clyne M, Engelgau MM, Khoury MJ. HLBS-PopOmics: an online knowledge base to accelerate dissemina=on and implementa=on of research advances in popula=on genomics to reduce the burden of heart, lung, blood, and sleep disorders. Gene4cs in medicine : official journal of the American College of Medical Gene4cs. 2019;21(3):519-524.

710. Nakano FK, Lietaert M, Vens C. Machine learning for discovering missing or wrong protein func=on annota=ons : A comparison using updated benchmark datasets. BMC bioinforma4cs. 2019;20(1):485.

711. Nunez Lopez YO, Retnakaran R, Zinman B, Pratley RE, Seyhan AA. Predic=ng and understanding the response to short-term intensive insulin therapy in people with early type 2 diabetes. Mol Metab. 2019;20:63-78.

712. Olivieri DN, Gambon-Deza F. Itera=ve Variable Gene Discovery from Whole Genome Sequencing with a Bootstrapped Mul=resolu=on Algorithm. Computa4onal and mathema4cal methods in medicine. 2019;2019:3780245.

713. Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblas=c Leukemia: Paving the Way to Personalized Treatment. Genes (Basel). 2019;10(3).

714. Peng J, Wang X, Shang X. Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC bioinforma4cs. 2019;20(Suppl 8):284.

715. Pyman B, Sedghi A, Azizi S, Tyryshkin K, Renwick N, Mousavi P. Exploring microRNA Regula=on of Cancer with Context-Aware Deep Cancer Classifier. Pac Symp Biocomput. 2019;24:160-171.

Page 63: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

716. Randhawa GS, Hill KA, Kari L. ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classifica=on at all taxonomic levels. BMC genomics. 2019;20(1):267.

717. Rodriguez-Pardo C, Segura A, Zamorano-Leon JJ, et al. Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms. Gene. 2019;699:88-93.

718. Shabardina V, Kischka T, Manske F, et al. NanoPipe-a web server for nanopore MinION sequencing data analysis. GigaScience. 2019;8(2).

719. Sheu CC, Chang WA, Tsai MJ, Liao SH, Chong IW, Kuo PL. Bioinforma=c analysis of nextgenera=on sequencing data to iden=fy dysregulated genes in fibroblasts of idiopathic pulmonary fibrosis. Interna4onal journal of molecular medicine. 2019;43(4):1643-1656.

720. Song Y, Westerhuis JA, Aben N, Michaut M, Wessels LFA, Smilde AK. Principal component analysis of binary genomics data. Brief Bioinform. 2019;20(1):317-329.

721. Sun M, Ding T, Tang XQ, Keming Y. An Efficient Mixed-Model for Screening Differen=ally Expressed Genes of Breast Cancer Based on LR-RF. IEEE/ACM transac4ons on computa4onal biology and bioinforma4cs. 2019;16(1):124-130.

722. Tao M, Song T, Du W, et al. Classifying Breast Cancer Subtypes Using Mul=ple Kernel Learning Based on Omics Data. Genes (Basel). 2019;10(3).

723. Theagarajan R, Bhanu B. DeephESC 2.0: Deep Genera=ve Mul= Adversarial Networks for improving the classifica=on of hESC. PloS one. 2019;14(3):e0212849.

724. Tian Q, Zou J, Tang J, Fang Y, Yu Z, Fan S. MRCNN: a deep learning model for regression of genome-wide DNA methyla=on. BMC genomics. 2019;20(Suppl 2):192.

725. Vaidya T, Agrawal A, Mahajan S, Thakur MH, Mahajan A. The Con=nuing Evolu=on of Molecular Func=onal Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther. 2019;23(1):1-26.

726. van IDGP, Szuhai K, Briaire-de Bruijn IH, Kos=ne M, Kuijjer ML, Bovee J. Machine learning analysis of gene expression data reveals novel diagnos=c and prognos=c biomarkers and iden=fies therapeu=c targets for sok =ssue sarcomas. PLoS computa4onal biology. 2019;15(2):e1006826.

727. Vinogradova S, Saksena SD, Ward HN, Vigneau S, Gimelbrant AA. MaGIC: a machine learning tool set and web applica=on for monoallelic gene inference from chroma=n. BMC bioinforma4cs. 2019;20(1):106.

728. Wang H, Liu X, Tao Y, et al. Automa=c Human-like Mining and Construc=ng Reliable Gene=c Associa=on Database with Deep Reinforcement Learning. Pac Symp Biocomput. 2019;24:112-123.

729. Wang J, Gribskov M. IRESpy: an XGBoost model for predic=on of internal ribosome entry sites. BMC bioinforma4cs. 2019;20(1):409.

730. Wang J, Liu JX, Kong XZ, Yuan SS, Dai LY. Laplacian regularized low-rank representa=on for cancer samples clustering. Computa4onal biology and chemistry. 2019;78:504-509.

731. Wang S, Yu ZH, Chai KQ. Iden=fica=on of EGFR as a Novel Key Gene in Clear Cell Renal Cell Carcinoma (ccRCC) through Bioinforma=cs Analysis and Meta-Analysis. BioMed research interna4onal. 2019;2019:6480865.

Page 64: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

732. Wang SB, Huang T. The early detec=on of asthma based on blood gene expression. Mol Biol Rep. 2019;46(1):217-223.

733. Wang T, Johnson TS, Shao W, et al. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correc=on reveals hidden high-resolu=on cellular subtypes. Genome biology. 2019;20(1):165.

734. Wang Y, You ZH, Yang S, Li X, Jiang TH, Zhou X. A High Efficient Biological Language Model for Predic=ng Protein(-)Protein Interac=ons. Cells. 2019;8(2).

735. Wen J, Liu Y, Shi Y, Huang H, Deng B, Xiao X. A classifica=on model for lncRNA and mRNA based on k-mers and a convolu=onal neural network. BMC bioinforma4cs. 2019;20(1):469.

736. Wilson CM, Li K, Yu X, Kuan PF, Wang X. Mul=ple-kernel learning for genomic data mining and predic=on. BMC bioinforma4cs. 2019;20(1):426.

737. Wu J, Li Z, Zeng K, et al. Key genes associated with pancrea=c cancer and their associa=on with outcomes: A bioinforma=cs analysis. Molecular medicine reports. 2019;20(2):1343-1352.

738. Wu J, Zhao Y. Machine learning technology in the applica=on of genome analysis: A systema=c review. Gene. 2019;705:149-156.

739. Wu M, Zhong X, Peng Q, et al. Predic=on of molecular subtypes of breast cancer using BI-RADS features based on a "white box" machine learning approach in a mul=-modal imaging seSng. European journal of radiology. 2019;114:175-184.

740. Xie P, Gao M, Wang C, et al. SuperCT: a supervised-learning framework for enhanced characteriza=on of single-cell transcriptomic profiles. Nucleic Acids Res. 2019;47(8):e48.

741. Xin Z, Hua L, Yang YL, et al. A Pathway Analysis Based on Genome-Wide DNA Methyla=on of Chinese Pa=ents with Graves' Orbitopathy. BioMed research interna4onal. 2019;2019:9565794.

742. Xu W, Zhu L, Huang DS. DCDE: An Efficient Deep Convolu=onal Divergence Encoding Method for Human Promoter Recogni=on. IEEE Trans Nanobioscience. 2019;18(2):136-145.

743. Yamankurt G, Berns EJ, Xue A, et al. Explora=on of the nanomedicine-design space with high-throughput screening and machine learning. Nat Biomed Eng. 2019;3(4):318-327.

744. Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolu=on for protein engineering. Nat Methods. 2019;16(8):687-694.

745. Yin Q, Wu M, Liu Q, Lv H, Jiang R. DeepHistone: a deep learning approach to predic=ng histone modifica=ons. BMC genomics. 2019;20(Suppl 2):193.

746. Yu H, Samuels DC, Zhao YY, Guo Y. Architectures and accuracy of ar=ficial neural network for disease classifica=on from omics data. BMC genomics. 2019;20(1):167.

747. Yu H, Wang J, Sheng Q, Liu Q, Shyr Y. beRBP: binding es=ma=on for human RNA-binding proteins. Nucleic Acids Res. 2019;47(5):e26.

748. Zaorska K, Zawierucha P, Nowicki M. Predic=on of skin color, tanning and freckling from DNA in Polish popula=on: linear regression, random forest and neural network approaches. Human gene4cs. 2019;138(6):635-647.

749. Zeng W, Min X, Jiang R. EnDisease: a manually curated database for enhancer-disease associa=ons. Database : the journal of biological databases and cura4on. 2019;2019.

Page 65: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

750. Zhang S. Computa=onal Methods for Subtyping of Tumors and Their Applica=ons for Deciphering Tumor Heterogeneity. Methods in molecular biology (Cli_on, NJ). 2019;1878:193-207.

751. Zhang SY, Zhang SW, Fan XN, et al. Global analysis of N6-methyladenosine func=ons and its disease associa=on using deep learning and network-based methods. PLoS computa4onal biology. 2019;15(1):e1006663.

752. Zhang X, Yang Y, Wang Y, Fan Q. Detec=on of the BRAF V600E Muta=on in Colorectal Cancer by NIR Spectroscopy in Conjunc=on with Counter Propaga=on Ar=ficial Neural Network. Molecules (Basel, Switzerland). 2019;24(12).

753. Zhang X, Zhao SG. Fluorescence microscopy image classifica=on of 2D HeLa cells based on the CapsNet neural network. Medical & biological engineering & compu4ng. 2019;57(6):1187-1198.

754. Zhang X, Zou Q, Rodriguez-Paton A, Zeng X. Meta-Path Methods for Priori=zing Candidate Disease miRNAs. IEEE/ACM transac4ons on computa4onal biology and bioinforma4cs. 2019;16(1):283-291.

755. Zhang Y, Chen J, Wang Y, et al. Mul=layer network analysis of miRNA and protein expression profiles in breast cancer pa=ents. PloS one. 2019;14(4):e0202311.

756. Zhang Z, Cheng H, Hong X, et al. EnsembleCNV: an ensemble machine learning algorithm to iden=fy and genotype copy number varia=on using SNP array data. Nucleic Acids Res. 2019;47(7):e39.

757. Zhang Z, Pan Z, Ying Y, et al. Deep-learning augmented RNA-seq analysis of transcript splicing. Nat Methods. 2019;16(4):307-310.

758. Zhao J, Feng Q, Wu P, Warner JL, Denny JC, Wei WQ. Using topic modeling via non-nega=ve matrix factoriza=on to iden=fy rela=onships between gene=c variants and disease phenotypes: A case study of Lipoprotein(a) (LPA). PloS one. 2019;14(2):e0212112.

759. Zheng LQ, Wang R, Chi SM, Li CX. Matrix metalloproteinase 1: a be+er biomarker for squamous cell carcinoma by mul=ple microarray analyses. G Ital Dermatol Venereol. 2019;154(3):327-337.

760. Zheng N, Wang K, Zhan W, Deng L. Targe=ng Virus-host Protein Interac=ons: Feature Extrac=on and Machine Learning Approaches. Curr Drug Metab. 2019;20(3):177-184.

761. Zhou H, Gao M, Skolnick J. ENTPRISE-X: Predic=ng disease-associated frameshik and nonsense muta=ons. PloS one. 2018;13(5):e0196849.

762. Zhou J, Park CY, Theesfeld CL, et al. Whole-genome deep-learning analysis iden=fies contribu=on of noncoding muta=ons to au=sm risk. Nat Genet. 2019;51(6):973-980.

763. Zhu CY, Zhou C, Chen YQ, et al. C(3): Consensus Cancer Driver Gene Caller. Genomics, proteomics & bioinforma4cs. 2019;17(3):311-318.

764. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telen= A. A primer on deep learning in genomics. Nat Genet. 2019;51(1):12-18.

765. Baliga MS. Ar=ficial intelligence - The next fron=er in pediatric den=stry. J Indian Soc Pedod Prev Dent. 2019;37(4):315.

Page 66: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

766. Cha D, Pae C, Seong SB, Choi JY, Park HJ. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine. 2019;45:606-614.

767. Fujimura S, Kojima T, Okanoue Y, Shoji K, Inoue M, Hori R. Discrimina=on of "hot potato voice" caused by upper airway obstruc=on u=lizing a support vector machine. Laryngoscope. 2019;129(6):1301-1307.

768. Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning ar=ficial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol. 2019;48(3):20180218.

769. Hung M, Voss MW, Rosales MN, et al. Applica=on of machine learning for diagnos=c predic=on of root caries. Gerodontology. 2019;36(4):395-404.

770. Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classifica=on for early diagnosis of oral cancer employing deep learning algorithm. Journal of cancer research and clinical oncology. 2019;145(4):829-837.

771. Kats L, Vered M, Zlotogorski-Hurvitz A, Harpaz I. Atherosclero=c caro=d plaque on panoramic radiographs: neural network detec=on. Int J Comput Dent. 2019;22(2):163-169.

772. Kok H, Acilar AM, Izgi MS. Usage and comparison of ar=ficial intelligence algorithms for determina=on of growth and development by cervical vertebrae stages in orthodon=cs. Prog Orthod. 2019;20(1):41.

773. Laves MH, Bicker J, Kahrs LA, Ortmaier T. A dataset of laryngeal endoscopic images with compara=ve study on convolu=on neural network-based seman=c segmenta=on. Interna4onal journal of computer assisted radiology and surgery. 2019;14(3):483-492.

774. Li Z, Huang J, Hu Z. Screening and Diagnosis of Chronic Pharyngi=s Based on Deep Learning. Interna4onal journal of environmental research and public health. 2019;16(10).

775. Lotsch J, Kringel D, Hummel T. Machine Learning in Human Olfactory Research. Chem Senses. 2019;44(1):11-22.

776. Mishra R, Burke A, Gitman B, et al. Data-driven method to enhance craniofacial and oral phenotype vocabularies. J Am Dent Assoc. 2019;150(11):933-939.e932.

777. Patcas R, Bernini DAJ, Voloki=n A, Agustsson E, Rothe R, Timoke R. Applying ar=ficial intelligence to assess the impact of orthognathic treatment on facial a+rac=veness and es=mated age. Int J Oral Maxillofac Surg. 2019;48(1):77-83.

778. Sun XS, Li XY, Chen QY, Tang LQ, Mai HQ. Future of Radiotherapy in Nasopharyngeal Carcinoma. The Bri4sh journal of radiology. 2019;92(1102):20190209.

779. Torres PJ, Thompson J, McLean JS, Kelley ST, Edlund A. Discovery of a Novel Periodontal Disease-Associated Bacterium. Microb Ecol. 2019;77(1):267-276.

780. Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detec=on and numbering in panoramic radiographs using convolu=onal neural networks. Dentomaxillofac Radiol. 2019;48(4):20180051.

781. Walker A, Surda P. Unsupervised Learning Techniques for the Inves=ga=on of Chronic Rhinosinusi=s. Ann Otol Rhinol Laryngol. 2019;128(12):1170-1176.

Page 67: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

782. Wang Y, Heijmen BJM, Pe=t SF. Knowledge-based dose predic=on models for head and neck cancer are strongly affected by interorgan dependency and dataset inconsistency. Medical physics. 2019;46(2):934-943.

783. Zhu W, Huang Y, Zeng L, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmenta=on of head and neck anatomy. Medical physics. 2019;46(2):576-589.

784. Zlotogorski-Hurvitz A, Dekel BZ, Malonek D, Yahalom R, Vered M. FTIR-based spectrum of salivary exosomes coupled with computa=onal-aided discrimina=ng analysis in the diagnosis of oral cancer. Journal of cancer research and clinical oncology. 2019;145(3):685-694.

785. Cao L, Lu Y, Li C, Yang W. Automa=c Segmenta=on of Pathological Glomerular Basement Membrane in Transmission Electron Microscopy Images with Random Forest Stacks. Computa4onal and mathema4cal methods in medicine. 2019;2019:1684218.

786. Kooman JP, Usvyat LA, Dekker MJE, et al. Cycles, Arrows and Turbulence: Time Pa+erns in Renal Disease, a Path from Epidemiology to Personalized Medicine? Blood Purif. 2019;47(1-3):171-184.

787. Lemley KV. Machine Learning Comes to Nephrology. J Am Soc Nephrol. 2019;30(10):1780-1781.

788. Lorenzo AJ, Rickard M, Braga LH, Guo Y, Oliveria JP. Predic=ve Analy=cs and Modeling Employing Machine Learning Technology: The Next Step in Data Sharing, Analysis, and Individualized Counseling Explored With a Large, Prospec=ve Prenatal Hydronephrosis Database. Urology. 2019;123:204-209.

789. Mark E, Goldsman D, Gurbaxani B, Keskinocak P, Sokol J. Using machine learning and an ensemble of methods to predict kidney transplant survival. PloS one. 2019;14(1):e0209068.

790. Molitoris BA. Beyond Biomarkers: Machine Learning in Diagnosing Acute Kidney Injury. Mayo Clin Proc. 2019;94(5):748-750.

791. Nursetyo AA, Syed-Abdul S, Uddin M, Li YJ. Grak Rejec=on Predic=on Following Kidney Transplanta=on Using Machine Learning Techniques: A Systema=c Review and Meta-Analysis. Studies in health technology and informa4cs. 2019;264:10-14.

792. Parreco J, Soe-Lin H, Parks JJ, et al. Comparing Machine Learning Algorithms for Predic=ng Acute Kidney Injury. Am Surg. 2019;85(7):725-729.

793. Putra FR, Nursetyo AA, Thakur SS, et al. Predic=on of Clinical Events in Hemodialysis Pa=ents Using an Ar=ficial Neural Network. Studies in health technology and informa4cs. 2019;264:1570-1571.

794. Ren Y, Fei H, Liang X, Ji D, Cheng M. A hybrid neural network model for predic=ng kidney disease in hypertension pa=ents based on electronic health records. BMC Med Inform Decis Mak. 2019;19(Suppl 2):51.

795. Song X, Waitman LR, Hu Y, Yu ASL, Robins D, Liu M. Robust clinical marker iden=fica=on for diabe=c kidney disease with ensemble feature selec=on. J Am Med Inform Assoc. 2019;26(3):242-253.

Page 68: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

796. Yamasaki Y, Sugiyama O, Hiragi S, et al. Early Nephrosis Detec=on Based on Deep Learning with Clinical Time-Series Data. Studies in health technology and informa4cs. 2019;264:1596-1597.

797. Abbas MK, Raza ML, Zaidi SSH, Khan BM, Heinemann U. Seizure forecas=ng using single robust linear feature as correla=on vector of seizure-like events in brain slices prepara=on in vitro. Neurological research. 2019;41(2):99-109.

798. Ahmadi A, Davoudi S, Daliri MR. Computer Aided Diagnosis System for mul=ple sclerosis disease based on phase to amplitude coupling in covert visual a+en=on. Computer methods and programs in biomedicine. 2019;169:9-18.

799. Ahmadisoleymani SS, Missoum S. Construc=on of a risk model through the fusion of experimental data and finite element modeling: Applica=on to car crash-induced TBI. Computer methods in biomechanics and biomedical engineering. 2019;22(6):605-619.

800. Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and Machine Learning for Demen=a Diagnosis: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng. 2019;12:19-33.

801. Ahmedt-Aris=zabal D, Fookes C, Denman S, Nguyen K, Sridharan S, Dionisio S. Aberrant epilep=c seizure iden=fica=on: A computer vision perspec=ve. Seizure. 2019;65:65-71.

802. Aldana YR, Hunyadi B, Reyes EJM, Rodriguez VR, Van Huffel S. Nonconvulsive Epilep=c Seizure Detec=on in Scalp EEG Using Mul=way Data Analysis. IEEE journal of biomedical and health informa4cs. 2019;23(2):660-671.

803. Alvarez JD, Ma=as-Guiu JA, Cabrera-Mar=n MN, Risco-Mar=n JL, Ayala JL. An applica=on of machine learning with feature selec=on to improve diagnosis and classifica=on of neurodegenera=ve disorders. BMC bioinforma4cs. 2019;20(1):491.

804. Amengual-Gual M, Ulate-Campos A, Loddenkemper T. Status epilep=cus preven=on, ambulatory monitoring, early seizure detec=on and predic=on in at-risk pa=ents. Seizure. 2019;68:31-37.

805. Arevalillo-Herraez M, Cobos M, Roger S, Garcia-Pineda M. Combining Inter-Subject Modeling with a Subject-Based Data Transforma=on to Improve Affect Recogni=on from EEG Signals. Sensors (Basel, Switzerland). 2019;19(13).

806. Athif M, Ren H. WaveCSP: a robust motor imagery classifier for consumer EEG devices. Australasian physical & engineering sciences in medicine. 2019;42(1):159-168.

807. Bacchi S, Oakden-Rayner L, Zerner T, Kleinig T, Patel S, Jannes J. Deep Learning Natural Language Processing Successfully Predicts the Cerebrovascular Cause of Transient Ischemic A+ack-Like Presenta=ons. Stroke. 2019;50(3):758-760.

808. Birchmeier ME, Studer T. Automated Ra=ng of Mul=ple Sclerosis Test Results Using a Convolu=onal Neural Network. Studies in health technology and informa4cs. 2019;259:105-108.

809. Bonanni L. The democra=c aspect of machine learning: Limita=ons and opportuni=es for Parkinson's disease. Mov Disord. 2019;34(2):164-166.

810. Claassen J, Doyle K, Matory A, et al. Detec=on of Brain Ac=va=on in Unresponsive Pa=ents with Acute Brain Injury. The New England journal of medicine. 2019;380(26):2497-2505.

Page 69: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

811. Donini M, Monteiro JM, Pon=l M, et al. Combining heterogeneous data sources for neuroimaging based diagnosis: re-weigh=ng and selec=ng what is important. NeuroImage. 2019;195:215-231.

812. Garg R, Oh E, Naidech A, Kording K, Prabhakaran S. Automa=ng Ischemic Stroke Subtype Classifica=on Using Machine Learning and Natural Language Processing. Journal of stroke and cerebrovascular diseases : the official journal of Na4onal Stroke Associa4on. 2019;28(7):2045-2051.

813. Ha KW, Jeong JW. Motor Imagery EEG Classifica=on Using Capsule Networks. Sensors (Basel, Switzerland). 2019;19(13).

814. Hua C, Wang H, Wang H, Lu S, Liu C, Khalid SM. A Novel Method of Building Func=onal Brain Network Using Deep Learning Algorithm with Applica=on in Proficiency Detec=on. Interna4onal journal of neural systems. 2019;29(1):1850015.

815. Hussein R, Palangi H, Ward RK, Wang ZJ. Op=mized deep neural network architecture for robust detec=on of epilep=c seizures using EEG signals. Clin Neurophysiol. 2019;130(1):25-37.

816. Hwang G, Nair VA, Mathis J, et al. Using Low-Frequency Oscilla=ons to Detect Temporal Lobe Epilepsy with Machine Learning. Brain Connect. 2019;9(2):184-193.

817. Jin L, Zeng Q, He J, Feng Y, Zhou S, Wu Y. A ReliefF-SVM-based method for marking dopamine-based disease characteris=cs: A study on SWEDD and Parkinson's disease. Behavioural brain research. 2019;356:400-407.

818. Ju R, Hu C, Zhou P, Li Q. Early Diagnosis of Alzheimer's Disease Based on Res=ng-State Brain Networks and Deep Learning. IEEE/ACM transac4ons on computa4onal biology and bioinforma4cs. 2019;16(1):244-257.

819. Khoury N, A+al F, Amirat Y, Oukhellou L, Mohammed S. Data-Driven Based Approach to Aid Parkinson's Disease Diagnosis. Sensors (Basel, Switzerland). 2019;19(2).

820. Kim HJ, Park JY, Seo SW, et al. Cor=cal atrophy pa+ern-based subtyping predicts prognosis of amnes=c MCI: an individual-level analysis. Neurobiol Aging. 2019;74:38-45.

821. Lei B, Hou W, Zou W, Li X, Zhang C, Wang T. Longitudinal score predic=on for Alzheimer's disease based on ensemble correntropy and spa=al-temporal constraint. Brain Imaging Behav. 2019;13(1):126-137.

822. Li K, Vakharia VN, Sparks R, et al. Op=mizing Trajectories for Cranial Laser Inters==al Thermal Therapy Using Computer-Assisted Planning: A Machine Learning Approach. Neurotherapeu4cs. 2019;16(1):182-191.

823. Lisowska A, Rekik I. Joint Pairing and Structured Mapping of Convolu=onal Brain Morphological Mul=plexes for Early Demen=a Diagnosis. Brain Connect. 2019;9(1):22-36.

824. Liu X, Cao P, Wang J, Kong J, Zhao D. Fused Group Lasso Regularized Mul=-Task Feature Learning and Its Applica=on to the Cogni=ve Performance Predic=on of Alzheimer's Disease. Neuroinforma4cs. 2019;17(2):271-294.

825. Mahmoodian N, Boese A, Friebe M, Haddadnia J. Epilep=c seizure detec=on using cross-bispectrum of electroencephalogram signal. Seizure. 2019;66:4-11.

Page 70: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

826. Mehdipour Ghazi M, Nielsen M, Pai A, et al. Training recurrent neural networks robust to incomplete data: Applica=on to Alzheimer's disease progression modeling. Medical image analysis. 2019;53:39-46.

827. Meisel C, Bailey KA. Iden=fying signal-dependent informa=on about the preictal state: A comparison across ECoG, EEG and EKG using deep learning. EBioMedicine. 2019;45:422-431.

828. Mohanty R, Nair VA, Tellapragada N, Williams LM, Jr., Kang TJ, Prabhakaran V. Iden=fica=on of Subclinical Language Deficit Using Machine Learning Classifica=on Based on Poststroke Func=onal Connec=vity Derived from Low Frequency Oscilla=ons. Brain Connect. 2019;9(2):194-208.

829. Moore PJ, Lyons TJ, Gallacher J. Random forest predic=on of Alzheimer's disease using pairwise selec=on from =me series data. PloS one. 2019;14(2):e0211558.

830. Munsell BC, Wu G, Fridriksson J, et al. Rela=onship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning. Brain Lang. 2019;193:45-57.

831. Naeem J, Hamzaid NA, Islam MA, Azman AW, Bijak M. Mechanomyography-based muscle fa=gue detec=on during electrically elicited cycling in pa=ents with spinal cord injury. Medical & biological engineering & compu4ng. 2019;57(6):1199-1211.

832. Nejedly P, Cimbalnik J, Klimes P, et al. Intracerebral EEG Ar=fact Iden=fica=on Using Convolu=onal Neural Networks. Neuroinforma4cs. 2019;17(2):225-234.

833. Nicastro N, Wegrzyk J, Pre= MG, et al. Classifica=on of degenera=ve parkinsonism subtypes by support-vector-machine analysis and striatal (123)I-FP-CIT indices. Journal of neurology. 2019;266(7):1771-1781.

834. Nodera H, Osaki Y, Yamazaki H, Mori A, Izumi Y, Kaji R. Classifica=on of needle-EMG res=ng poten=als by machine learning. Muscle Nerve. 2019;59(2):224-228.

835. O KF, R R. Time-domain exponen=al energy for epilep=c EEG signal classifica=on. Neurosci Led. 2019;694:1-8.

836. Pal P, Theisen DL, Datko M, et al. From research to clinic: A sensor reduc=on method for high-density EEG neurofeedback systems. Clin Neurophysiol. 2019;130(3):352-358.

837. Park CH, Ohn SH. A challenge of predic=ng seizure frequency in temporal lobe epilepsy using neuroanatomical features. Neurosci Led. 2019;692:115-121.

838. Park S, Megjhani M, Frey HP, et al. Predic=ng delayed cerebral ischemia aker subarachnoid hemorrhage using physiological =me series data. J Clin Monit Comput. 2019;33(1):95-105.

839. Pena-Bau=sta C, Durand T, Oger C, Baquero M, Vento M, Chafer-Pericas C. Assessment of lipid peroxida=on and ar=ficial neural network models in early Alzheimer Disease diagnosis. Clin Biochem. 2019;72:64-70.

840. Porat Rein A, Kramer U, Mitelpunkt A. Development of Ontology for Self-limited Epilepsy with Centrotemporal Spikes and Applica=on of Data Mining Algorithms to Iden=fy New Subtypes. Isr Med Assoc J. 2019;21(7):503.

841. Ramos LA, van der Steen WE, Sales Barros R, et al. Machine learning improves predic=on of delayed cerebral ischemia in pa=ents with subarachnoid hemorrhage. Journal of neurointerven4onal surgery. 2019;11(5):497-502.

Page 71: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

842. Rubbert C, Mathys C, Jockwitz C, et al. Machine-learning iden=fies Parkinson's disease pa=ents based on res=ng-state between-network func=onal connec=vity. The Bri4sh journal of radiology. 2019;92(1101):20180886.

843. Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Japanese journal of radiology. 2019;37(1):34-72.

844. She Q, Hu B, Luo Z, Nguyen T, Zhang Y. A hierarchical semi-supervised extreme learning machine method for EEG recogni=on. Medical & biological engineering & compu4ng. 2019;57(1):147-157.

845. Singh G, Singh B, Kaur M. Grasshopper op=miza=on algorithm-based approach for the op=miza=on of ensemble classifier and feature selec=on to classify epilep=c EEG signals. Medical & biological engineering & compu4ng. 2019;57(6):1323-1339.

846. Sridevi V, Ramasubba Reddy M, Srinivasan K, Radhakrishnan K, Rathore C, Nayak DS. Improved Pa=ent-Independent System for Detec=on of Electrical Onset of Seizures. J Clin Neurophysiol. 2019;36(1):14-24.

847. Swietlik D, Bialowas J. Applica=on of Ar=ficial Neural Networks to Iden=fy Alzheimer's Disease Using Cerebral Perfusion SPECT Data. Interna4onal journal of environmental research and public health. 2019;16(7).

848. Tayeb Z, Fedjaev J, Ghaboosi N, et al. Valida=ng Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Sensors (Basel, Switzerland). 2019;19(1).

849. Tulay EE, Me=n B, Tarhan N, Arikan MK. Mul=modal Neuroimaging: Basic Concepts and Classifica=on of Neuropsychiatric Diseases. Clin EEG Neurosci. 2019;50(1):20-33.

850. Ugur TK, Erdamar A. An efficient automa=c arousals detec=on algorithm in single channel EEG. Computer methods and programs in biomedicine. 2019;173:131-138.

851. van Leeuwen KG, Sun H, Tabaeizadeh M, Struck AF, van Pu+en M, Westover MB. Detec=ng abnormal electroencephalograms using deep convolu=onal networks. Clin Neurophysiol. 2019;130(1):77-84.

852. Villalba-Diez J, Zheng X, Schmidt D, Molina M. Characteriza=on of Industry 4.0 Lean Management Problem-Solving Behavioral Pa+erns Using EEG Sensors and Deep Learning. Sensors (Basel, Switzerland). 2019;19(13).

853. Vimala V, Ramar K, E+appan M. An Intelligent Sleep Apnea Classifica=on System Based on EEG Signals. Journal of medical systems. 2019;43(2):36.

854. Visscher RMS, Feddermann-Demont N, Romano F, Straumann D, Bertolini G. Ar=ficial intelligence for understanding concussion: Retrospec=ve cluster analysis on the balance and ves=bular diagnos=c data of concussion pa=ents. PloS one. 2019;14(4):e0214525.

855. Vivar G, Almanza-Ojeda DL, Cheng I, Gomez JC, Andrade-Lucio JA, Ibarra-Manzano MA. Contrast and Homogeneity Feature Analysis for Classifying Tremor Levels in Parkinson's Disease Pa=ents. Sensors (Basel, Switzerland). 2019;19(9).

856. Wan KR, Maszczyk T, See AAQ, Dauwels J, King NKK. A review on microelectrode recording selec=on of features for machine learning in deep brain s=mula=on surgery for Parkinson's disease. Clin Neurophysiol. 2019;130(1):145-154.

857. Wang N, Chen J, Xiao H, Wu L, Jiang H, Zhou Y. Applica=on of ar=ficial neural network model in diagnosis of Alzheimer's disease. BMC neurology. 2019;19(1):154.

Page 72: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

858. Wang X, Gong G, Li N. Automated Recogni=on of Epilep=c EEG States Using a Combina=on of Symlet Wavelet Processing, Gradient Boos=ng Machine, and Grid Search Op=mizer. Sensors (Basel, Switzerland). 2019;19(2).

859. Waser M, Benke T, Dal-Bianco P, et al. Neuroimaging markers of global cogni=on in early Alzheimer's disease: A magne=c resonance imaging-electroencephalography study. Brain Behav. 2019;9(1):e01197.

860. Xie L, Deng Z, Xu P, Choi KS, Wang S. Generalized Hidden-Mapping Transduc=ve Transfer Learning for Recogni=on of Epilep=c Electroencephalogram Signals. IEEE Trans Cybern. 2019;49(6):2200-2214.

861. Xie Y, Jiang B, Gong E, et al. JOURNAL CLUB: Use of Gradient Boos=ng Machine Learning to Predict Pa=ent Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Informa=on. AJR Am J Roentgenol. 2019;212(1):44-51.

862. Yang W, Si Y, Wang D, Zhang G. A Novel Approach for Mul=-Lead ECG Classifica=on Using DL-CCANet and TL-CCANet. Sensors (Basel, Switzerland). 2019;19(14).

863. Yuan Y, Xun G, Jia K, Zhang A. A Mul=-View Deep Learning Framework for EEG Seizure Detec=on. IEEE journal of biomedical and health informa4cs. 2019;23(1):83-94.

864. Zeng W, Yuan C, Wang Q, Liu F, Wang Y. Classifica=on of gait pa+erns between pa=ents with Parkinson's disease and healthy controls using phase space reconstruc=on (PSR), empirical mode decomposi=on (EMD) and neural networks. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;111:64-76.

865. Zhang H, Alberts E, Pongratz V, et al. Predic=ng conversion from clinically isolated syndrome to mul=ple sclerosis-An imaging-based machine learning approach. Neuroimage Clin. 2019;21:101593.

866. Bacak HO, Leblebicioglu K, Tanacan A, Beksac MS. Computerized hybrid decision-making system for hormone replacement therapy in menopausal women. Technology and health care : official journal of the European Society for Engineering and Medicine. 2019;27(1):49-59.

867. Bahado-Singh RO, Yilmaz A, Bisgin H, et al. Ar=ficial intelligence and the analysis of mul=-plarorm metabolomics data for the detec=on of intrauterine growth restric=on. PloS one. 2019;14(4):e0214121.

868. Be+s KS, Kisely S, Ala= R. Predic=ng common maternal postpartum complica=ons: leveraging health administra=ve data and machine learning. Bjog. 2019;126(6):702-709.

869. Blank C, Wildeboer RR, DeCroo I, et al. Predic=on of implanta=on aker blastocyst transfer in in vitro fer=liza=on: a machine-learning perspec=ve. Fer4l Steril. 2019;111(2):318-326.

870. Chen L, Hao Y, Hu X. Detec=on of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder. PloS one. 2019;14(4):e0214712.

871. Chen T, Mu J, Xue Q, et al. Whole-brain structural magne=c resonance imaging-based classifica=on of primary dysmenorrhea in pain-free phase: a machine learning study. Pain. 2019;160(3):734-741.

872. Chu KY, Nassau DE, Arora H, Lokeshwar SD, Madhusoodanan V, Ramasamy R. Ar=ficial Intelligence in Reproduc=ve Urology. Curr Urol Rep. 2019;20(9):52.

Page 73: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

873. Curchoe CL, Bormann CL. Ar=ficial intelligence and machine learning for human reproduc=on and embryology presented at ASRM and ESHRE 2018. Journal of assisted reproduc4on and gene4cs. 2019;36(4):591-600.

874. de l'Espinay A, Sauvage C, Buronfosse A, Billuart O, Lajonchere JP, Azria E. Machine learning to an=cipate delivery room ac=vity? J Gynecol Obstet Hum Reprod. 2019;48(3):141-142.

875. De Ramon Fernandez A, Ruiz Fernandez D, Prieto Sanchez MT. A decision support system for predic=ng the treatment of ectopic pregnancies. Int J Med Inform. 2019;129:198-204.

876. Gao C, Osmundson S, Yan X, Edwards DV, Malin BA, Chen Y. Learning to Iden=fy Severe Maternal Morbidity from Electronic Health Records. Studies in health technology and informa4cs. 2019;264:143-147.

877. Lee KS, Ahn KH. Ar=ficial Neural Network Analysis of Spontaneous Preterm Labor and Birth and Its Major Determinants. J Korean Med Sci. 2019;34(16):e128.

878. Pla+ RW, Grandi SM. Machine learning for the predic=on of postpartum complica=ons is promising, but needs rigorous evalua=on. Bjog. 2019;126(6):710.

879. Ri+enhouse KJ, Vwalika B, Keil A, et al. Improving preterm newborn iden=fica=on in low-resource seSngs with machine learning. PloS one. 2019;14(2):e0198919.

880. Sadda P, Imamoglu M, Dombrowski M, Papademetris X, Bah=yar MO, Onofrey J. Deep-learned placental vessel segmenta=on for intraopera=ve video enhancement in fetoscopic surgery. Interna4onal journal of computer assisted radiology and surgery. 2019;14(2):227-235.

881. Sridar P, Kumar A, Quinton A, Nanan R, Kim J, Krishnakumar R. Decision Fusion-Based Fetal Ultrasound Image Plane Classifica=on Using Convolu=onal Neural Networks. Ultrasound in medicine & biology. 2019;45(5):1259-1273.

882. van den Heuvel TLA, Petros H, San=ni S, de Korte CL, van Ginneken B. Automated Fetal Head Detec=on and Circumference Es=ma=on from Free-Hand Ultrasound Sweeps Using Deep Learning in Resource-Limited Countries. Ultrasound in medicine & biology. 2019;45(3):773-785.

883. Vogiatzi P, Pouliakis A, Sirista=dis C. An ar=ficial neural network for the predic=on of assisted reproduc=on outcome. Journal of assisted reproduc4on and gene4cs. 2019;36(7):1441-1448.

884. Wang S, Pathak J, Zhang Y. Using Electronic Health Records and Machine Learning to Predict Postpartum Depression. Studies in health technology and informa4cs. 2019;264:888-892.

885. Yang X, Yu L, Li S, et al. Towards Automated Seman=c Segmenta=on in Prenatal Volumetric Ultrasound. IEEE transac4ons on medical imaging. 2019;38(1):180-193.

886. Zaninovic N, Elemento O, Rosenwaks Z. Ar=ficial intelligence: its applica=ons in reproduc=ve medicine and the assisted reproduc=ve technologies. Fer4l Steril. 2019;112(1):28-30.

887. Zhong QY, Mi+al LP, Nathan MD, et al. Use of natural language processing in electronic medical records to iden=fy pregnant women with suicidal behavior: towards a solu=on to the complex classifica=on problem. Eur J Epidemiol. 2019;34(2):153-162.

Page 74: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

888. What to expect from AI in oncology. Nat Rev Clin Oncol. 2019;16(11):655. 889. Machine learning in cancer diagnos=cs. EBioMedicine. 2019;45:1-2. 890. Abdelhafiz D, Yang C, Ammar R, Nabavi S. Deep convolu=onal neural networks for

mammography: advances, challenges and applica=ons. BMC bioinforma4cs. 2019;20(Suppl 11):281.

891. Alabi RO, Elmusra= M, Sawazaki-Calone I, et al. Machine learning applica=on for predic=on of locoregional recurrences in early oral tongue cancer: a Web-based prognos=c tool. Virchows Arch. 2019;475(4):489-497.

892. Arasi PRE, Suganthi M. A Clinical Support System for Brain Tumor Classifica=on Using Sok Compu=ng Techniques. Journal of medical systems. 2019;43(5):144.

893. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with ar=ficial intelligence for precision medicine in radia=on therapy. Journal of radia4on research. 2019;60(1):150-157.

894. Avanzo M, Pirrone G, Mileto M, et al. Predic=on of skin dose in low-kV intraopera=ve radiotherapy using machine learning models trained on results of in vivo dosimetry. Medical physics. 2019;46(3):1447-1454.

895. Balkenhol MCA, Bult P, Tellez D, et al. Deep learning and manual assessment show that the absolute mito=c count does not contain prognos=c informa=on in triple nega=ve breast cancer. Cell Oncol (Dordr). 2019;42(4):555-569.

896. Bloomingdale P, Mager DE. Machine Learning Models for the Predic=on of Chemotherapy-Induced Peripheral Neuropathy. Pharm Res. 2019;36(2):35.

897. Bogani G, Di+o A, Mar=nelli F, et al. Ar=ficial intelligence es=mates the impact of human papillomavirus types in influencing the risk of cervical dysplasia recurrence: progress toward a more personalized approach. Eur J Cancer Prev. 2019;28(2):81-86.

898. Brock KK. Adap=ve Radiotherapy: Moving Into the Future. Semin Radiat Oncol. 2019;29(3):181-184.

899. Cain EH, Saha A, Harowicz MR, Marks JR, Marcom PK, Mazurowski MA. Mul=variate machine learning models for predic=on of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent valida=on set. Breast Cancer Res Treat. 2019;173(2):455-463.

900. Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in Auto-Segmenta=on. Semin Radiat Oncol. 2019;29(3):185-197.

901. Chambers DA, Amir E, Saleh RR, et al. The Impact of Big Data Research on Prac=ce, Policy, and Cancer Care. Am Soc Clin Oncol Educ Book. 2019;39:e167-e175.

902. Chang Z. Will AI Improve Tumor Delinea=on Accuracy for Radia=on Therapy? Radiology. 2019;291(3):687-688.

903. Chen H, Gao M, Zhang Y, Liang W, Zou X. A+en=on-Based Mul=-NMF Deep Neural Network with Mul=modality Data for Breast Cancer Prognosis Model. BioMed research interna4onal. 2019;2019:9523719.

904. Chen PC, Gadepalli K, MacDonald R, et al. An augmented reality microscope with real-=me ar=ficial intell igence integra=on for cancer diagnosis. Nat Med. 2019;25(9):1453-1457.

Page 75: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

905. Chen T, Liu S, Li Y, et al. Developed and validated a prognos=c nomogram for recurrence-free survival aker complete surgical resec=on of local primary gastrointes=nal stromal tumors based on deep learning. EBioMedicine. 2019;39:272-279.

906. Chen X, Men K, Li Y, Yi J, Dai J. A feasibility study on an automated method to generate pa=ent-specific dose distribu=ons for radiotherapy using deep learning. Medical physics. 2019;46(1):56-64.

907. Dihge L, Ohlsson M, Eden P, Bendahl PO, Ryden L. Ar=ficial neural network models to predict nodal status in clinically node-nega=ve breast cancer. BMC cancer. 2019;19(1):610.

908. Do NV, Ramos JC, Fillmore NR, et al. Machine Learning Methods to Predict Lung Cancer Survival Using the Veterans Affairs Research Precision Oncology Data Commons. Studies in health technology and informa4cs. 2019;264:1453.

909. El Naqa I, Irrer J, Ri+er TA, et al. Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data descrip=on. Medical physics. 2019;46(4):1914-1921.

910. Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automa=c treatment planning based on three-dimensional dose distribu=on predicted from deep learning technique. Medical physics. 2019;46(1):370-381.

911. Ganggayah MD, Taib NA, Har YC, Lio P, Dhillon SK. Predic=ng factors for survival of breast cancer pa=ents using machine learning techniques. BMC Med Inform Decis Mak. 2019;19(1):48.

912. Ge Y, Wu QJ. Knowledge-based planning for intensity-modulated radia=on therapy: A review of data-driven approaches. Medical physics. 2019;46(6):2760-2775.

913. Hanson HA, Mar=n C, O'Neil B, et al. The Rela=ve Importance of Race Compared to Health Care and Social Factors in Predic=ng Prostate Cancer Mortality: A Random Forest Approach. J Urol. 2019;202(6):1209-1216.

914. Hasnain Z, Mason J, Gill K, et al. Machine learning models for predic=ng post-cystectomy recurrence and survival in bladder cancer pa=ents. PloS one. 2019;14(2):e0210976.

915. Houssami N, Kirkpatrick-Jones G, Noguchi N, Lee CI. Ar=ficial Intelligence (AI) for the early detec=on of breast cancer: a scoping review to assess AI's poten=al in breast screening prac=ce. Expert review of medical devices. 2019;16(5):351-362.

916. Jacobs C, van Ginneken B. Google's lung cancer AI: a promising tool that needs further valida=on. Nat Rev Clin Oncol. 2019;16(9):532-533.

917. Jang BS, Chang JH, Park AJ, Wu HG. Genera=on of virtual lung single-photon emission computed tomography/CT fusion images for func=onal avoidance radiotherapy planning using machine learning algorithms. J Med Imaging Radiat Oncol. 2019;63(2):229-235.

918. Jarre+ D, Stride E, Vallis K, Gooding MJ. Applica=ons and limita=ons of machine learning in radia=on oncology. The Bri4sh journal of radiology. 2019;92(1100):20190001.

919. Jiang N, Xu X. Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using ar=ficial neural network. Medicine. 2019;98(20):e15642.

Page 76: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

920. Kaderka R, Mundt RC, Li N, et al. Automated Closed- and Open-Loop Valida=on of Knowledge-Based Planning Rou=nes Across Mul=ple Disease Sites. Prac4cal radia4on oncology. 2019;9(4):257-265.

921. Kar S, Majumder DD. A Novel Approach of Mathema=cal Theory of Shape and Neuro-Fuzzy Based Diagnos=c Analysis of Cervical Cancer. Pathol Oncol Res. 2019;25(2):777-790.

922. Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointes=nal cancer. Nat Med. 2019;25(7):1054-1056.

923. Khor RC, Nguyen A, O'Dwyer J, et al. Extrac=ng tumour prognos=c factors from a diverse electronic record dataset in genito-urinary oncology. Int J Med Inform. 2019;121:53-57.

924. Kim EJ, Woo HS, Cho JH, et al. Early experience with Watson for oncology in Korean pa=ents with colorectal cancer. PloS one. 2019;14(3):e0213640.

925. Kim I, Choi HJ, Ryu JM, et al. A predic=ve model for high/low risk group according to oncotype DX recurrence score using machine learning. Eur J Surg Oncol. 2019;45(2):134-140.

926. Kleinlein R, Riano D. Persistence of data-driven knowledge to predict breast cancer survival. Int J Med Inform. 2019;129:303-311.

927. Korn RL, Rahmanuddin S, Borazanci E. Use of Precision Imaging in the Evalua=on of Pancreas Cancer. Cancer Treat Res. 2019;178:209-236.

928. Kudo Y. Predic=ng cancer outcome: Ar=ficial intelligence vs. pathologists. Oral diseases. 2019;25(3):643-645.

929. Kumar SS, Awan KH, Pa=l S, Sk IB, Raj AT. Poten=al Role of Machine Learning in Oncology. J Contemp Dent Pract. 2019;20(5):529-530.

930. Leatherdale ST, Lee J. Ar=ficial intelligence (AI) and cancer preven=on: the poten=al applica=on of AI in cancer control programming needs to be explored in popula=on laboratories such as COMPASS. Cancer Causes Control. 2019;30(7):671-675.

931. Lei Y, Tang X, Higgins K, et al. Learning-based CBCT correc=on using alterna=ng random forest based on auto-context model. Medical physics. 2019;46(2):601-618.

932. Lenain R, Seneviratne MG, Bozkurt S, Blayney DW, Brooks JD, Hernandez-Boussard T. Machine Learning Approaches for Extrac=ng Stage from Pathology Reports in Prostate Cancer. Studies in health technology and informa4cs. 2019;264:1522-1523.

933. Leng X, Fang P, Lin H, et al. Applica=on of a machine learning method to whole brain white ma+er injury aker radiotherapy for nasopharyngeal carcinoma. Cancer Imaging. 2019;19(1):19.

934. Letzen B, Wang CJ, Chapiro J. The Role of Ar=ficial Intelligence in Interven=onal Oncology: A Primer. Journal of vascular and interven4onal radiology : JVIR. 2019;30(1):38-41.e31.

935. Liang R, Xie J, Zhang C, et al. Iden=fying Cancer Targets Based on Machine Learning Methods via Chou's 5-steps Rule and General Pseudo Components. Current topics in medicinal chemistry. 2019;19(25):2301-2317.

Page 77: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

936. Liang S, Tang F, Huang X, et al. Deep-learning-based detec=on and segmenta=on of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. European radiology. 2019;29(4):1961-1967.

937. Lindsay WD, Ahern CA, Tobias JS, et al. Automated data extrac=on and ensemble methods for predic=ve modeling of breast cancer outcomes aker radia=on therapy. Medical physics. 2019;46(2):1054-1063.

938. Liu C, Huang Y, Ozolek JA, Hanna MG, Singh R, Rohde GK. SetSVM: An Approach to Set Classifica=on in Nuclei-Based Cancer Detec=on. IEEE journal of biomedical and health informa4cs. 2019;23(1):351-361.

939. Liu F, Yadav P, Baschnagel AM, McMillan AB. MR-based treatment planning in radia=on therapy using a deep learning approach. Journal of applied clinical medical physics. 2019;20(3):105-114.

940. Liu P, Li H, Li S, Leung KS. Improving predic=on of phenotypic drug response on cancer cell lines using deep convolu=onal network. BMC bioinforma4cs. 2019;20(1):408.

941. Liu S, Zhang F, Xie L, et al. Machine learning approaches for risk assessment of peripherally inserted Central catheter-related vein thrombosis in hospitalized pa=ents with cancer. Int J Med Inform. 2019;129:175-183.

942. Liu Z, Fan J, Li M, et al. A deep learning method for predic=on of three-dimensional dose distribu=on of helical tomotherapy. Medical physics. 2019;46(5):1972-1983.

943. Londhe VY, Bhasin B. Ar=ficial intelligence and its poten=al in oncology. Drug discovery today. 2019;24(1):228-232.

944. Low SK, Nakamura Y. The road map of cancer precision medicine with the innova=on of advanced cancer detec=on technology and personalized immunotherapy. Jpn J Clin Oncol. 2019;49(7):596-603.

945. Lu H, Arshad M, Thornton A, et al. A mathema=cal-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognos=c- and molecular-phenotypes of epithelial ovarian cancer. Nature communica4ons. 2019;10(1):764.

946. Luk SMH, Meyer J, Young LA, et al. Characteriza=on of a Bayesian network-based radiotherapy plan verifica=on model. Medical physics. 2019;46(5):2006-2014.

947. Ma Z, Zhou S, Wu X, et al. Nasopharyngeal carcinoma segmenta=on based on enhanced convolu=onal neural networks using mul=-modal metric learning. Phys Med Biol. 2019;64(2):025005.

948. Mahdavi SR, Tavakol A, Sanei M, et al. Use of ar=ficial neural network for pretreatment verifica=on of intensity modula=on radia=on therapy fields. The Bri4sh journal of radiology. 2019;92(1102):20190355.

949. Malathi M, Sinthia P, Jalaldeen K. Ac=ve Contour Based Segmenta=on and Classifica=on for Pleura Diseases Based on Otsu's Thresholding and Support Vector Machine (SVM). Asian Pacific journal of cancer preven4on : APJCP. 2019;20(1):167-173.

950. Malyu=na A, Majumder MM, Wang W, Pessia A, Heckman CA, Tang J. Drug combina=on sensi=vity scoring facilitates the discovery of synergis=c and efficacious drug combina=ons in cancer. PLoS computa4onal biology. 2019;15(5):e1006752.

Page 78: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

951. Matsuo K, Purushotham S, Jiang B, et al. Survival outcome predic=on in cervical cancer: Cox models vs deep-learning model. American journal of obstetrics and gynecology. 2019;220(4):381.e381-381.e314.

952. Men K, Boimel P, Janopaul-Naylor J, et al. A study of posi=oning orienta=on effect on segmenta=on accuracy using convolu=onal neural networks for rectal cancer. Journal of applied clinical medical physics. 2019;20(1):110-117.

953. Nie K, Al-Hallaq H, Li XA, et al. NCTN Assessment on Current Applica=ons of Radiomics in Oncology. Interna4onal journal of radia4on oncology, biology, physics. 2019;104(2):302-315.

954. Nowak-Sliwinska P, Scapozza L, Ruiz IAA. Drug repurposing in oncology: Compounds, pathways, phenotypes and computa=onal approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(2):434-454.

955. Qu K, Gao F, Guo F, Zou Q. Taxonomy dimension reduc=on for colorectal cancer predic=on. Computa4onal biology and chemistry. 2019;83:107160.

956. R D, P R. An Op=mized HCC Recurrence Predic=on Using APO Algorithm Mul=ple Time Series Clinical Liver Cancer Dataset. Journal of medical systems. 2019;43(7):193.

957. R K, R GR. Accuracy Enhanced Lung Cancer Prognosis for Improving Pa=ent Survivability Using Proposed Gaussian Classifier System. Journal of medical systems. 2019;43(7):201.

958. Rajan JR, Chelvan AC. A Data Mining Approach to Diagnose Cancer for Therapeu=c Decision Making. Altern Ther Health Med. 2019;25(S1):2-7.

959. Righi MLV, Mar=nez P, Silva A, Umpierrez C, Rodriguez R. Oncotherapy: A Decision Support System to Validate Oncological Treatments. Studies in health technology and informa4cs. 2019;264:1799-1800.

960. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S. Emerging Applica=ons of Ar=ficial Intelligence in Neuro-Oncology. Radiology. 2019;290(3):607-618.

961. Ruffalo M, Thomas R, Chen J, Lee AV, Oesterreich S, Bar-Joseph Z. Network-guided predic=on of aromatase inhibitor response in breast cancer. PLoS computa4onal biology. 2019;15(2):e1006730.

962. Seroussi B, Prebet C, Ngo C, Teixeira L, Guezennec G, Bouaud J. Using the Recommenda=ons Inferred by a Decision Support System to Compare Breast Cancer Clinical Prac=ce Guidelines. Studies in health technology and informa4cs. 2019;258:60-64.

963. Shayesteh SP, Alikhassi A, Fard Esfahani A, et al. Neo-adjuvant chemoradiotherapy response predic=on using MRI based ensemble learning method in rectal cancer pa=ents. Physica medica : PM : an interna4onal journal devoted to the applica4ons of physics to medicine and biology : official journal of the Italian Associa4on of Biomedical Physics (AIFB). 2019;62:111-119.

964. Sherin L, Sohail A, Shujaat S. Time-dependent AI-Modeling of the an=cancer efficacy of synthesized gallic acid analogues. Computa4onal biology and chemistry. 2019;79:137-146.

965. Sim JA, Yun YH. Predic=ng Disease-Free Lung Cancer Survival Using Pa=ent Reported Outcome (PRO) Measurements with Comparisons of Five Machine Learning Techniques (MLT). Studies in health technology and informa4cs. 2019;264:1588-1589.

Page 79: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

966. Sun Y, Shi H, Zhang S, et al. Accurate and rapid CT image segmenta=on of the eyes and surrounding organs for precise radiotherapy. Medical physics. 2019;46(5):2214-2222.

967. Taguchi N, Oda S, Yokota Y, et al. CT texture analysis for the predic=on of KRAS muta=on status in colorectal cancer via a machine learning approach. European journal of radiology. 2019;118:38-43.

968. Tahmassebi A, Wengert GJ, Helbich TH, et al. Impact of Machine Learning With Mul=parametric Magne=c Resonance Imaging of the Breast for Early Predic=on of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Pa=ents. Invest Radiol. 2019;54(2):110-117.

969. Tappeiner E, Proll S, Honig M, et al. Mul=-organ segmenta=on of the head and neck area: an efficient hierarchical neural networks approach. Interna4onal journal of computer assisted radiology and surgery. 2019;14(5):745-754.

970. Tseng YJ, Huang CE, Wen CN, et al. Predic=ng breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. Int J Med Inform. 2019;128:79-86.

971. Turkki R, Byckhov D, Lundin M, et al. Breast cancer outcome predic=on with tumour =ssue images and machine learning. Breast Cancer Res Treat. 2019;177(1):41-52.

972. van Rooij W, Dahele M, Ribeiro Brandao H, Delaney AR, Slotman BJ, Verbakel WF. Deep Learning-Based Delinea=on of Head and Neck Organs at Risk: Geometric and Dosimetric Evalua=on. Interna4onal journal of radia4on oncology, biology, physics. 2019;104(3):677-684.

973. Wang C, Tyagi N, Rimner A, et al. Segmen=ng lung tumors on longitudinal imaging studies via a pa=ent-specific adap=ve convolu=onal neural network. Radiother Oncol. 2019;131:101-107.

974. Wang YH, Nguyen PA, Islam MM, Li YC, Yang HC. Development of Deep Learning Algorithm for Detec=on of Colorectal Cancer in EHR Data. Studies in health technology and informa4cs. 2019;264:438-441.

975. Warner JL, Pa+ D. Cancer Informa=cs in 2018: The Mysteries of the Cancer Genome Con=nue to Unravel, Deep Learning Approaches the Clinic, and Passive Data Collec=on Demonstrates U=lity. Yearbook of medical informa4cs. 2019;28(1):236-238.

976. Wong NC, Lam C, Pa+erson L, Shayegan B. Use of machine learning to predict early biochemical recurrence aker robot-assisted prostatectomy. BJU Int. 2019;123(1):51-57.

977. Wu T, Sultan LR, Tian J, Cary TW, Sehgal CM. Machine learning for diagnos=c ultrasound of triple-nega=ve breast cancer. Breast Cancer Res Treat. 2019;173(2):365-373.

978. Yan P, Huang R, Hu P, et al. Nomograms for predic=ng the overall and cause-specific survival in pa=ents with malignant peripheral nerve sheath tumor: a popula=on-based study. J Neurooncol. 2019;143(3):495-503.

979. Yan Y, Zeng S, Wang X, Gong Z, Xu Z. A Machine Learning Algorithm for Predic=ng Therapeu=c Response to An=-PD1. Technology in cancer research & treatment. 2019;18:1533033819875766.

980. Yu J, Hu Y, Xu Y, et al. LUADpp: an effec=ve predic=on model on prognosis of lung adenocarcinomas based on soma=c muta=onal features. BMC cancer. 2019;19(1):263.

Page 80: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

981. Zhang X, Lu H, Tian Q, et al. A radiomics nomogram based on mul=parametric MRI might stra=fy glioblastoma pa=ents according to survival. European radiology. 2019;29(10):5528-5538.

982. Zhao WJ, Fu LR, Huang ZM, Zhu JQ, Ma BY. Effec=veness evalua=on of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: A systema=c review and meta-analysis. Medicine. 2019;98(32):e16379.

983. Zhao Y, Zhao L, Mao T, Zhong L. Assessment of risk based on variant pathways and establishment of an ar=ficial neural network model of thyroid cancer. BMC Med Genet. 2019;20(1):92.

984. Zhou L, Liu Y, Wang F, et al. Classifica=on analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of mul=ple tumour markers. Talanta. 2018;188:238-244.

985. Zhu J, Zhang J, Qiu B, Liu Y, Liu X, Chen L. Comparison of the automa=c segmenta=on of mul=ple organs at risk in CT images of lung cancer between deep convolu=onal neural network-based and atlas-based techniques. Acta oncologica (Stockholm, Sweden). 2019;58(2):257-264.

986. Zhuo EH, Zhang WJ, Li HJ, et al. Radiomics on mul=-modali=es MR sequences can subtype pa=ents with non-metasta=c nasopharyngeal carcinoma (NPC) into dis=nct survival subgroups. European radiology. 2019;29(10):5590-5599.

987. Zou L, Yu S, Meng T, Zhang Z, Liang X, Xie Y. A Technical Review of Convolu=onal Neural Network-Based Mammographic Breast Cancer Diagnosis. Computa4onal and mathema4cal methods in medicine. 2019;2019:6509357.

988. Ahn JM, Kim S, Ahn KS, Cho SH, Kim US. Accuracy of machine learning for differen=a=on between op=c neuropathies and pseudopapilledema. BMC ophthalmology. 2019;19(1):178.

989. Akbar S, Sharif M, Akram MU, Saba T, Mahmood T, Kolivand M. Automated techniques for blood vessels segmenta=on through fundus re=nal images: A review. Microscopy research and technique. 2019;82(2):153-170.

990. Al Hajj H, Lamard M, Conze PH, et al. CATARACTS: Challenge on automa=c tool annota=on for cataRACT surgery. Medical image analysis. 2019;52:24-41.

991. Arcadu F, Benmansour F, Maunz A, et al. Deep Learning Predicts OCT Measures of Diabe=c Macular Thickening From Color Fundus Photographs. Inves4ga4ve ophthalmology & visual science. 2019;60(4):852-857.

992. Asaoka R, Murata H, Hirasawa K, et al. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Op=cal Coherence Tomography Images. American journal of ophthalmology. 2019;198:136-145.

993. Badawi SA, Fraz MM. Mul=loss Func=on Based Deep Convolu=onal Neural Network for Segmenta=on of Re=nal Vasculature into Arterioles and Venules. BioMed research interna4onal. 2019;2019:4747230.

994. Balasubramanian K, Ananthamoorthy NP. Analysis of hybrid sta=s=cal textural and intensity features to discriminate re=nal abnormali=es through classifiers. Proceedings of the Ins4tu4on of Mechanical Engineers Part H, Journal of engineering in medicine. 2019;233(5):506-514.

Page 81: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

995. Balyen L, Peto T. Promising Ar=ficial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia-Pacific journal of ophthalmology (Philadelphia, Pa). 2019;8(3):264-272.

996. Burlina PM, Joshi N, Pacheco KD, Liu TYA, Bressler NM. Assessment of Deep Genera=ve Models for High-Resolu=on Synthe=c Re=nal Image Genera=on of Age-Related Macular Degenera=on. JAMA Ophthalmol. 2019;137(3):258-264.

997. Chowdhury AR, Cha+erjee T, Banerjee S. A Random Forest classifier-based approach in the detec=on of abnormali=es in the re=na. Medical & biological engineering & compu4ng. 2019;57(1):193-203.

998. Date RC, Jesudasen SJ, Weng CY. Applica=ons of Deep Learning and Ar=ficial Intelligence in Re=na. Int Ophthalmol Clin. 2019;59(1):39-57.

999. Diaz-Pinto A, Morales S, Naranjo V, Kohler T, Mossi JM, Navea A. CNNs for automa=c glaucoma assessment using fundus images: an extensive valida=on. Biomedical engineering online. 2019;18(1):29.

1000. Girish GN, Thakur B, Chowdhury SR, Kothari AR, Rajan J. Segmenta=on of Intra-Re=nal Cysts From Op=cal Coherence Tomography Images Using a Fully Convolu=onal Neural Network Model. IEEE journal of biomedical and health informa4cs. 2019;23(1):296-304.

1001. Gopinath K, Sivaswamy J. Segmenta=on of Re=nal Cysts From Op=cal Coherence Tomography Volumes Via Selec=ve Enhancement. IEEE journal of biomedical and health informa4cs. 2019;23(1):273-282.

1002. Guo S, Wang K, Kang H, Zhang Y, Gao Y, Li T. BTS-DSN: Deeply supervised neural network with short connec=ons for re=nal vessel segmenta=on. Int J Med Inform. 2019;126:105-113.

1003. Hassan B, Hassan T, Li B, Ahmed R, Hassan O. Deep Ensemble Learning Based Objec=ve Grading of Macular Edema by Extrac=ng Clinically Significant Findings from Fused Re=nal Imaging Modali=es. Sensors (Basel, Switzerland). 2019;19(13).

1004. Hu J, Chen Y, Zhong J, Ju R, Yi Z. Automated Analysis for Re=nopathy of Prematurity by Deep Neural Networks. IEEE transac4ons on medical imaging. 2019;38(1):269-279.

1005. Hwang DK, Hsu CC, Chang KJ, et al. Ar=ficial intelligence-based decision-making for age-related macular degenera=on. Theranos4cs. 2019;9(1):232-245.

1006. Ing E, Su W, Schonlau M, Torun N. Support Vector Machines and logis=c regression to predict temporal artery biopsy outcomes. Can J Ophthalmol. 2019;54(1):116-118.

1007. Kamarajugadda KK, Polipalli TR. Extract Features from Periocular Region to Iden=fy the Age Using Machine Learning Algorithms. Journal of medical systems. 2019;43(7):196.

1008. Kapoor R, Walters SP, Al-Aswad LA. The current state of ar=ficial intelligence in ophthalmology. Survey of ophthalmology. 2019;64(2):233-240.

1009. Kapoor R, Whigham BT, Al-Aswad LA. Ar=ficial Intelligence and Op=cal Coherence Tomography Imaging. Asia-Pacific journal of ophthalmology (Philadelphia, Pa). 2019;8(2):187-194.

1010. Keel S, Wu J, Lee PY, Scheetz J, He M. Visualizing Deep Learning Models for the Detec=on of Referable Diabe=c Re=nopathy and Glaucoma. JAMA Ophthalmol. 2019;137(3):288-292.

Page 82: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1011. Kihara Y, Heeren TFC, Lee CS, et al. Es=ma=ng Re=nal Sensi=vity Using Op=cal Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2. JAMA Netw Open. 2019;2(2):e188029.

1012. Kim MC, Okada K, Ryner AM, et al. Sensi=vity and specificity of computer vision classifica=on of eyelid photographs for programma=c trachoma assessment. PloS one. 2019;14(2):e0210463.

1013. Lauermann JL, Treder M, Alnawaiseh M, Clemens CR, Eter N, Alten F. Automated OCT angiography image quality assessment using a deep learning algorithm. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2019;257(8):1641-1648.

1014. Lavric A, Valen=n P. KeratoDetect: Keratoconus Detec=on Algorithm Using Convolu=onal Neural Networks. Computa4onal intelligence and neuroscience. 2019;2019:8162567.

1015. Li F, Chen H, Liu Z, Zhang X, Wu Z. Fully automated detec=on of re=nal disorders by image-based deep learning. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2019;257(3):495-505.

1016. Lin SR, Ladas JG, Bahadur GG, Al-Hashimi S, Pineda R. A Review of Machine Learning Techniques for Keratoconus Detec=on and Refrac=ve Surgery Screening. Semin Ophthalmol. 2019;34(4):317-326.

1017. Long S, Huang X, Chen Z, Pardhan S, Zheng D. Automa=c Detec=on of Hard Exudates in Color Re=nal Images Using Dynamic Threshold and SVM Classifica=on: Algorithm Development and Evalua=on. BioMed research interna4onal. 2019;2019:3926930.

1018. MacCormick IJC, Williams BM, Zheng Y, et al. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spa=al analysis of the whole cup to disc profile. PloS one. 2019;14(1):e0209409.

1019. Matsuba S, Tabuchi H, Ohsugi H, et al. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detec=ng age-related macular degenera=on. Int Ophthalmol. 2019;39(6):1269-1275.

1020. Mohan A, Gandhi R. Commentary: AI for an eye leaves the whole world. Indian J Ophthalmol. 2019;67(7):1011.

1021. Padhy SK, Takkar B, Chawla R, Kumar A. Ar=ficial intelligence in diabe=c re=nopathy: A natural step to the future. Indian J Ophthalmol. 2019;67(7):1004-1009.

1022. Pa=l SV. Ar=ficial intelligence in ophthalmology: Is it just hype with no substance or the real McCoy. Indian J Ophthalmol. 2019;67(7):1251-1252.

1023. Pead E, Megaw R, Cameron J, et al. Automated detec=on of age-related macular degenera=on in color fundus photography: a systema=c review. Survey of ophthalmology. 2019;64(4):498-511.

1024. Phan S, Satoh S, Yoda Y, Kashiwagi K, Oshika T. Evalua=on of deep convolu=onal neural networks for glaucoma detec=on. Japanese journal of ophthalmology. 2019;63(3):276-283.

1025. Poly TN, Islam MM, Yang HC, Nguyen PA, Wu CC, Li YJ. Ar=ficial Intelligence in Diabe=c Re=nopathy: Insights from a Meta-Analysis of Deep Learning. Studies in health technology and informa4cs. 2019;264:1556-1557.

Page 83: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1026. Raman R, Srinivasan S, Virmani S, Sivaprasad S, Rao C, Rajalakshmi R. Fundus photograph-based deep learning algorithms in detec=ng diabe=c re=nopathy. Eye (London, England). 2019;33(1):97-109.

1027. Randive SN, Senapa= RK, Rahulkar AD. A review on computer-aided recent developments for automa=c detec=on of diabe=c re=nopathy. Journal of medical engineering & technology. 2019;43(2):87-99.

1028. Rao C, Raman R. Ar=ficial intelligence applica=ons for Ophthalmology: Current status. Nepal J Ophthalmol. 2019;11(21):1-4.

1029. Reid JE, Eaton E. Ar=ficial intelligence for pediatric ophthalmology. Current opinion in ophthalmology. 2019;30(5):337-346.

1030. Rong Y, Xiang D, Zhu W, et al. Surrogate-Assisted Re=nal OCT Image Classifica=on Based on Convolu=onal Neural Networks. IEEE journal of biomedical and health informa4cs. 2019;23(1):253-263.

1031. Russakoff DB, Lamin A, Oakley JD, Dubis AM, Sivaprasad S. Deep Learning for Predic=on of AMD Progression: A Pilot Study. Inves4ga4ve ophthalmology & visual science. 2019;60(2):712-722.

1032. Shiihara H, Sakamoto T, Terasaki H, et al. Running pa+ern of choroidal vessel in en face OCT images determined by machine learning-based quan=ta=ve method. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2019;257(9):1879-1887.

1033. Smits DJ, Elze T, Wang H, Pasquale LR. Machine Learning in the Detec=on of the Glaucomatous Disc and Visual Field. Semin Ophthalmol. 2019;34(4):232-242.

1034. Sonobe T, Tabuchi H, Ohsugi H, et al. Comparison between support vector machine and deep learning, machine-learning technologies for detec=ng epire=nal membrane using 3D-OCT. Int Ophthalmol. 2019;39(8):1871-1877.

1035. Sumaroka A, Garafalo AV, Semenov EP, et al. Treatment Poten=al for Macular Cone Vision in Leber Congenital Amaurosis Due to CEP290 or NPHP5 Muta=ons: Predic=ons From Ar=ficial Intelligence. Inves4ga4ve ophthalmology & visual science. 2019;60(7):2551-2562.

1036. Tan Z, Scheetz J, He M. Ar=ficial Intelligence in Ophthalmology: Accuracy, Challenges, and Clinical Applica=on. Asia-Pacific journal of ophthalmology (Philadelphia, Pa). 2019;8(3):197-199.

1037. Ting DSW, Pasquale LR, Peng L, et al. Ar=ficial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175.

1038. Treder M, Lauermann JL, Alnawaiseh M, Eter N. Using Deep Learning in Automated Detec=on of Grak Detachment in Descemet Membrane Endothelial Keratoplasty: A Pilot Study. Cornea. 2019;38(2):157-161.

1039. Ullah H, Saba T, Islam N, et al. An ensemble classifica=on of exudates in color fundus images using an evolu=onary algorithm based op=mal features selec=on. Microscopy research and technique. 2019;82(4):361-372.

1040. Wang M, Shen LQ, Pasquale LR, et al. An Ar=ficial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spa=al Pa+ern Analysis. Inves4ga4ve ophthalmology & visual science. 2019;60(1):365-375.

Page 84: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1041. Yoo TK, Choi JY, Seo JG, Ramasubramanian B, Selvaperumal S, Kim DW. The possibility of the combina=on of OCT and fundus images for improving the diagnos=c accuracy of deep learning for age-related macular degenera=on: a preliminary experiment. Medical & biological engineering & compu4ng. 2019;57(3):677-687.

1042. Zhao H, Li H, Maurer-Stroh S, Guo Y, Deng Q, Cheng L. Supervised Segmenta=on of Un-Annotated Re=nal Fundus Images by Synthesis. IEEE transac4ons on medical imaging. 2019;38(1):46-56.

1043. Zheng C, Johnson TV, Garg A, Boland MV. Ar=ficial intelligence in glaucoma. Current opinion in ophthalmology. 2019;30(2):97-103.

1044. Al-Abdullah KI, Lim CP, Najdovski Z, Yassin W. A model-based bone milling state iden=fica=on method via force sensing for a robo=c surgical system. The interna4onal journal of medical robo4cs + computer assisted surgery : MRCAS. 2019;15(3):e1989.

1045. Alsinan AZ, Patel VM, Hacihaliloglu I. Automa=c segmenta=on of bone surfaces from ultrasound using a filter-layer-guided CNN. Interna4onal journal of computer assisted radiology and surgery. 2019;14(5):775-783.

1046. Bardhan S, Bhowmik MK. 2-Stage classifica=on of knee joint thermograms for rheumatoid arthri=s predic=on in subclinical inflamma=on. Australasian physical & engineering sciences in medicine. 2019;42(1):259-277.

1047. Bartoloni E, Baldini C, Ferro F, et al. Applica=on of ar=ficial neural network analysis in the evalua=on of cardiovascular risk in primary Sjogren's syndrome: a novel pathogene=c scenario? Clinical and experimental rheumatology. 2019;37 Suppl 118(3):133-139.

1048. Bayliss L, Jones LD. The role of ar=ficial intelligence and machine learning in predic=ng orthopaedic outcomes. Bone Joint J. 2019;101-b(12):1476-1478.

1049. Chandran V, Maquer G, Gerig T, Zysset P, Reyes M. Supervised learning for bone shape and cor=cal thickness es=ma=on from CT images for finite element analysis. Medical image analysis. 2019;52:42-55.

1050. Connaboy C, Eagle SR, Johnson CD, Flanagan SD, Mi QI, Nindl BC. Using Machine Learning to Predict Lower-Extremity Injury in US Special Forces. Med Sci Sports Exerc. 2019;51(5):1073-1079.

1051. Cust EE, Swee=ng AJ, Ball K, Robertson S. Machine and deep learning for sport-specific movement recogni=on: a systema=c review of model development and performance. J Sports Sci. 2019;37(5):568-600.

1052. Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthri=s: current state and future implica=ons. Clinical and experimental rheumatology. 2019;37 Suppl 120(5):64-72.

1053. Gan K, Xu D, Lin Y, et al. Ar=ficial intelligence detec=on of distal radius fractures: a comparison between the convolu=onal neural network and professional assessments. Acta Orthop. 2019;90(4):394-400.

1054. Harris AHS, Kuo AC, Weng Y, Trickey AW, Bowe T, Giori NJ. Can Machine Learning Methods Produce Accurate and Easy-to-use Predic=on Models of 30-day Complica=ons and Mortality Aker Knee or Hip Arthroplasty? Clin Orthop Relat Res. 2019;477(2):452-460.

Page 85: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1055. Hayashi D, Roemer FW, Guermazi A. Magne=c resonance imaging assessment of knee osteoarthri=s: current and developing new concepts and techniques. Clinical and experimental rheumatology. 2019;37 Suppl 120(5):88-95.

1056. Huber M, Kurz C, Leidl R. Predic=ng pa=ent-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19(1):3.

1057. Kapinski N, Zielinski J, Borucki BA, et al. Monitoring of the Achilles tendon healing process: can ar=ficial intelligence be helpful? Acta Bioeng Biomech. 2019;21(1):103-111.

1058. Lim J, Kim J, Cheon S. A Deep Neural Network-Based Method for Early Detec=on of Osteoarthri=s Using Sta=s=cal Data. Interna4onal journal of environmental research and public health. 2019;16(7).

1059. Merrill RK, Ferrandino RM, Hoffman R, Shaffer GW, Ndu A. Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduc=on and Internal Fixa=on of Ankle Fractures. J Foot Ankle Surg. 2019;58(3):410-416.

1060. Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detec=ng intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolu=onal neural network. Skeletal radiology. 2019;48(2):239-244.

1061. Van Nieuwenhove E, Lagou V, Van Eyck L, et al. Machine learning iden=fies an immunological pa+ern associated with mul=ple juvenile idiopathic arthri=s subtypes. Ann Rheum Dis. 2019;78(5):617-628.

1062. Zhang X, Sun H, Chen J, et al. Op=miza=on of electronic prescrip=on for parallel external fixator based on gene=c algorithm. Interna4onal journal of computer assisted radiology and surgery. 2019;14(5):861-871.

1063. Abbas N, Saba T, Rehman A, et al. Plasmodium life cycle stage classifica=on based quan=fica=on of malaria parasitaemia in thin blood smears. Microscopy research and technique. 2019;82(3):283-295.

1064. Achi HE, Belousova T, Chen L, et al. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning. Ann Clin Lab Sci. 2019;49(2):153-160.

1065. Aksac A, Demetrick DJ, Ozyer T, Alhajj R. BreCaHAD: a dataset for breast cancer histopathological annota=on and diagnosis. BMC research notes. 2019;12(1):82.

1066. Albala D, Manak MS, Varsanik JS, et al. Clinical Proof-of-concept of a Novel Plarorm U=lizing Biopsy-derived Live Single Cells, Phenotypic Biomarkers, and Machine Learning Toward a Precision Risk Stra=fica=on Test for Prostate Cancer Grade Groups 1 and 2 (Gleason 3+3 and 3+4). Urology. 2019;124:198-206.

1067. Aubreville M, Stoeve M, Oe+er N, et al. Deep learning-based detec=on of mo=on ar=facts in probe-based confocal laser endomicroscopy images. Interna4onal journal of computer assisted radiology and surgery. 2019;14(1):31-42.

1068. Bera K, Schalper KA, Rimm DL, Velche= V, Madabhushi A. Ar=ficial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703-715.

1069. Bigorra L, Larriba I, Gu=errez-Gallego R. Machine learning algorithms for the detec=on of spurious white blood cell differen=als due to erythrocyte lysis resistance. J Clin Pathol. 2019;72(6):431-437.

Page 86: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1070. Bizzego A, Bussola N, Chierici M, et al. Evalua=ng reproducibility of AI algorithms in digital pathology with DAPPER. PLoS computa4onal biology. 2019;15(3):e1006269.

1071. Butola A, Ahmad A, Dubey V, et al. Volumetric analysis of breast cancer =ssues using machine learning and swept-source op=cal coherence tomography. Applied op4cs. 2019;58(5):A135-a141.

1072. Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computa=onal pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301-1309.

1073. Cohen S, Furie MB. Ar=ficial Intelligence and Pathobiology Join Forces in The American Journal of Pathology. Am J Pathol. 2019;189(1):4-5.

1074. Con= S, Karplus M. Es=ma=on of the breadth of CD4bs targe=ng HIV an=bodies by molecular modeling and machine learning. PLoS computa4onal biology. 2019;15(4):e1006954.

1075. Crowell EF, Bazin C, Saunier F, et al. CytoProcessorTM: A New Cervical Cancer Screening System for Remote Diagnosis. Acta Cytol. 2019;63(3):215-223.

1076. Devan KS, Walther P, von Einem J, Ropinski T, Kestler HA, Read C. Detec=on of herpesvirus capsids in transmission electron microscopy images using transfer learning. Histochem Cell Biol. 2019;151(2):101-114.

1077. Dimauro G, Ciprandi G, Deperte F, et al. Nasal cytology with deep learning techniques. Int J Med Inform. 2019;122:13-19.

1078. Doan M, Carpenter AE. Leveraging machine vision in cell-based diagnos=cs to do more with less. Nat Mater. 2019;18(5):414-418.

1079. Dubey V, Ahmad A, Butola A, Qaiser D, Srivastava A, Mehta DS. Low coherence quan=ta=ve phase microscopy with machine learning model and Raman spectroscopy for the study of breast cancer cells and their classifica=on. Applied op4cs. 2019;58(5):A112-a119.

1080. Effland A, Kobler E, Brandenburg A, et al. Joint reconstruc=on and classifica=on of tumor cells and cell interac=ons in melanoma =ssue sec=ons with synthesized training data. Interna4onal journal of computer assisted radiology and surgery. 2019;14(4):587-599.

1081. Fillmore N, Do N, Brophy M, Zimolzak A. Interac=ve Machine Learning for Laboratory Data Integra=on. Studies in health technology and informa4cs. 2019;264:133-137.

1082. Gou T, Hu J, Zhou S, et al. A new method using machine learning for automated image analysis applied to chip-based digital assays. The Analyst. 2019;144(10):3274-3281.

1083. Graham S, Chen H, Gamper J, et al. MILD-Net: Minimal informa=on loss dilated network for gland instance segmenta=on in colon histology images. Medical image analysis. 2019;52:199-211.

1084. Greaves RF, Bernardini S, Ferrari M, et al. Key ques=ons about the future of laboratory medicine in the next decade of the 21st century: A report from the IFCC-Emerging Technologies Division. Clinica chimica acta; interna4onal journal of clinical chemistry. 2019;495:570-589.

1085. Gruson D, Hellepu+e T, Rousseau P, Gruson D. Data science, ar=ficial intelligence, and machine learning: Opportuni=es for laboratory medicine and the value of posi=ve regula=on. Clin Biochem. 2019;69:1-7.

Page 87: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1086. Gupta RK, Chen M, Malcolm GPA, Hempler N, Dholakia K, Powis SJ. Label-free op=cal hemogram of granulocytes enhanced by ar=ficial neural networks. Op4cs express. 2019;27(10):13706-13720.

1087. Hegde RB, Prasad K, Hebbar H, Singh BMK. Feature extrac=on using tradi=onal image processing and convolu=onal neural network methods to classify white blood cells: a study. Australasian physical & engineering sciences in medicine. 2019;42(2):627-638.

1088. Jiang Y, Chen L, Zhang H, Xiao X. Breast cancer histopathological image classifica=on using convolu=onal neural networks with small SE-ResNet module. PloS one. 2019;14(3):e0214587.

1089. Kather JN, Krisam J, Charoentong P, et al. Predic=ng survival from colorectal cancer histology slides using deep learning: A retrospec=ve mul=center study. PLoS Med. 2019;16(1):e1002730.

1090. Ker J, Bai Y, Lee HY, Rao J, Wang L. Automated brain histology classifica=on using machine learning. J Clin Neurosci. 2019;66:239-245.

1091. Kim G, Jo Y, Cho H, Min HS, Park Y. Learning-based screening of hematologic disorders using quan=ta=ve phase imaging of individual red blood cells. Biosensors & bioelectronics. 2019;123:69-76.

1092. Klein O, Kanter F, Kulbe H, et al. MALDI-Imaging for Classifica=on of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray Using Machine Learning Methods. Proteomics Clin Appl. 2019;13(1):e1700181.

1093. Koelzer VH, Sirinukunwa+ana K, Ri+scher J, Mertz KD. Precision immunoprofiling by image analysis and ar=ficial intelligence. Virchows Arch. 2019;474(4):511-522.

1094. Koller W, Kleinoscheg G, Willinger B, Rappelsberger A, Adlassnig KP. Augmen=ng Analy=cs Sokware for Clinical Microbiology by Man-Machine Interac=on. Studies in health technology and informa4cs. 2019;264:1243-1247.

1095. Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019;475(2):131-138.

1096. Kratz A, Lee SH, Zini G, Riedl JA, Hur M, Machin S. Digital morphology analyzers in hematology: ICSH review and recommenda=ons. Interna4onal journal of laboratory hematology. 2019;41(4):437-447.

1097. Kricka LJ. History of disrup=ons in laboratory medicine: what have we learned from predic=ons? Clinical chemistry and laboratory medicine. 2019;57(3):308-311.

1098. Kuok CP, Horng MH, Liao YM, Chow NH, Sun YN. An effec=ve and accurate iden=fica=on system of Mycobacterium tuberculosis using convolu=on neural networks. Microscopy research and technique. 2019;82(6):709-719.

1099. Li C, Wang X, Liu W, Latecki LJ, Wang B, Huang J. Weakly supervised mitosis detec=on in breast histopathology images using concentric loss. Medical image analysis. 2019;53:165-178.

1100. Li Y, Xie X, Shen L, Liu S. Reverse ac=ve learning based atrous DenseNet for pathological image classifica=on. BMC bioinforma4cs. 2019;20(1):445.

1101. Lichtblau D, Stoean C. Cancer diagnosis through a tandem of classifiers for digi=zed histopathological slides. PloS one. 2019;14(1):e0209274.

Page 88: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1102. Linder N, Taylor JC, Colling R, et al. Deep learning for detec=ng tumour-infiltra=ng lymphocytes in tes=cular germ cell tumours. J Clin Pathol. 2019;72(2):157-164.

1103. Lopez-Garnier S, Sheen P, Zimic M. Automa=c diagnos=cs of tuberculosis using convolu=onal neural networks analysis of MODS digital images. PloS one. 2019;14(2):e0212094.

1104. Lucas M, Jansen I, Savci-Heijink CD, et al. Deep learning for automa=c Gleason pa+ern classifica=on for grade group determina=on of prostate biopsies. Virchows Arch. 2019;475(1):77-83.

1105. Macedo ND, Buzin AR, de Araujo IB, et al. Automated and Reproducible Detec=on of Vascular Endothelial Growth Factor (VEGF) in Renal Tissue Sec=ons. J Immunol Res. 2019;2019:7232781.

1106. Mata G, Radojevic M, Fernandez-Lozano C, et al. Automated Neuron Detec=on in High-Content Fluorescence Microscopy Images Using Machine Learning. Neuroinforma4cs. 2019;17(2):253-269.

1107. Neumaier M. Diagnos=cs 4.0: the medical laboratory in digital health. Clinical chemistry and laboratory medicine. 2019;57(3):343-348.

1108. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk =ssues with digital cytometry. Nature biotechnology. 2019;37(7):773-782.

1109. Nir G, Karimi D, Goldenberg SL, et al. Comparison of Ar=ficial Intelligence Techniques to Evaluate Performance of a Classifier for Automa=c Grading of Prostate Cancer From Digi=zed Histopathologic Images. JAMA Netw Open. 2019;2(3):e190442.

1110. Oei RW, Hou G, Liu F, et al. Convolu=onal neural network for cell classifica=on using microscope images of intracellular ac=n networks. PloS one. 2019;14(3):e0213626.

1111. Oliver CR, Altemus MA, Westerhof TM, et al. A plarorm for ar=ficial intelligence based iden=fica=on of the extravasa=on poten=al of cancer cells into the brain metasta=c niche. Lab on a chip. 2019;19(7):1162-1173.

1112. Ozaki Y, Yamada H, Kikuchi H, et al. Label-free classifica=on of cells based on supervised machine learning of subcellular structures. PloS one. 2019;14(1):e0211347.

1113. Palatnik de Sousa I, Maria Bernardes Rebuzzi Vellasco M, Costa da Silva E. Local Interpretable Model-Agnos=c Explana=ons for Classifica=on of Lymph Node Metastases. Sensors (Basel, Switzerland). 2019;19(13).

1114. Ravi D, Szczotka AB, Pereira SP, Vercauteren T. Adversarial training with cycle consistency for unsupervised super-resolu=on in endomicroscopy. Medical image analysis. 2019;53:123-131.

1115. Raza SEA, Cheung L, Shaban M, et al. Micro-Net: A unified model for segmenta=on of various objects in microscopy images. Medical image analysis. 2019;52:160-173.

1116. Riccio D, Branca= N, Frucci M, Gragnaniello D. A New Unsupervised Approach for Segmen=ng and Coun=ng Cells in High-Throughput Microscopy Image Sets. IEEE journal of biomedical and health informa4cs. 2019;23(1):437-448.

1117. Rivenson Y, Wang H, Wei Z, et al. Virtual histological staining of unlabelled =ssue-autofluorescence images via deep learning. Nat Biomed Eng. 2019;3(6):466-477.

1118. Saikia AR, Bora K, Mahanta LB, Das AK. Compara=ve assessment of CNN architectures for classifica=on of breast FNAC images. Tissue & cell. 2019;57:8-14.

Page 89: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1119. Sapkota M, Shi X, Xing F, Yang L. Deep Convolu=onal Hashing for Low-Dimensional Binary Embedding of Histopathological Images. IEEE journal of biomedical and health informa4cs. 2019;23(2):805-816.

1120. Schilling F, Geppert CE, Strehl J, et al. Digital pathology imaging and computer-aided diagnos=cs as a novel tool for standardiza=on of evalua=on of aganglionic megacolon (Hirschsprung disease) histopathology. Cell Tissue Res. 2019;375(2):371-381.

1121. Shahin AI, Guo Y, Amin KM, Sharawi AA. White blood cells iden=fica=on system based on convolu=onal deep neural learning networks. Computer methods and programs in biomedicine. 2019;168:69-80.

1122. Soysal E, Warner JL, Wang J, et al. Developing Customizable Cancer Informa=on Extrac=on Modules for Pathology Reports Using CLAMP. Studies in health technology and informa4cs. 2019;264:1041-1045.

1123. Tang Z, Chuang KV, DeCarli C, et al. Interpretable classifica=on of Alzheimer's disease pathologies with a convolu=onal neural network pipeline. Nature communica4ons. 2019;10(1):2173.

1124. Vu QD, Kwak JT. A dense mul=-path decoder for =ssue segmenta=on in histopathology images. Computer methods and programs in biomedicine. 2019;173:119-129.

1125. Wahab N, Khan A, Lee YS. Transfer learning based deep CNN for segmenta=on and detec=on of mitoses in breast cancer histopathological images. Microscopy (Oxf). 2019;68(3):216-233.

1126. Wei Y, Li W, Du T, Hong Z, Lin J. Targe=ng HIV/HCV Coinfec=on Using a Machine Learning-Based Mul=ple Quan=ta=ve Structure-Ac=vity Rela=onships (Mul=ple QSAR) Method. Interna4onal journal of molecular sciences. 2019;20(14).

1127. Wieringa G. Teaching the pony new tricks: competences for specialists in laboratory medicine to meet the challenges of disrup=ve innova=on. Clinical chemistry and laboratory medicine. 2019;57(3):398-402.

1128. Xie Q, Faust K, Van Ommeren R, Sheikh A, Djuric U, Diamandis P. Deep learning for image analysis: Personalizing medicine closer to the point of care. Crit Rev Clin Lab Sci. 2019;56(1):61-73.

1129. Xing F, Xie Y, Shi X, Chen P, Zhang Z, Yang L. Towards pixel-to-pixel deep nucleus detec=on in microscopy images. BMC bioinforma4cs. 2019;20(1):472.

1130. Xu J, Po+er M, Tomas C, et al. A new approach to find biomarkers in chronic fa=gue syndrome/myalgic encephalomyeli=s (CFS/ME) by single-cell Raman micro-spectroscopy. The Analyst. 2019;144(3):913-920.

1131. Yang DW, Jia XB, Xiao YJ, Wang XP, Wang ZC, Yang ZH. Noninvasive Evalua=on of the Pathologic Grade of Hepatocellular Carcinoma Using MCF-3DCNN: A Pilot Study. BioMed research interna4onal. 2019;2019:9783106.

1132. Yang Z, Tan EH, Li Y, Lim B, Metz MP, Loh TP. Rela=ve cri=calness of common laboratory tests for cri=cal value repor=ng. J Clin Pathol. 2019;72(4):325-328.

1133. Zheng X, Lv G, Zhang Y, et al. Rapid and non-invasive screening of high renin hypertension using Raman spectroscopy and different classifica=on algorithms. Spectrochimica acta Part A, Molecular and biomolecular spectroscopy. 2019;215:244-248.

Page 90: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1134. Zhou Y, Zhang J, Huang J, et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolu=onal neural network algorithm. Forensic Sci Int. 2019;302:109922.

1135. Zhu H, Jiang H, Li S, Li H, Pei Y. A Novel Mul=space Image Reconstruc=on Method for Pathological Image Classifica=on Based on Structural Informa=on. BioMed research interna4onal. 2019;2019:3530903.

1136. Targeted Workup aker Ini=al Febrile Urinary Tract Infec=on: Using a Novel Machine Learning Model to Iden=fy Children Most Likely to Benefit from Voiding Cystourethrogram. J Urol. 2019;202(1):144-152.

1137. Allen NB, Nelson BW, Brent D, Auerbach RP. Short-term predic=on of suicidal thoughts and behaviors in adolescents: Can recent developments in technology and computa=onal science provide a breakthrough? Journal of affec4ve disorders. 2019;250:163-169.

1138. Bertoncelli CM, Altamura P, Vieira ER, Bertoncelli D, Solla F. Using Ar=ficial Intelligence to Iden=fy Factors Associated with Au=sm Spectrum Disorder in Adolescents with Cerebral Palsy. Neuropediatrics. 2019;50(3):178-187.

1139. Bertoni D, Isaiah A. Towards Pa=ent-centered Diagnosis of Pediatric Obstruc=ve Sleep Apnea-A Review of Biomedical Engineering Strategies. Expert review of medical devices. 2019;16(7):617-629.

1140. Capriola-Hall NN, Wieckowski AT, Swain D, et al. Group Differences in Facial Emo=on Expression in Au=sm: Evidence for the U=lity of Machine Classifica=on. Behav Ther. 2019;50(4):828-838.

1141. Chaber R, Arthur CJ, Lach K, et al. Predic=ng Ewing Sarcoma Treatment Outcome Using Infrared Spectroscopy and Machine Learning. Molecules (Basel, Switzerland). 2019;24(6).

1142. Chan J, Raju SC, Topol E. Towards a tricorder for diagnosing paediatric condi=ons. Lancet (London, England). 2019;394(10202):907.

1143. Chen H, Chen W, Song Y, Sun L, Li X. EEG characteris=cs of children with a+en=on-deficit/hyperac=vity disorder. Neuroscience. 2019;406:444-456.

1144. Dimitri P. Child health technology: shaping the future of paediatrics and child health and improving NHS produc=vity. Arch Dis Child. 2019;104(2):184-188.

1145. Dona= MA, Frosini A, Izzo VA, Primi C. The Effec=veness of the Game of Dice Task in Predic=ng At-Risk and Problem Gambling Among Adolescents: The Contribu=on of the Neural Networks. J Gambl Stud. 2019;35(1):1-14.

1146. Duran I, Martakis K, Rehberg M, Semler O, Schoenau E. Diagnos=c performance of an ar=ficial neural network to predict excess body fat in children. Pediatr Obes. 2019;14(2):e12494.

1147. Emre IE, Erol N, Ayhan YI, Ozkan Y, Erol C. The analysis of the effects of acute rheuma=c fever in childhood on cardiac disease with data mining. Int J Med Inform. 2019;123:68-75.

1148. Kang J, Chen H, Li X, Li X. EEG entropy analysis in au=s=c children. J Clin Neurosci. 2019;62:199-206.

Page 91: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1149. Kidzinski L, Delp S, Schwartz M. Automa=c real-=me gait event detec=on in children using deep neural networks. PloS one. 2019;14(1):e0211466.

1150. Knight VF, Wright J, Wilson K, Hooper A. Teaching Digital, Block-Based Coding of Robots to High School Students with Au=sm Spectrum Disorder and Challenging Behavior. J Au4sm Dev Disord. 2019;49(8):3113-3126.

1151. Kolobe THA, Fagg AH. Robot Reinforcement and Error-Based Movement Learning in Infants With and Without Cerebral Palsy. Phys Ther. 2019;99(6):677-688.

1152. Kwon S, Zavos P, Nickele K, Sugianto A, Albert MV. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Ac=vi=es. Interna4onal journal of environmental research and public health. 2019;16(14).

1153. McGinnis RS, McGinnis EW, Hruschak J, et al. Rapid detec=on of internalizing diagnosis in young children enabled by wearable sensors and machine learning. PloS one. 2019;14(1):e0210267.

1154. Paldino MJ, Golriz F, Zhang W, Chu ZD. Normaliza=on enhances brain network features that predict individual intelligence in children with epilepsy. PloS one. 2019;14(3):e0212901.

1155. Payabvash S, Palacios EM, Owen JP, et al. White Ma+er Connectome Edge Density in Children with Au=sm Spectrum Disorders: Poten=al Imaging Biomarkers Using Machine-Learning Models. Brain Connect. 2019;9(2):209-220.

1156. Porter P, Abeyratne U, Swarnkar V, et al. A prospec=ve mul=centre study tes=ng the diagnos=c accuracy of an automated cough sound centred analy=c system for the iden=fica=on of common respiratory disorders in children. Respir Res. 2019;20(1):81.

1157. Rose-Davis B, Van Woensel W, Stringer E, Abidi S, Abidi SSR. Using an Ar=ficial Intelligence-Based Argument Theory to Generate Automated Pa=ent Educa=on Dialogues for Families of Children with Juvenile Idiopathic Arthri=s. Studies in health technology and informa4cs. 2019;264:1337-1341.

1158. Shu LQ, Sun YK, Tan LH, Shu Q, Chang AC. Applica=on of ar=ficial intelligence in pediatrics: past, present and future. World J Pediatr. 2019;15(2):105-108.

1159. Van Camp PJ, Mahdi CM, Liu L, Ni Y, Spooner SA, Wu DTY. Development and Preliminary Evalua=on of a Visual Annota=on Tool to Rapidly Collect Expert-Annotated Weight Errors in Pediatric Growth Charts. Studies in health technology and informa4cs. 2019;264:853-857.

1160. Wan G, Kong X, Sun B, et al. Applying Eye Tracking to Iden=fy Au=sm Spectrum Disorder in Children. J Au4sm Dev Disord. 2019;49(1):209-215.

1161. Wolff P, Grana M, Rios SA, Yarza MB. Machine Learning Readmission Risk Modeling: A Pediatric Case Study. BioMed research interna4onal. 2019;2019:8532892.

1162. Aviles-Cruz C, Ferreyra-Ramirez A, Zuniga-Lopez A, Villegas-Cortez J. Coarse-Fine Convolu=onal Deep-Learning Strategy for Human Ac=vity Recogni=on. Sensors (Basel, Switzerland). 2019;19(7).

1163. Awais M, Chiari L, Ihlen EAF, Helbostad JL, Palmerini L. Physical Ac=vity Classifica=on for Elderly People in Free-Living Condi=ons. IEEE journal of biomedical and health informa4cs. 2019;23(1):197-207.

Page 92: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1164. Bota P, Silva J, Folgado D, Gamboa H. A Semi-Automa=c Annota=on Approach for Human Ac=vity Recogni=on. Sensors (Basel, Switzerland). 2019;19(3).

1165. Kim JW, Jones KL, D'Angelo E. How to Prepare Prospec=ve Psychiatrists in the Era of Ar=ficial Intelligence. Acad Psychiatry. 2019;43(3):337-339.

1166. Prado A, Cao X, Robert MT, Gordon AM, Agrawal SK. Gait Segmenta=on of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier. Phys Med Rehabil Clin N Am. 2019;30(2):355-366.

1167. Rane L, Ding Z, McGregor AH, Bull AMJ. Deep Learning for Musculoskeletal Force Predic=on. Annals of biomedical engineering. 2019;47(3):778-789.

1168. Ribeiro NF, Andre J, Costa L, Santos CP. Development of a Strategy to Predict and Detect Falls Using Wearable Sensors. Journal of medical systems. 2019;43(5):134.

1169. Sharif Bidabadi S, Murray I, Lee GYF, Morris S, Tan T. Classifica=on of foot drop gait characteris=c due to lumbar radiculopathy using machine learning algorithms. Gait & posture. 2019;71:234-240.

1170. Tack C. Ar=ficial intelligence and machine learning | applica=ons in musculoskeletal physiotherapy. Musculoskelet Sci Pract. 2019;39:164-169.

1171. van Kuppevelt D, Heywood J, Hamer M, Sabia S, Fitzsimons E, van Hees V. Segmen=ng accelerometer data from daily life with unsupervised machine learning. PloS one. 2019;14(1):e0208692.

1172. Wang CC, Yang CH, Wang CS, Xu D, Huang BS. Ar=ficial neural networks in the selec=on of shoe lasts for people with mild diabetes. Medical engineering & physics. 2019;64:37-45.

1173. Zhang S, Poon SK, Vuong K, Sneddon A, Loy CT. A Deep Learning-Based Approach for Gait Analysis in Hun=ngton Disease. Studies in health technology and informa4cs. 2019;264:477-481.

1174. Zhang Z, Yang K, Qian J, Zhang L. Real-Time Surface EMG Pa+ern Recogni=on for Hand Gestures Based on an Ar=ficial Neural Network. Sensors (Basel, Switzerland). 2019;19(14).

1175. Zhu ZA, Lu YC, You CH, Chiang CK. Deep Learning for Sensor-Based Rehabilita=on Exercise Recogni=on and Evalua=on. Sensors (Basel, Switzerland). 2019;19(4).

1176. Ambalavan AK, Moulahi B, Aze J, Bringay S. Unveiling Online Suicide Behavior: What Can We Learn About Mental Health from Suicide Survivors of Reddit? Studies in health technology and informa4cs. 2019;264:50-54.

1177. Aydin O, Unal Aydin P, Arslan A. Development of Neuroimaging-Based Biomarkers in Psychiatry. Adv Exp Med Biol. 2019;1192:159-195.

1178. Beevers CG, Mullarkey MC, Dainer-Best J, et al. Associa=on between nega=ve cogni=ve bias and depression: A symptom-level approach. J Abnorm Psychol . 2019;128(3):212-227.

1179. Belizario GO, Junior RGB, Salvini R, Lafer B, Dias RDS. Predominant polarity classifica=on and associated clinical variables in bipolar disorder: A machine learning approach. Journal of affec4ve disorders. 2019;245:279-282.

Page 93: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1180. Bi+ar A, Velupillai S, Roberts A, Du+a R. Text Classifica=on to Inform Suicide Risk Assessment in Electronic Health Records. Studies in health technology and informa4cs. 2019;264:40-44.

1181. Bleidorn W, Hopwood CJ. Using Machine Learning to Advance Personality Assessment and Theory. Pers Soc Psychol Rev. 2019;23(2):190-203.

1182. Bosia M, Bechi M, Bosinelli F, et al. From cogni=ve and clinical substrates to func=onal profiles: Disentangling heterogeneity in schizophrenia. Psychiatry Res. 2019;271:446-453.

1183. Burke TA, Ammerman BA, Jacobucci R. The use of machine learning in the study of suicidal and non-suicidal self-injurious thoughts and behaviors: A systema=c review. Journal of affec4ve disorders. 2019;245:869-884.

1184. Carson NJ, Mullin B, Sanchez MJ, et al. Iden=fica=on of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one. 2019;14(2):e0211116.

1185. Chen J, Hu S. Individualized Treatment Strategy for Depressive Disorder. Adv Exp Med Biol. 2019;1180:219-232.

1186. Chiu PY, Tang H, Wei CY, Zhang C, Hung GU, Zhou W. NMD-12: A new machine-learning derived screening instrument to detect mild cogni=ve impairment and demen=a. PloS one. 2019;14(3):e0213430.

1187. Davis JP, Prindle JJ, Eddie D, Pedersen ER, Dumas TM, Chris=e NC. Addressing the opioid epidemic with behavioral interven=ons for adolescents and young adults: A quasi-experimental design. J Consult Clin Psychol. 2019;87(10):941-951.

1188. Ding X, Yue X, Zheng R, Bi C, Li D, Yao G. Classifying major depression pa=ents and healthy controls using EEG, eye tracking and galvanic skin response data. Journal of affec4ve disorders. 2019;251:156-161.

1189. Downs J, Dean H, Lechler S, et al. Nega=ve Symptoms in Early-Onset Psychosis and Their Associa=on With An=psycho=c Treatment Failure. Schizophrenia bulle4n. 2019;45(1):69-79.

1190. Duraisamy B, Shanmugam JV, Annamalai J. Alzheimer disease detec=on from structural MR images using FCM based weighted probabilis=c neural network. Brain Imaging Behav. 2019;13(1):87-110.

1191. Ebert DD, Harrer M, Apolinario-Hagen J, Baumeister H. Digital Interven=ons for Mental Disorders: Key Features, Efficacy, and Poten=al for Ar=ficial Intelligence Applica=ons. Adv Exp Med Biol. 2019;1192:583-627.

1192. Fakhoury M. Ar=ficial Intelligence in Psychiatry. Adv Exp Med Biol. 2019;1192:119-125. 1193. Fond G, Bulzacka E, Boucekine M, et al. Machine learning for predic=ng psycho=c

relapse at 2years in schizophrenia in the na=onal FACE-SZ cohort. Progress in neuro-psychopharmacology & biological psychiatry. 2019;92:8-18.

1194. Hajek T, Franke K, Kolenic M, et al. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia. Schizophrenia bulle4n. 2019;45(1):190-198.

1195. Han KM, De Berardis D, Fornaro M, Kim YK. Differen=a=ng between bipolar and unipolar depression in func=onal and structural MRI studies. Progress in neuro-psychopharmacology & biological psychiatry. 2019;91:20-27.

Page 94: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1196. Han KM, Kim YK. Promising neural diagnos=c biomarkers and predictors of treatment outcomes for psychiatric disorders: Novel neuroimaging approaches. Progress in neuro-psychopharmacology & biological psychiatry. 2019;91:1-3.

1197. Han W, Sorg C, Zheng C, et al. Low-rank network signatures in the triple network separate schizophrenia and major depressive disorder. Neuroimage Clin. 2019;22:101725.

1198. Hassanpour S, Tomita N, DeLise T, Crosier B, Marsch LA. Iden=fying substance use risk based on deep neura l networks and Instagram soc ia l media data . Neuropsychopharmacology. 2019;44(3):487-494.

1199. Ha+on CM, Paton LW, McMillan D, Cussens J, Gilbody S, Tiffin PA. Predic=ng persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare. Journal of affec4ve disorders. 2019;246:857-860.

1200. Househ M, Schneider J, Ahmad K, et al. An Evolu=onary Bootstrapping Development Approach for a Mental Health Conversa=onal Agent. Studies in health technology and informa4cs. 2019;262:228-231.

1201. Jacob S, Wolff JJ, Steinbach MS, Doyle CB, Kumar V, Elison JT. Neurodevelopmental heterogeneity and computa=onal approaches for understanding au=sm. Transla4onal psychiatry. 2019;9(1):63.

1202. Jaroszewski AC, Morris RR, Nock MK. Randomized controlled trial of an online machine learning-driven risk assessment and interven=on plarorm for increasing the use of crisis services. J Consult Clin Psychol. 2019;87(4):370-379.

1203. Kadosh KC, Staunton G. A systema=c review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage. 2019;185:545-555.

1204. Kambeitz-Ilankovic L, Haas SS, Meisenzahl E, et al. Neurocogni=ve and neuroanatomical matura=on in the clinical high-risk states for psychosis: A pa+ern recogni=on study. Neuroimage Clin. 2019;21:101624.

1205. Kanchanatawan B, Sriswasdi S, Maes M. Supervised machine learning to decipher the complex associa=ons between neuro-immune biomarkers and quality of life in schizophrenia. Metab Brain Dis. 2019;34(1):267-282.

1206. Kjell ONE, Kjell K, Garcia D, Sikstrom S. Seman=c measures: Using natural language processing to measure, differen=ate, and describe psychological constructs. Psychol Methods. 2019;24(1):92-115.

1207. Kuo KM, Talley PC, Huang CH, Cheng LC. Predic=ng hospital-acquired pneumonia among schizophrenic pa=ents: a machine learning approach. BMC Med Inform Decis Mak. 2019;19(1):42.

1208. Leightley D, Williamson V, Darby J, Fear NT. Iden=fying probable post-trauma=c stress disorder: applying supervised machine learning to data from a UK military cohort. J Ment Health. 2019;28(1):34-41.

1209. Leighton SP, Krishnadas R, Chung K, et al. Predic=ng one-year outcome in first episode psychosis using machine learning. PloS one. 2019;14(3):e0212846.

1210. Li X, La R, Wang Y, et al. EEG-based mild depression recogni=on using convolu=onal neural network. Medical & biological engineering & compu4ng. 2019;57(6):1341-1352.

Page 95: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1211. Linthicum KP, Schafer KM, Ribeiro JD. Machine learning in suicide science: Applica=ons and ethics. Behav Sci Law. 2019;37(3):214-222.

1212. Lyu J, Zhang J. BP neural network predic=on model for suicide a+empt among Chinese rural residents. Journal of affec4ve disorders. 2019;246:465-473.

1213. Mak KK, Lee K, Park C. Applica=ons of machine learning in addic=on studies: A systema=c review. Psychiatry Res. 2019;275:53-60.

1214. McCoy TH, Jr., Pellegrini AM, Perlis RH. Research Domain Criteria scores es=mated through natural language processing are associated with risk for suicide and accidental death. Depress Anxiety. 2019;36(5):392-399.

1215. Perlman K, Benrimoh D, Israel S, et al. A systema=c meta-review of predictors of an=depressant treatment outcome in major depressive disorder. Journal of affec4ve disorders. 2019;243:503-515.

1216. Stevens E, Dixon DR, Novack MN, Granpeesheh D, Smith T, Linstead E. Iden=fica=on and analysis of behavioral phenotypes in au=sm spectrum disorder via unsupervised machine learning. Int J Med Inform. 2019;129:29-36.

1217. Such=ng R, Vincent JN, Lane SD, Green CE, Schmitz JM, Wardle MC. Using a data science approach to predict cocaine use frequency from depressive symptoms. Drug Alcohol Depend. 2019;194:310-317.

1218. Tahan M. Ar=ficial Intelligence applica=ons and psychology: an overview. Neuropsychopharmacol Hung. 2019;21(3):119-126.

1219. Thorstad R, Wolff P. Predic=ng future mental illness from social media: A big-data approach. Behavior research methods. 2019;51(4):1586-1600.

1220. Tran BX, McIntyre RS, Latkin CA, et al. The Current Research Landscape on the Ar=ficial Intelligence Applica=on in the Management of Depressive Disorders: A Bibliometric Analysis. Interna4onal journal of environmental research and public health. 2019;16(12).

1221. Vacca A, Longo R, Mencar C. Iden=fica=on and evalua=on of cogni=ve deficits in schizophrenia using "Machine learning". Psychiatria Danubina. 2019;31(Suppl 3):261-264.

1222. Velupillai S, Epstein S, Bi+ar A, Stephenson T, Du+a R, Downs J. Iden=fying Suicidal Adolescents from Mental Health Records Using Natural Language Processing. Studies in health technology and informa4cs. 2019;264:413-417.

1223. Viani N, Kam J, Yin L, et al. Annota=ng Temporal Rela=ons to Determine the Onset of Psychosis Symptoms. Studies in health technology and informa4cs. 2019;264:418-422.

1224. Victor E, Aghajan ZM, Sewart AR, Chris=an R. Detec=ng depression using a framework combining deep mul=modal neural networks with a purpose-built automated evalua=on. Psychol Assess. 2019;31(8):1019-1027.

1225. Vyskovsky R, Schwarz D, Kasparek T. Brain Morphometry Methods for Feature Extrac=on in Random Subspace Ensemble Neural Network Classifica=on of First-Episode Schizophrenia. Neural computa4on. 2019;31(5):897-918.

1226. Walter M, Alizadeh S, Jamalabadi H, et al. Transla=onal machine learning for psychiatric neuroimaging. Progress in neuro-psychopharmacology & biological psychiatry. 2019;91:113-121.

Page 96: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1227. Wang J, Wang Q, Zhang H, Chen J, Wang S, Shen D. Sparse Mul=view Task-Centralized Ensemble Learning for ASD Diagnosis Based on Age- and Sex-Related Func=onal Connec=vity Pa+erns. IEEE Trans Cybern. 2019;49(8):3141-3154.

1228. Wang Z, Niu Z, Yang L, Cui L. Internet-Based Management for Depressive Disorder. Adv Exp Med Biol. 2019;1180:267-276.

1229. Weidemann CT, Kragel JE, Lega BC, et al. Neural ac=vity reveals interac=ons between episodic and seman=c memory systems during retrieval. J Exp Psychol Gen. 2019;148(1):1-12.

1230. Xing M, Lee H, Morrissey Z, et al. Altered dynamic electroencephalography connectome phase-space features of emo=on regula=on in social anxiety. NeuroImage. 2019;186:338-349.

1231. Yip SW, Scheinost D, Potenza MN, Carroll KM. Connectome-Based Predic=on of Cocaine Abs=nence. Am J Psychiatry. 2019;176(2):156-164.

1232. Zhang F, Wu C, Jia C, et al. Ar=ficial intelligence based discovery of the associa=on between depression and chronic fa=gue syndrome. Journal of affec4ve disorders. 2019;250:380-390.

1233. Zhou T, Thung KH, Liu M, Shen D. Brain-Wide Genome-Wide Associa=on Study for Alzheimer's Disease via Joint Projec=on Learning and Sparse Regression Model. IEEE transac4ons on bio-medical engineering. 2019;66(1):165-175.

1234. Zhu Q, Huang J, Xu X. Non-nega=ve discrimina=ve brain func=onal connec=vity for iden=fying schizophrenia on res=ng-state fMRI. Biomedical engineering online. 2018;17(1):32.

1235. Zhuang H, Liu R, Wu C, et al. Mul=modal classifica=on of drug-naive first-episode schizophrenia combining anatomical, diffusion and res=ng state func=onal resonance imaging. Neurosci Led. 2019;705:87-93.

1236. Arslan Tuncer S, Akilotu B, Toraman S. A deep learning-based decision support system for diagnosis of OSAS using PTT signals. Medical hypotheses. 2019;127:15-22.

1237. Cardoso I, Almeida E, Allende-Cid H, et al. Analysis of Machine Learning Algorithms for Diagnosis of Diffuse Lung Diseases. Methods of informa4on in medicine. 2018;57(5-06):272-279.

1238. Chowdhury NI, Smith TL, Chandra RK, Turner JH. Automated classifica=on of osteomeatal complex inflamma=on on computed tomography using convolu=onal neural networks. Int Forum Allergy Rhinol. 2019;9(1):46-52.

1239. Chung KF. Predic=ng Response to Triamcinolone in Severe Asthma by Machine Learning. Solving the Enigma. Am J Respir Crit Care Med. 2019;199(11):1299-1300.

1240. Grzywalski T, Piecuch M, Szajek M, et al. Prac=cal implementa=on of ar=ficial intelligence algorithms in pulmonary ausculta=on examina=on. Eur J Pediatr. 2019;178(6):883-890.

1241. Gu=errez-Tobal GC, Alvarez D, Crespo A, Del Campo F, Hornero R. Evalua=on of Machine-Learning Approaches to Es=mate Sleep Apnea Severity From At-Home Oximetry Recordings. IEEE journal of biomedical and health informa4cs. 2019;23(2):882-892.

1242. Khasha R, Sepehri MM, Mahdaviani SA. An ensemble learning method for asthma control level detec=on with leveraging medical knowledge-based classifier and supervised learning. Journal of medical systems. 2019;43(6):158.

Page 97: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1243. Lin S, Zhang Q, Chen F, Luo L, Chen L, Zhang W. Smooth Bayesian network model for the predic=on of future high-cost pa=ents with COPD. Int J Med Inform. 2019;126:147-155.

1244. Shi Y, Li Y, Cai M, Zhang XD. A Lung Sound Category Recogni=on Method Based on Wavelet Decomposi=on and BP Neural Network. Int J Biol Sci. 2019;15(1):195-207.

1245. Stohr MR, Gunther A, Majeed RW. Provenance for Biomedical Ontologies with RDF and Git. Studies in health technology and informa4cs. 2019;267:230-237.

1246. Ugon A, Philippe C, KoS A, Dalloz MA, Pinna A. Automa=c Sleep Stages Classifica=on Combining Seman=c Representa=on and Dynamic Expert System. Studies in health technology and informa4cs. 2019;264:848-852.

1247. Van Haren RM, Correa AM, Sepesi B, et al. Ground Glass Lesions on Chest Imaging: Evalua=on of Reported Incidence in Cancer Pa=ents Using Natural Language Processing. Ann Thorac Surg. 2019;107(3):936-940.

1248. Xi J, Zhao W. Correla=ng exhaled aerosol images to small airway obstruc=ve diseases: A study with dynamic mode decomposi=on and machine learning. PloS one. 2019;14(1):e0211413.

1249. Yildirim O, Baloglu UB, Acharya UR. A Deep Learning Model for Automated Sleep Stages Classifica=on Using PSG Signals. Interna4onal journal of environmental research and public health. 2019;16(4).

1250. Zhao D, Wang Y, Wang Q, Wang X. Compara=ve analysis of different characteris=cs of automa=c sleep stages. Computer methods and programs in biomedicine. 2019;175:53-72.

1251. Zhao H, Hong H, Miao D, et al. A Noncontact Breathing Disorder Recogni=on System Using 2.4-GHz Digital-IF Doppler Radar. IEEE journal of biomedical and health informa4cs. 2019;23(1):208-217.

1252. Abbasi AN, Khan AMH, Qureshi BM. Radiomics - Using Ar=ficial Intelligence in the Quest towards Personalised Radia=on Treatment. J Coll Physicians Surg Pak. 2019;29(2):99-100.

1253. Abdollahi H, Mofid B, Shiri I, et al. Machine learning-based radiomic models to predict intensity-modulated radia=on therapy response, Gleason score and stage in prostate cancer. La Radiologia medica. 2019;124(6):555-567.

1254. Acar E, Leblebici A, Ellidokuz BE, Basbinar Y, Kaya GC. Machine learning for differen=a=ng metasta=c and completely responded sclero=c bone lesion in prostate cancer: a retrospec=ve radiomics study. The Bri4sh journal of radiology. 2019;92(1101):20190286.

1255. Adams M, Chen W, Holcdorf D, McCusker MW, Howe PD, Gaillard F. Computer vs human: Deep learning versus perceptual training for the detec=on of neck of femur fractures. J Med Imaging Radiat Oncol. 2019;63(1):27-32.

1256. Ahammed Muneer KV, Rajendran VR, K PJ. Glioma Tumor Grade Iden=fica=on Using Ar=ficial Intelligent Techniques. Journal of medical systems. 2019;43(5):113.

1257. Akcakaya M, Moeller S, Weingartner S, Ugurbil K. Scan-specific robust ar=ficial-neural-networks for k-space interpola=on (RAKI) reconstruc=on: Database-free deep learning for fast imaging. Magn Reson Med. 2019;81(1):439-453.

1258. Alexander A, McGill M, Tarasova A, Ferreira C, Zurkiya D. Scanning the Future of Medical Imaging. Journal of the American College of Radiology : JACR. 2019;16(4 Pt A):501-507.

Page 98: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1259. Alio+a E, Nourzadeh H, Sanders J, Muller D, Ennis DB. Highly accelerated, model-free diffusion tensor MRI reconstruc=on using neural networks. Medical physics. 2019;46(4):1581-1591.

1260. Allen B, Dreyer K. The Role of the ACR Data Science Ins=tute in Advancing Health Equity in Radiology. Journal of the American College of Radiology : JACR. 2019;16(4 Pt B):644-648.

1261. Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmenta=on of knee bone and car=lage combining sta=s=cal shape knowledge and convolu=onal neural networks: Data from the Osteoarthri=s Ini=a=ve. Medical image analysis. 2019;52:109-118.

1262. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated Triaging of Adult Chest Radiographs with Deep Ar=ficial Neural Networks. Radiology. 2019;291(1):196-202.

1263. Anthimopoulos M, Christodoulidis S, Ebner L, Geiser T, Christe A, Mougiakakou S. Seman=c Segmenta=on of Pathological Lung Tissue With Dilated Fully Convolu=onal Networks. IEEE journal of biomedical and health informa4cs. 2019;23(2):714-722.

1264. Antonelli M, Johnston EW, Dikaios N, et al. Machine learning classifiers can predict Gleason pa+ern 4 prostate cancer with greater accuracy than experienced radiologists. European radiology. 2019;29(9):4754-4764.

1265. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954-961.

1266. Arieno A, Chan A, Destounis SV. A Review of the Role of Augmented Intelligence in Breast Imaging: From Automated Breast Density Assessment to Risk Stra=fica=on. AJR Am J Roentgenol. 2019;212(2):259-270.

1267. Arif M, Moelker A, van Walsum T. Automa=c needle detec=on and real-=me Bi-planar needle visualiza=on during 3D ultrasound scanning of the liver. Medical image analysis. 2019;53:104-110.

1268. Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby O. Early survival predic=on in non-small cell lung cancer from PET/CT images using an intra-tumor par==oning method. Physica medica : PM : an interna4onal journal devoted to the applica4ons of physics to medicine and biology : official journal of the Italian Associa4on of Biomedical Physics (AIFB). 2019;60:58-65.

1269. Auffermann WF. Automated Triaging of Adult Chest Radiographs. Radiology. 2019;291(1):203-204.

1270. Bae GY, Luck SJ. Decoding mo=on direc=on using the topography of sustained ERPs and alpha oscilla=ons. NeuroImage. 2019;184:242-255.

1271. Bahl M. Detec=ng Breast Cancers with Mammography: Will AI Succeed Where Tradi=onal CAD Failed? Radiology. 2019;290(2):315-316.

1272. Balki I, Amirabadi A, Levman J, et al. Sample-Size Determina=on Methodologies for Machine Learning in Medical Imaging Research: A Systema=c Review. Canadian Associa4on of Radiologists journal = Journal l'Associa4on canadienne des radiologistes. 2019;70(4):344-353.

Page 99: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1273. Basaia S, Agosta F, Wagner L, et al. Automated classifica=on of Alzheimer's disease and mild cogni=ve impairment using a single MRI and deep neural networks. Neuroimage Clin. 2019;21:101645.

1274. Baumann S, Renker M, Schoepf UJ, et al. Gender differences in the diagnos=c performance of machine learning coronary CT angiography-derived frac=onal flow reserve -results from the MACHINE registry. European journal of radiology. 2019;119:108657.

1275. Beig N, Khorrami M, Alilou M, et al. Perinodular and Intranodular Radiomic Features on Lung CT Images Dis=nguish Adenocarcinomas from Granulomas. Radiology. 2019;290(3):783-792.

1276. Bektas CT, Kocak B, Yardimci AH, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quan=ta=ve Computed Tomography Texture Analysis for Predic=on of Fuhrman Nuclear Grade. European radiology. 2019;29(3):1153-1163.

1277. Ben Bouallegue F, Vauchot F, Mariano-Goulart D, Payoux P. Diagnos=c and prognos=c value of amyloid PET textural and shape features: comparison with classical semi-quan=ta=ve ra=ng in 760 pa=ents from the ADNI-2 database. Brain Imaging Behav. 2019;13(1):111-125.

1278. Bharath RD, Panda R, Raj J, et al. Machine learning iden=fies "rsfMRI epilepsy networks" in temporal lobe epilepsy. European radiology. 2019;29(7):3496-3505.

1279. Biswas M, Kuppili V, Saba L, et al. State-of-the-art review on deep learning in medical imaging. Fron4ers in bioscience (Landmark edi4on). 2019;24:392-426.

1280. Biswas M, Kuppili V, Saba L, et al. Deep learning fully convolu=on network for lumen characteriza=on in diabe=c pa=ents using caro=d ultrasound: a tool for stroke risk. Medical & biological engineering & compu4ng. 2019;57(2):543-564.

1281. Bollmann S, Kristensen MH, Larsen MS, et al. SHARQnet - Sophis=cated harmonic ar=fact reduc=on in quan=ta=ve suscep=bility mapping using a deep convolu=onal neural network. Z Med Phys. 2019;29(2):139-149.

1282. Brotchie P. Machine learning in radiology. J Med Imaging Radiat Oncol. 2019;63(1):25-26.

1283. Byra M, Galperin M, Ojeda-Fournier H, et al. Breast mass classifica=on in sonography with transfer learning using a deep convolu=onal neural network and color conversion. Medical physics. 2019;46(2):746-755.

1284. Cai H, Huang Q, Rong W, et al. Breast Microcalcifica=on Diagnosis Using Deep Convolu=onal Neural Network from Digital Mammograms. Computa4onal and mathema4cal methods in medicine. 2019;2019:2717454.

1285. Cai J, Zhang Z, Cui L, Zheng Y, Yang L. Towards cross-modal organ transla=on and segmenta=on: A cycle- and shape-consistent genera=ve adversarial network. Medical image analysis. 2019;52:174-184.

1286. Carnevale L, Lembo G. Innova=ve MRI Techniques in Neuroimaging Approaches for Cerebrovascular Diseases and Vascular Cogni=ve Impairment. Interna4onal journal of molecular sciences. 2019;20(11).

Page 100: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1287. Carrodeguas E, Lacson R, Swanson W, Khorasani R. Use of Machine Learning to Iden=fy Follow-Up Recommenda=ons in Radiology Reports. Journal of the American College of Radiology : JACR. 2019;16(3):336-343.

1288. Cha MJ, Chung MJ, Lee JH, Lee KS. Performance of Deep Learning Model in Detec=ng Operable Lung Cancer With Chest Radiographs. J Thorac Imaging. 2019;34(2):86-91.

1289. Chan JW, Kearney V, Haaf S, et al. A convolu=onal neural network algorithm for automa=c segmenta=on of head and neck organs at risk using deep lifelong learning. Medical physics. 2019;46(5):2204-2213.

1290. Chan S, Siegel EL. Will machine learning end the viability of radiology as a thriving medical specialty? The Bri4sh journal of radiology. 2019;92(1094):20180416.

1291. Cha+erjee A, Oto A. Future Perspec=ves in Mul=parametric Prostate MR Imaging. Magn Reson Imaging Clin N Am. 2019;27(1):117-130.

1292. Chen F, Liu J, Zhao Z, Zhu M, Liao H. Three-Dimensional Feature-Enhanced Network for Automa=c Femur Segmenta=on. IEEE journal of biomedical and health informa4cs. 2019;23(1):243-252.

1293. Chen KT, Gong E, de Carvalho Macruz FB, et al. Ultra-Low-Dose (18)F-Florbetaben Amyloid PET Imaging Using Deep Learning with Mul=-Contrast MRI Inputs. Radiology. 2019;290(3):649-656.

1294. Chen Q, Hu S, Long P, Lu F, Shi Y, Li Y. A Transfer Learning Approach for Malignant Prostate Lesion Detec=on on Mul=parametric MRI. Technology in cancer research & treatment. 2019;18:1533033819858363.

1295. Chen S, Guo J, Wang C, Xu X, Yi Z, Li W. DeepLNAnno: a Web-Based Lung Nodules Annota=ng System for CT Images. Journal of medical systems. 2019;43(7):197.

1296. Chen T, Ning Z, Xu L, et al. Radiomics nomogram for predic=ng the malignant poten=al of gastrointes=nal stromal tumours preopera=vely. European radiology. 2019;29(3):1074-1082.

1297. Chen X, Tong Y, Shi Z, et al. Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach. BMC neurology. 2019;19(1):6.

1298. Chen X, Zhang Q, Wang J, Xin Z, Chen J, Luo W. Combined machine learning and func=onal magne=c resonance imaging allows individualized predic=on of high-al=tude induced psychomotor impairment: The role of neural func=onality in putamen and pallidum. Biosci Trends. 2019;13(1):98-104.

1299. Chen Y, Chen TW, Wu CQ, et al. Radiomics model of contrast-enhanced computed tomography for predic=ng the recurrence of acute pancrea==s. European radiology. 2019;29(8):4408-4417.

1300. Cheng B, Liu M, Zhang D, Shen D. Robust mul=-label transfer feature learning for early diagnosis of Alzheimer's disease. Brain Imaging Behav. 2019;13(1):138-153.

1301. Cheng CT, Ho TY, Lee TY, et al. Applica=on of a deep learning algorithm for detec=on and visualiza=on of hip fractures on plain pelvic radiographs. European radiology. 2019;29(10):5469-5477.

1302. Cheng PM, Tran KN, Whang G, Tejura TK. Refining Convolu=onal Neural Network Detec=on of Small-Bowel Obstruc=on in Conven=onal Radiography. AJR Am J Roentgenol. 2019;212(2):342-350.

Page 101: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1303. Chiang TC, Huang YS, Chen RT, Huang CS, Chang RF. Tumor Detec=on in Automated Breast Ultrasound Using 3-D CNN and Priori=zed Candidate Aggrega=on. IEEE transac4ons on medical imaging. 2019;38(1):240-249.

1304. Chiao JY, Chen KY, Liao KY, Hsieh PH, Zhang G, Huang TC. Detec=on and classifica=on the breast tumors using mask R-CNN on sonograms. Medicine. 2019;98(19):e15200.

1305. Choi H, Ha S, Kang H, Lee H, Lee DS. Deep learning only by normal brain PET iden=fy unheralded brain anomalies. EBioMedicine. 2019;43:447-453.

1306. Codari M, Schiaffino S, Sardanelli F, Trimboli RM. Ar=ficial Intelligence for Breast MRI in 2008-2018: A Systema=c Mapping Review. AJR Am J Roentgenol. 2019;212(2):280-292.

1307. Couteaux V, Si-Mohamed S, Nempont O, et al. Automa=c knee meniscus tear detec=on and orienta=on classifica=on with Mask-RCNN. Diagn Interv Imaging. 2019;100(4):235-242.

1308. Couteaux V, Si-Mohamed S, Renard-Penna R, et al. Kidney cortex segmenta=on in 2D CT with U-Nets ensemble aggrega=on. Diagn Interv Imaging. 2019;100(4):211-217.

1309. Cui EM, Lin F, Li Q, et al. Differen=a=on of renal angiomyolipoma without visible fat from renal cell carcinoma by machine learning based on whole-tumor computed tomography texture features. Acta radiologica (Stockholm, Sweden : 1987). 2019;60(11):1543-1552.

1310. Cui S, Luo Y, Tseng HH, Ten Haken RK, El Naqa I. Combining handcraked features with latent variables in machine learning for predic=on of radia=on-induced lung damage. Medical physics. 2019;46(5):2497-2511.

1311. Dadsena R, P R, Ramakrishnan S. Proposal of a Machine Learning Approach to Differen=ate Mild and Alzheimer's Condi=on in MR Images Using Shape Changes in Corpus Callosum. Studies in health technology and informa4cs. 2019;258:243-244.

1312. Datong C, Minghui L, Cheng J, Yue S, Dongbin X, Yueming L. Coronary Calcium Detec=on Based on Improved Deep Residual Network in Mimics. Journal of medical systems. 2019;43(5):119.

1313. De Carli F, Nobili F, Pagani M, et al. Accuracy and generaliza=on capability of an automa=c method for the detec=on of typical brain hypometabolism in prodromal Alzheimer disease. Eur J Nucl Med Mol Imaging. 2019;46(2):334-347.

1314. de Jong GA, Aquarius R. Use of ar=ficial neural networks to predict anterior communica=ng artery aneurysm rupture: possible methodological considera=ons. European radiology. 2019;29(5):2724-2726.

1315. de Vos BD, Berendsen FF, Viergever MA, Sokoo= H, Staring M, Isgum I. A deep learning framework for unsupervised affine and deformable image registra=on. Medical image analysis. 2019;52:128-143.

1316. Deng W, Shi Q, Luo K, Yang Y, Ning N. Brain Tumor Segmenta=on Based on Improved Convolu=onal Neural Network in Combina=on with Non-quan=fiable Local Texture Feature. Journal of medical systems. 2019;43(6):152.

1317. Ding L, Liu GW, Zhao BC, et al. Ar=ficial intelligence system of faster region-based convolu=onal neural network surpassing senior radiologists in evalua=on of metasta=c lymph nodes of rectal cancer. Chin Med J (Engl). 2019;132(4):379-387.

1318. Ding Y, Sohn JH, Kawczynski MG, et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using (18)F-FDG PET of the Brain. Radiology. 2019;290(2):456-464.

Page 102: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1319. Diniz JOB, Diniz PHB, Valente TLA, Silva AC, Paiva AC. Spinal cord detec=on in planning CT for radiotherapy through adap=ve template matching, IMSLIC and convolu=onal neural networks. Computer methods and programs in biomedicine. 2019;170:53-67.

1320. Dolotova D, Donitova V, Arhipov I, et al. A Plarorm for Collec=on and Analysis of Image Data on Stroke. Studies in health technology and informa4cs. 2019;262:312-315.

1321. Dubost F, Adams H, Bortsova G, et al. 3D regression neural network for the quan=fica=on of enlarged perivascular spaces in brain MRI. Medical image analysis. 2019;51:89-100.

1322. Dubost F, Yilmaz P, Adams H, et al. Enlarged perivascular spaces in brain MRI: Automated quan=fica=on in four regions. NeuroImage. 2019;185:534-544.

1323. Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP. Assessment of Convolu=onal Neural Networks for Automated Classifica=on of Chest Radiographs. Radiology. 2019;290(2):537-544.

1324. Duong MT, Rauschecker AM, Rudie JD, et al. Ar=ficial intelligence for precision educa=on in radiology. The Bri4sh journal of radiology. 2019;92(1103):20190389.

1325. Ellis L. Ar=ficial intelligence for precision educa=on in radiology - experiences in radiology teaching from a UK founda=on doctor. The Bri4sh journal of radiology. 2019;92(1104):20190779.

1326. Elshafeey N, Kotrotsou A, Hassan A, et al. Mul=center study demonstrates radiomic features derived from magne=c resonance perfusion images iden=fy pseudoprogression in glioblastoma. Nature communica4ons. 2019;10(1):3170.

1327. England JR, Cheng PM. Ar=ficial Intelligence for Medical Image Analysis: A Guide for Authors and Reviewers. AJR Am J Roentgenol. 2019;212(3):513-519.

1328. Esteban O, Blair RW, Nielson DM, et al. Crowdsourced MRI quality metrics and expert quality annota=ons for training of humans and machines. Sci Data. 2019;6(1):30.

1329. Fahmy AS, El-Rewaidy H, Nezafat M, Nakamori S, Nezafat R. Automated analysis of cardiovascular magne=c resonance myocardial na=ve T1 mapping images using fully convolu=onal neural networks. J Cardiovasc Magn Reson. 2019;21(1):7.

1330. Fan J, Yang J, Wang Y, et al. Deep feature descriptor based hierarchical dense matching for X-ray angiographic images. Computer methods and programs in biomedicine. 2019;175:233-242.

1331. Feng ST, Jia Y, Liao B, et al. Preopera=ve predic=on of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. European radiology. 2019;29(9):4648-4659.

1332. Fennema-Notes=ne C. Data-Driven Explora=on of Brain Structure Using Sta=s=cal Machine Learning: Validity of Derived Diagnos=c Pa+erns in Alcohol Use Disorder and Human Immunodeficiency Virus Infec=on. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(6):508-509.

1333. Ferrari R, Mancini-Terracciano C, Voena C, et al. MR-based ar=ficial intelligence model to assess response to therapy in locally advanced rectal cancer. European journal of radiology. 2019;118:1-9.

1334. Flanders AE. Machine Learning Detec=on of Intracranial Aneurysms-Will It Play in Peoria? Radiology. 2019;290(1):195-197.

Page 103: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1335. Fries JA, Varma P, Chen VS, et al. Weakly supervised classifica=on of aor=c valve malforma=ons using unlabeled cardiac MRI sequences. Nature communica4ons. 2019;10(1):3111.

1336. Fujioka T, Kubota K, Mori M, et al. Dis=nc=on between benign and malignant breast masses at breast ultrasound using deep learning method with convolu=onal neural network. Japanese journal of radiology. 2019;37(6):466-472.

1337. Gallego-Or=z C, Martel AL. A graph-based lesion characteriza=on and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions. Medical image analysis. 2019;51:116-124.

1338. Gallix B, Chong J. Ar=ficial intelligence in radiology: who's afraid of the big bad wolf? European radiology. 2019;29(4):1637-1639.

1339. Gao C, Xiang P, Ye J, Pang P, Wang S, Xu M. Can texture features improve the differen=a=on of infiltra=ve lung adenocarcinoma appearing as ground glass nodules in contrast-enhanced CT? European journal of radiology. 2019;117:126-131.

1340. Gao Y, Geras KJ, Lewin AA, Moy L. New Fron=ers: An Update on Computer-Aided Diagnosis for Breast Imaging in the Age of Ar=ficial Intelligence. AJR Am J Roentgenol. 2019;212(2):300-307.

1341. Geis JR, Brady AP, Wu CC, et al. Ethics of Ar=ficial Intelligence in Radiology: Summary of the Joint European and North American Mul=society Statement. Canadian Associa4on of Radiologists journal = Journal l'Associa4on canadienne des radiologistes. 2019;70(4):329-334.

1342. Gerard SE, Pa+on TJ, Christensen GE, Bayouth JE, Reinhardt JM. FissureNet: A Deep Learning Approach For Pulmonary Fissure Detec=on in CT Images. IEEE transac4ons on medical imaging. 2019;38(1):156-166.

1343. Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detec=on using deep learning methods. Interna4onal journal of computer assisted radiology and surgery. 2019;14(4):611-621.

1344. Ghosh A. Ar=ficial Intelligence Using Open Source BI-RADS Data Exemplifying Poten=al Future Use. Journal of the American College of Radiology : JACR. 2019;16(1):64-72.

1345. Goldberg JE, Rosenkrantz AB. Ar=ficial Intelligence and Radiology: A Social Media Perspec=ve. Current problems in diagnos4c radiology. 2019;48(4):308-311.

1346. Goldenberg JM, Cardenas-Rodriguez J, Pagel MD. Machine learning improves classifica=on of preclinical models of pancrea=c cancer with chemical exchange satura=on transfer MRI. Magn Reson Med. 2019;81(1):594-601.

1347. Gong H, Yu L, Leng S, et al. A deep learning- and par=al least square regression-based model observer for a low-contrast lesion detec=on task in CT. Medical physics. 2019;46(5):2052-2063.

1348. Gonzalez Izard S, Juanes Mendez JA, Ruisoto Palomera P, Garcia-Penalvo FJ. Applica=ons of Virtual and Augmented Reality in Biomedical Imaging. Journal of medical systems. 2019;43(4):102.

1349. Gordon MN, Hadjiiski LM, Cha KH, et al. Deep-learning convolu=onal neural network: Inner and outer bladder wall segmenta=on in CT urography. Medical physics. 2019;46(2):634-648.

Page 104: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1350. Grassi R, Miele V, Giovagnoni A. Ar=ficial intelligence: a challenge for third millennium radiologist. La Radiologia medica. 2019;124(4):241-242.

1351. Gros C, De Leener B, Badji A, et al. Automa=c segmenta=on of the spinal cord and intramedullary mul=ple sclerosis lesions with convolu=onal neural networks. NeuroImage. 2019;184:901-915.

1352. Gsaxner C, Roth PM, Wallner J, Egger J. Exploit fully automa=c low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data. PloS one. 2019;14(3):e0212550.

1353. Gu Q, Feng Z, Liang Q, et al. Machine learning-based radiomics strategy for predic=on of cell prolifera=on in non-small cell lung cancer. European journal of radiology. 2019;118:32-37.

1354. Gu Y, Lu X, Zhang B, et al. Automa=c lung nodule detec=on using mul=-scale dot nodule-enhancement filter and weighted support vector machines in chest computed tomography. PloS one. 2019;14(1):e0210551.

1355. Guha Roy A, Conje= S, Navab N, Wachinger C. QuickNAT: A fully convolu=onal network for quick and accurate segmenta=on of neuroanatomy. NeuroImage. 2019;186:713-727.

1356. Gunter NB, Schwarz CG, Graff-Radford J, et al. Automated detec=on of imaging features of dispropor=onately enlarged subarachnoid space hydrocephalus using machine learning methods. Neuroimage Clin. 2019;21:101605.

1357. Guo D, Gu D, Wang H, et al. Radiomics analysis enables recurrence predic=on for hepatocellular carcinoma aker liver transplanta=on. European journal of radiology. 2019;117:33-40.

1358. Haga A, Takahashi W, Aoki S, et al. Standardiza=on of imaging features for radiomics analysis. J Med Invest. 2019;66(1.2):35-37.

1359. Hainline AE, Nath V, Parvathaneni P, et al. A deep learning approach to es=ma=on of subject-level bias and variance in high angular resolu=on diffusion imaging. Magne4c resonance imaging. 2019;59:130-136.

1360. Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA Pediatric Bone Age Machine Learning Challenge. Radiology. 2019;290(2):498-503.

1361. Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolu=onal neural network classifier for mul=-phasic MRI. European radiology. 2019;29(7):3338-3347.

1362. Hashimoto F, Kakimoto A, Ota N, Ito S, Nishizawa S. Automated segmenta=on of 2D low-dose CT images of the psoas-major muscle using deep convolu=onal neural networks. Radiological physics and technology. 2019;12(2):210-215.

1363. Haskins G, Kruecker J, Kruger U, et al. Learning deep similarity metric for 3D MR-TRUS image registra=on. Interna4onal journal of computer assisted radiology and surgery. 2019;14(3):417-425.

1364. Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA. Real-=me cardiovascular MR with spa=o-temporal ar=fact suppression using deep learning-proof of concept in congenital heart disease. Magn Reson Med. 2019;81(2):1143-1156.

Page 105: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1365. He Y, Guo J, Ding X, et al. Convolu=onal neural network to predict the local recurrence of giant cell tumor of bone aker cure+age based on pre-surgery magne=c resonance images. European radiology. 2019;29(10):5441-5451.

1366. Hectors SJ, Cherny M, Yadav KK, et al. Radiomics Features Measured with Mul=parametric Magne=c Resonance Imaging Predict Prostate Cancer Aggressiveness. J Urol. 2019;202(3):498-505.

1367. Hemalatha RJ, Vijaybaskar V, Thamizhvani TR. Automa=c localiza=on of anatomical regions in medical ultrasound images of rheumatoid arthri=s using deep learning. Proceedings of the Ins4tu4on of Mechanical Engineers Part H, Journal of engineering in medicine. 2019;233(6):657-667.

1368. Herent P, Schmauch B, Jehanno P, et al. Detec=on and characteriza=on of MRI breast lesions using deep learning. Diagn Interv Imaging. 2019;100(4):219-225.

1369. Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K. Improvement of image quality at CT and MRI using deep learning. Japanese journal of radiology. 2019;37(1):73-80.

1370. Hinton B, Ma L, Mahmoudzadeh AP, et al. Deep learning networks find unique mammographic differences in previous nega=ve mammograms between interval and screen-detected cancers: a case-case study. Cancer Imaging. 2019;19(1):41.

1371. Hirai R, Sakata Y, Tanizawa A, Mori S. Real-=me tumor tracking using fluoroscopic imaging with deep neural network analysis. Physica medica : PM : an interna4onal journal devoted to the applica4ons of physics to medicine and biology : official journal of the Italian Associa4on of Biomedical Physics (AIFB). 2019;59:22-29.

1372. Horng MH, Kuok CP, Fu MJ, Lin CJ, Sun YN. Cobb Angle Measurement of Spine from X-Ray Images Using Convolu=onal Neural Network. Computa4onal and mathema4cal methods in medicine. 2019;2019:6357171.

1373. Hou R, Zhou D, Nie R, Liu D, Ruan X. Brain CT and MRI medical image fusion using convolu=onal neural networks and a dual-channel spiking cor=cal model. Medical & biological engineering & compu4ng. 2019;57(4):887-900.

1374. Hsieh YZ, Luo YC, Pan C, Su MC, Chen CJ, Hsieh KL. Cerebral Small Vessel Disease Biomarkers Detec=on on MRI-Sensor-Based Image and Deep Learning. Sensors (Basel, Switzerland). 2019;19(11).

1375. Hsu SM, Kuo WH, Kuo FC, Liao YY. Breast tumor classifica=on using different features of quan=ta=ve ultrasound parametric images. Interna4onal journal of computer assisted radiology and surgery. 2019;14(4):623-633.

1376. Hsu SY, Lin HC, Chen TB, et al. Feasible Classified Models for Parkinson Disease from (99m)Tc-TRODAT-1 SPECT Imaging. Sensors (Basel, Switzerland). 2019;19(7).

1377. Hsu W, Baumgartner C, Deserno T. Advancing Ar=ficial Intelligence in Sensors, Signals, and Imaging Informa=cs. Yearbook of medical informa4cs. 2019;28(1):115-117.

1378. Hu Y, Guo Y, Wang Y, et al. Automa=c tumor segmenta=on in breast ultrasound images using a dilated fully convolu=onal network combined with an ac=ve contour model. Medical physics. 2019;46(1):215-228.

1379. Huang C, Tian J, Yuan C, et al. Fully Automated Segmenta=on of Lower Extremity Deep Vein Thrombosis Using Convolu=onal Neural Network. BioMed research interna4onal. 2019;2019:3401683.

Page 106: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1380. Huang Y, Han L, Dou H, et al. Two-stage CNNs for computerized BI-RADS categoriza=on in breast ultrasound images. Biomedical engineering online. 2019;18(1):8.

1381. Huang YT, Huang YL, Ng KK, Lin G. Current Status of Magne=c Resonance Imaging in Pa=ents with Malignant Uterine Neoplasms: A Review. Korean J Radiol. 2019;20(1):18-33.

1382. Huber FA, Stutz S, Vi+oria de Mar=ni I, et al. Qualita=ve versus quan=ta=ve lumbar spinal stenosis grading by machine learning supported texture analysis-Experience from the LSOS study cohort. European journal of radiology. 2019;114:45-50.

1383. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of ar=ficial intelligence applica=ons in dental and maxillofacial radiology: A systema=c review. Dentomaxillofac Radiol. 2020;49(1):20190107.

1384. Huo Y, Xu Z, Xiong Y, et al. 3D whole brain segmenta=on using spa=ally localized atlas network =les. NeuroImage. 2019;194:105-119.

1385. Hussain D, Han SM. Computer-aided osteoporosis detec=on from DXA imaging. Computer methods and programs in biomedicine. 2019;173:87-107.

1386. Hwang EJ, Park S, Jin KN, et al. Development and Valida=on of a Deep Learning-Based Automated Detec=on Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Netw Open. 2019;2(3):e191095.

1387. Iqbal S, Ghani Khan MU, Saba T, et al. Deep learning model integra=ng features and novel classifiers fusion for brain tumor segmenta=on. Microscopy research and technique. 2019;82(8):1302-1315.

1388. Ito R, Nakae K, Hata J, Okano H, Ishii S. Semi-supervised deep learning of brain =ssue segmenta=on. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;116:25-34.

1389. Jacobsen N, Deistung A, Timmann D, Goericke SL, Reichenbach JR, Gullmar D. Analysis of intensity normaliza=on for op=mal segmenta=on performance of a fully convolu=onal neural network. Z Med Phys. 2019;29(2):128-138.

1390. Jalal S, Nicolaou S, Parker W. Ar=ficial Intelligence, Radiology, and the Way Forward. Canadian Associa4on of Radiologists journal = Journal l'Associa4on canadienne des radiologistes. 2019;70(1):10-12.

1391. Jaremko JL, Azar M, Bromwich R, et al. Canadian Associa=on of Radiologists White Paper on Ethical and Legal Issues Related to Ar=ficial Intelligence in Radiology. Canadian Associa4on of Radiologists journal = Journal l'Associa4on canadienne des radiologistes. 2019;70(2):107-118.

1392. Javi+ MC. Sec=on Editor's Notebook: Augmented Intelligence in Women's Imaging-A Compelling Value Proposi=on. AJR Am J Roentgenol. 2019;212(2):248-249.

1393. Jiang J, Hu YC, Liu CJ, et al. Mul=ple Resolu=on Residually Connected Feature Streams for Automa=c Lung Tumor Segmenta=on From CT Images. IEEE transac4ons on medical imaging. 2019;38(1):134-144.

1394. Kailasam SP, Sathik MM. A Novel Hybrid Feature Extrac=on Model for Classifica=on on Pulmonary Nodules. Asian Pacific journal of cancer preven4on : APJCP. 2019;20(2):457-468.

Page 107: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1395. Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for mul=phase coronary CT angiography. Medical physics. 2019;46(2):550-562.

1396. Karimpouli S, Tahmasebi P. Image-based velocity es=ma=on of rock using Convolu=onal Neural Networks. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;111:89-97.

1397. Kavitha MS, Shanthini J, Sabitha R. ECM-CSD: An Efficient Classifica=on Model for Cancer Stage Diagnosis in CT Lung Images Using FCM and SVM Techniques. Journal of medical systems. 2019;43(3):73.

1398. Kebir S, Weber M, Lazaridis L, et al. Hybrid 11C-MET PET/MRI Combined With "Machine Learning" in Glioma Diagnosis According to the Revised Glioma WHO Classifica=on 2016. Clin Nucl Med. 2019;44(3):214-220.

1399. Ker J, Singh SP, Bai Y, Rao J, Lim T, Wang L. Image Thresholding Improves 3-Dimensional Convolu=onal Neural Network Diagnosis of Different Acute Brain Hemorrhages on Computed Tomography Scans. Sensors (Basel, Switzerland). 2019;19(9).

1400. Khan SA, Nazir M, Khan MA, et al. Lungs nodule detec=on framework from computed tomography images using support vector machine. Microscopy research and technique. 2019;82(8):1256-1266.

1401. Khened M, Kollerathu VA, Krishnamurthi G. Fully convolu=onal mul=-scale residual DenseNets for cardiac segmenta=on and automated cardiac diagnosis using ensemble of classifiers. Medical image analysis. 2019;51:21-45.

1402. Khosravan N, Celik H, Turkbey B, Jones EC, Wood B, Bagci U. A collabora=ve computer aided diagnosis (C-CAD) system with eye-tracking, sparse a+en=onal model, and deep learning. Medical image analysis. 2019;51:101-115.

1403. Kim BC, Yoon JS, Choi JS, Suk HI. Mul=-scale gradual integra=on CNN for false posi=ve reduc=on in pulmonary nodule detec=on. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;115:1-10.

1404. Kim C, Zhu V, Obeid J, Lenert L. Natural language processing and machine learning algorithm to iden=fy brain MRI reports with acute ischemic stroke. PloS one. 2019;14(2):e0212778.

1405. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design Characteris=cs of Studies Repor=ng the Performance of Ar=ficial Intelligence Algorithms for Diagnos=c Analysis of Medical Images: Results from Recently Published Papers. Korean J Radiol. 2019;20(3):405-410.

1406. Kim H, Park CM, Gwak J, et al. Effect of CT Reconstruc=on Algorithm on the Diagnos=c Performance of Radiomics Models: A Task-Based Approach for Pulmonary Subsolid Nodules. AJR Am J Roentgenol. 2019;212(3):505-512.

1407. Kim HC, BandeSni PA, Lee JH. Deep neural network predicts emo=onal responses of the human brain from func=onal magne=c resonance imaging. NeuroImage. 2019;186:607-627.

1408. Kim T, Heo J, Jang DK, et al. Machine learning for detec=ng moyamoya disease in plain skull radiography using a convolu=onal neural network. EBioMedicine. 2019;40:636-642.

1409. Kim Y, Lee KJ, Sunwoo L, et al. Deep Learning in Diagnosis of Maxillary Sinusi=s Using Conven=onal Radiography. Invest Radiol. 2019;54(1):7-15.

Page 108: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1410. Kise Y, Ikeda H, Fujii T, et al. Preliminary study on the applica=on of deep learning system to diagnosis of Sjogren's syndrome on CT images. Dentomaxillofac Radiol. 2019;48(6):20190019.

1411. Klein A, Warszawski J, Hillengass J, Maier-Hein KH. Automa=c bone segmenta=on in whole-body CT images. Interna4onal journal of computer assisted radiology and surgery. 2019;14(1):21-29.

1412. Kniep HC, Madesta F, Schneider T, et al. Radiomics of Brain MRI: U=lity in Predic=on of Metasta=c Tumor Type. Radiology. 2019;290(2):479-487.

1413. Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generaliza=on of learned image reconstruc=on and the poten=al for transfer learning. Magn Reson Med. 2019;81(1):116-128.

1414. Kobayashi Y, Ishibashi M, Kobayashi H. How will "democra=za=on of ar=ficial intelligence" change the future of radiologists? Japanese journal of radiology. 2019;37(1):9-14.

1415. Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O. Influence of segmenta=on margin on machine learning-based high-dimensional quan=ta=ve CT texture analysis: a reproducibility study on renal clear cell carcinomas. European radiology. 2019;29(9):4765-4775.

1416. Kocak B, Durmaz ES, Ates E, Ulusan MB. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quan=ta=ve CT Texture Analysis in Predic=ng PBRM1 Muta=on Status. AJR Am J Roentgenol. 2019;212(3):W55-w63.

1417. Kocak B, Durmaz ES, Kadioglu P, et al. Predic=ng response to somatosta=n analogues in acromegaly: machine learning-based high-dimensional quan=ta=ve texture analysis on T2-weighted MRI. European radiology. 2019;29(6):2731-2739.

1418. Kontos D, Conant EF. Can AI Help Make Screening Mammography "Lean"? Radiology. 2019;293(1):47-48.

1419. Kunimatsu A, Kunimatsu N, Yasaka K, et al. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differen=ate between Glioblastoma and Primary Central Nervous System Lymphoma. Magn Reson Med Sci. 2019;18(1):44-52.

1420. Kutlu H, Avci E. A Novel Method for Classifying Liver and Brain Tumors Using Convolu=onal Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks. Sensors (Basel, Switzerland). 2019;19(9).

1421. Larvie M. Machine Learning in Radiology: Resistance Is Fu=le. Radiology. 2019;290(2):465-466.

1422. Lassau N, Es=enne T, de Vomecourt P, et al. Five simultaneous ar=ficial intelligence data challenges on ultrasound, CT, and MRI. Diagn Interv Imaging. 2019;100(4):199-209.

1423. Laukamp KR, Thiele F, Shakirin G, et al. Fully automated detec=on and segmenta=on of meningiomas using deep learning on rou=ne mul=parametric MRI. European radiology. 2019;29(1):124-132.

1424. Lee C, Kim Y, Kim YS, Jang J. Automa=c Disease Annota=on From Radiology Reports Using Ar=ficial Intelligence Implemented by a Recurrent Neural Network. AJR Am J Roentgenol. 2019;212(4):734-740.

Page 109: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1425. Lee D, Choi S, Kim HJ. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains. Medical physics. 2019;46(1):104-115.

1426. Lee G, Bak SH, Lee HY, et al. Measurement Variability in Treatment Response Determina=on for Non-Small Cell Lung Cancer: Improvements Using Radiomics. J Thorac Imaging. 2019;34(2):103-115.

1427. Lee JH, Ha EJ, Kim JH. Applica=on of deep learning to the diagnosis of cervical lymph node metastas is f rom thyro id cancer with CT. European rad io logy. 2019;29(10):5452-5457.

1428. Lee MH, Kim J, Kim ST, et al. Predic=on of IDH1 Muta=on Status in Glioblastoma Using Machine Learning Technique Based on Quan=ta=ve Radiomic Data. World neurosurgery. 2019;125:e688-e696.

1429. Lee SM, Lee JG, Lee G, et al. CT Image Conversion among Different Reconstruc=on Kernels without a Sinogram by Using a Convolu=onal Neural Network. Korean J Radiol. 2019;20(2):295-303.

1430. Lee SM, Seo JB, Yun J, et al. Deep Learning Applica=ons in Chest Radiography and Computed Tomography: Current State of the Art. J Thorac Imaging. 2019;34(2):75-85.

1431. Lehman CD, Yala A, Schuster T, et al. Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementa=on. Radiology. 2019;290(1):52-58.

1432. Lei Y, Tian S, He X, et al. Ultrasound prostate segmenta=on based on mul=direc=onal deeply supervised V-Net. Medical physics. 2019;46(7):3194-3206.

1433. Leiner T. Deep Learning for Detec=on of Myocardial Scar Tissue: Goodbye to Gadolinium? Radiology. 2019;291(3):618-619.

1434. Lessmann N, van Ginneken B, de Jong PA, Isgum I. Itera=ve fully convolu=onal neural networks for automa=c vertebra segmenta=on and iden=fica=on. Medical image analysis. 2019;53:142-155.

1435. Li AY, Elliot N. Natural language processing to iden=fy ureteric stones in radiology reports. J Med Imaging Radiat Oncol. 2019;63(3):307-310.

1436. Li C, Wang S, Serra A, et al. Mul=-parametric and mul=-regional histogram analysis of MRI: modality integra=on reveals imaging phenotypes of glioblastoma. European radiology. 2019;29(9):4718-4729.

1437. Li J, Song Y, Xu S, et al. Predic=ng underes=ma=on of ductal carcinoma in situ: a comparison between radiomics and conven=onal approaches. Interna4onal journal of computer assisted radiology and surgery. 2019;14(4):709-721.

1438. Li L, Wang K, Ma X, et al. Radiomic analysis of mul=parametric magne=c resonance imaging for differen=a=ng skull base chordoma and chondrosarcoma. European journal of radiology. 2019;118:81-87.

1439. Li W, Huang Y, Zhuang BW, et al. Mul=parametric ultrasomics of significant liver fibrosis: A machine learning-based analysis. European radiology. 2019;29(3):1496-1506.

1440. Li W, Zhang L, Tian C, et al. Prognos=c value of computed tomography radiomics features in pa=ents with gastric cancer following cura=ve resec=on. European radiology. 2019;29(6):3079-3089.

Page 110: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1441. Liang P, Sun G, Wei S. Applica=on of Deep Learning Algorithm in Cervical Cancer MRI Image Segmenta=on Based on Wireless Sensor. Journal of medical systems. 2019;43(6):156.

1442. Liang X, Peng C, Qiu B, Li B. Dense networks with rela=ve loca=on awareness for thorax disease iden=fica=on. Medical physics. 2019;46(5):2064-2073.

1443. Liao F, Chen X, Hu X, Song S. Es=ma=on of the Volume of the Lek Ventricle From MRI Images Using Deep Neural Networks. IEEE Trans Cybern. 2019;49(2):495-504.

1444. Liew CJ, Krishnaswamy P, Cheng LT, Tan CH, Poh AC, Lim TC. Ar=ficial Intelligence and Radiology in Singapore: Championing a New Age of Augmented Imaging for Unsurpassed Pa=ent Care. Ann Acad Med Singapore. 2019;48(1):16-24.

1445. Lindgren Belal S, Sadik M, Kaboteh R, et al. Deep learning for segmenta=on of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quan=fica=on of skeletal metastases. European journal of radiology. 2019;113:89-95.

1446. Liu C, Gardner SJ, Wen N, et al. Automa=c Segmenta=on of the Prostate on CT Images Using Deep Neural Networks (DNN). Interna4onal journal of radia4on oncology, biology, physics. 2019;104(4):924-932.

1447. Liu H, Jing B, Han W, Long Z, Mo X, Li H. A Compara=ve Texture Analysis Based on NECT and CECT Images to Differen=ate Lung Adenocarcinoma from Squamous Cell Carcinoma. Journal of medical systems. 2019;43(3):59.

1448. Liu J, Xu H, Chen Q, et al. Predic=on of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine. 2019;43:454-459.

1449. Liu Y, Lei Y, Wang T, et al. MRI-based treatment planning for liver stereotac=c body radiotherapy: valida=on of a deep learning-based synthe=c CT genera=on method. The Bri4sh journal of radiology. 2019;92(1100):20190067.

1450. Lonning K, Putzky P, Sonke JJ, Reneman L, Caan MWA, Welling M. Recurrent inference machines for reconstruc=ng heterogeneous MRI data. Medical image analysis. 2019;53:64-78.

1451. Lossau T, Nickisch H, Wissel T, et al. Mo=on ar=fact recogni=on and quan=fica=on in coronary CT angiography using convolu=onal neural networks. Medical image analysis. 2019;52:68-79.

1452. Lotan E, Jain R, Razavian N, Fa+erpekar GM, Lui YW. State of the Art: Machine Learning Applica=ons in Glioma Imaging. AJR Am J Roentgenol. 2019;212(1):26-37.

1453. Lu Y, Liu L, Luan S, Xiong J, Geng D, Yin B. The diagnos=c value of texture analysis in predic=ng WHO grades of meningiomas based on ADC maps: an a+empt using decision tree and decision forest. European radiology. 2019;29(3):1318-1328.

1454. Luchies AC, Byram BC. Training improvements for ultrasound beamforming with deep neural networks. Phys Med Biol. 2019;64(4):045018.

1455. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29(2):102-127.

1456. Ma C, Zhang Y, Niyazi T, et al. Radiomics for predic=ng hematoma expansion in pa=ents with hypertensive intraparenchymal hematomas. European journal of radiology. 2019;115:10-15.

Page 111: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1457. Ma L, Ma C, Liu Y, Wang X. Thyroid Diagnosis from SPECT Images Using Convolu=onal Neural Network with Op=miza=on. Computa4onal intelligence and neuroscience. 2019;2019:6212759.

1458. Ma X, Hadjiiski LM, Wei J, et al. U-Net based deep learning bladder segmenta=on in CT urography. Medical physics. 2019;46(4):1752-1765.

1459. Ma X, Wei J, Zhou C, et al. Automated pectoral muscle iden=fica=on on MLO-view mammograms: Comparison of deep neural network to conven=onal computer vision. Medical physics. 2019;46(5):2103-2114.

1460. Malek M, Gity M, Alidoos= A, et al. A machine learning approach for dis=nguishing uterine sarcoma from leiomyomas based on perfusion weighted MRI parameters. European journal of radiology. 2019;110:203-211.

1461. Manickavasagam R, Selvan S. Automa=c Detec=on and Classifica=on of Lung Nodules in CT Image Using Op=mized Neuro Fuzzy Classifier with Cuckoo Search Algorithm. Journal of medical systems. 2019;43(3):77.

1462. Mannil M, Burgstaller JM, Held U, Farshad M, Guggenberger R. Correla=on of texture analysis of paraspinal musculature on MRI with different clinical endpoints: Lumbar Stenosis Outcome Study (LSOS). European radiology. 2019;29(1):22-30.

1463. Mannil M, von Spiczak J, Muehlema+er UJ, et al. Texture analysis of myocardial infarc=on in CT: Comparison with visual analysis and impact of itera=ve reconstruc=on. European journal of radiology. 2019;113:245-250.

1464. Mao N, Yin P, Wang Q, et al. Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study. Journal of the American College of Radiology : JACR. 2019;16(4 Pt A):485-491.

1465. Mardani M, Gong E, Cheng JY, et al. Deep Genera=ve Adversarial Neural Networks for Compressive Sensing MRI. IEEE transac4ons on medical imaging. 2019;38(1):167-179.

1466. Marsousi M, Platanio=s KN, Stergiopoulos S. Kidney Detec=on in 3-D Ultrasound Imagery via Shape-to-Volume Registra=on Based on Spa=ally Aligned Neural Network. IEEE journal of biomedical and health informa4cs. 2019;23(1):227-242.

1467. Massari L, BulleS A, Prasanna S, et al. A Mechatronic Plarorm for Computer Aided Detec=on of Nodules in Anatomopathological Analyses via S=ffness and Ultrasound Measurements. Sensors (Basel, Switzerland). 2019;19(11).

1468. Masuda T, Nakaura T, Funama Y, et al. Machine-learning integra=on of CT histogram analysis to evaluate the composi=on of atherosclero=c plaques: Valida=on with IB-IVUS. Journal of cardiovascular computed tomography. 2019;13(2):163-169.

1469. Mehta SD, Sebro R. Random forest classifiers aid in the detec=on of incidental osteoblas=c osseous metastases in DEXA studies. Interna4onal journal of computer assisted radiology and surgery. 2019;14(5):903-909.

1470. Meineke A, Rubbert C, Sawicki LM, et al. Poten=al of a machine-learning model for dose op=miza=on in CT quality assurance. European radiology. 2019;29(7):3705-3713.

1471. Melekoodappa+u JG, Subbian PS. A Hybridized ELM for Automa=c Micro Calcifica=on Detec=on in Mammogram Images Based on Mul=-Scale Features. Journal of medical systems. 2019;43(7):183.

Page 112: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1472. Mendelson EB. Ar=ficial Intelligence in Breast Imaging: Poten=als and Limita=ons. AJR Am J Roentgenol. 2019;212(2):293-299.

1473. Miller DD, Brown EW. How Cogni=ve Machines Can Augment Medical Imaging. AJR Am J Roentgenol. 2019;212(1):9-14.

1474. Min X, Li M, Dong D, et al. Mul=-parametric MRI-based radiomics signature for discrimina=ng between clinically significant and insignificant prostate cancer: Cross-valida=on of a machine learning method. European journal of radiology. 2019;115:16-21.

1475. Moccia S, Banali R, Mar=ni C, et al. Development and tes=ng of a deep learning-based strategy for scar segmenta=on on CMR-LGE images. Magma (New York, NY). 2019;32(2):187-195.

1476. Moore MM, Slonimsky E, Long AD, Sze RW, Iyer RS. Machine learning concepts, concerns and opportuni=es for a pediatric radiologist. Pediatr Radiol. 2019;49(4):509-516.

1477. Muehlema+er UJ, Mannil M, Becker AS, et al. Vertebral body insufficiency fractures: detec=on of vertebrae at risk on standard CT images using texture analysis and machine learning. European radiology. 2019;29(5):2207-2217.

1478. Mylonas A, Keall PJ, Booth JT, et al. A deep learning framework for automa=c detec=on of arbitrarily shaped fiducial markers in intrafrac=on fluoroscopic images. Medical physics. 2019;46(5):2286-2297.

1479. Nakagawa M, Nakaura T, Namimoto T, et al. A mul=parametric MRI-based machine learning to dis=nguish between uterine sarcoma and benign leiomyoma: comparison with (18)F-FDG PET/CT. Clin Radiol. 2019;74(2):167.e161-167.e167.

1480. Nakata N. Recent technical development of ar=ficial intelligence for diagnos=c medical imaging. Japanese journal of radiology. 2019;37(2):103-108.

1481. Nam JG, Park S, Hwang EJ, et al. Development and Valida=on of Deep Learning-based Automa=c Detec=on Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology. 2019;290(1):218-228.

1482. Nayak A, Baidya Kayal E, Arya M, et al. Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using mul=-phase abdomen CT. Interna4onal journal of computer assisted radiology and surgery. 2019;14(8):1341-1352.

1483. Nguyen DT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B. Hybrid mul=variate pa+ern analysis combined with extreme learning machine for Alzheimer's demen=a diagnosis using mul=-measure rs-fMRI spa=al pa+erns. PloS one. 2019;14(2):e0212582.

1484. Niu J, Zhang S, Ma S, et al. Preopera=ve predic=on of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magne=c resonance images. European radiology. 2019;29(3):1625-1634.

1485. Obert M. Are es=ma=ons of radiomic image markers dispensable due to recent deep learning findings? Eur Respir J. 2019;54(2).

1486. Onishi Y, Teramoto A, Tsujimoto M, et al. Automated Pulmonary Nodule Classifica=on in Computed Tomography Images Using a Deep Convolu=onal Neural Network Trained by Genera=ve Adversarial Networks. BioMed research interna4onal. 2019;2019:6051939.

Page 113: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1487. Ouhmich F, Agnus V, Noblet V, Heitz F, Pessaux P. Liver =ssue segmenta=on in mul=phase CT scans using cascaded convolu=onal neural networks. Interna4onal journal of computer assisted radiology and surgery. 2019;14(8):1275-1284.

1488. Ouyang FS, Guo BL, Ouyang LZ, et al. Comparison between linear and nonlinear machine-learning algorithms for the classifica=on of thyroid nodules. European journal of radiology. 2019;113:251-257.

1489. Ozdemir F, Goksel O. Extending pretrained segmenta=on networks with addi=onal anatomical structures. Interna4onal journal of computer assisted radiology and surgery. 2019;14(7):1187-1195.

1490. Pandiselvi T, Maheswaran R. Efficient Framework for Iden=fying, Loca=ng, Detec=ng and Classifying MRI Brain Tumor in MRI Images. Journal of medical systems. 2019;43(7):189.

1491. Park CM. Can Ar=ficial Intelligence Fix the Reproducibility Problem of Radiomics? Radiology. 2019;292(2):374-375.

1492. Park HJ, Kim SM, La Yun B, et al. A computer-aided diagnosis system using ar=ficial intelligence for the diagnosis and characteriza=on of breast masses on ultrasound: Added value for the inexperienced breast radiologist. Medicine. 2019;98(3):e14146.

1493. Park S, Lee SM, Kim N, et al. Applica=on of deep learning-based computer-aided detec=on system: detec=ng pneumothorax on chest radiograph aker biopsy. European radiology. 2019;29(10):5341-5348.

1494. Park YW, Oh J, You SC, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conven=onal and diffusion tensor imaging. European radiology. 2019;29(8):4068-4076.

1495. Parker W, Forster BB. Ar=ficial intelligence in sports medicine radiology: what's coming? Br J Sports Med. 2019;53(19):1201-1202.

1496. Perek S, Kirya= N, Zimmerman-Moreno G, Sklair-Levy M, Konen E, Mayer A. Classifica=on of contrast-enhanced spectral mammography (CESM) images. Interna4onal journal of computer assisted radiology and surgery. 2019;14(2):249-257.

1497. Perone CS, Ballester P, Barros RC, Cohen-Adad J. Unsupervised domain adapta=on for medical imaging segmenta=on with self-ensembling. NeuroImage. 2019;194:1-11.

1498. Pesce E, Joseph Withey S, Ypsilan=s PP, Bakewell R, Goh V, Montana G. Learning to detect chest radiographs containing pulmonary lesions using visual a+en=on networks. Medical image analysis. 2019;53:26-38.

1499. Pizarro R, Assemlal HE, De Nigris D, et al. Using Deep Learning Algorithms to Automa=cally Iden=fy the Brain MRI Contrast: Implica=ons for Managing Large Databases. Neuroinforma4cs. 2019;17(1):115-130.

1500. Pons E, Foks KA, Dippel DWJ, Hunink MGM. Impact of guidelines for the management of minor head injury on the u=liza=on and diagnos=c yield of CT over two decades, using natural language processing in a large dataset. European radiology. 2019;29(5):2632-2640.

1501. Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classifica=on and detec=on of calcaneus fractures in CT images. Computer methods and programs in biomedicine. 2019;171:27-37.

Page 114: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1502. Prui+ P, Naidech A, Van Ornam J, Borczuk P, Thompson W. A natural language processing algorithm to extract characteris=cs of subdural hematoma from head CT reports. Emerg Radiol. 2019;26(3):301-306.

1503. Qi X, Zhang L, Chen Y, et al. Automated diagnosis of breast ultrasonography images using deep neural networks. Medical image analysis. 2019;52:185-198.

1504. Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolu=onal Recurrent Neural Networks for Dynamic MR Image Reconstruc=on. IEEE transac4ons on medical imaging. 2019;38(1):280-290.

1505. Qin Y, Zheng H, Huang X, Yang J, Zhu YM. Pulmonary nodule segmenta=on with CT sample synthesis using adversarial networks. Medical physics. 2019;46(3):1218-1229.

1506. Raja AS, Pourjabbar S, Ip IK, et al. Impact of a Health Informa=on Technology-Enabled Appropriate Use Criterion on U=liza=on of Emergency Department CT for Renal Colic. AJR Am J Roentgenol. 2019;212(1):142-145.

1507. Rampado O, Gianusso L, Nava CR, Ropolo R. Analysis of a CT pa=ent dose database with an unsupervised clustering approach. Physica medica : PM : an interna4onal journal devoted to the applica4ons of physics to medicine and biology : official journal of the Italian Associa4on of Biomedical Physics (AIFB). 2019;60:91-99.

1508. Retson TA, Besser AH, Sall S, Golden D, Hsiao A. Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging. J Thorac Imaging. 2019;34(3):192-201.

1509. Robins M, Solomon J, Koweek LMH, Christensen J, Samei E. Valida=on of lesion simula=ons in clinical CT data for anonymized chest and abdominal CT databases. Medical physics. 2019;46(4):1931-1937.

1510. Roblot V, Giret Y, Bou Antoun M, et al. Ar=ficial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100(4):243-249.

1511. Rodriguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detec=on of Breast Cancer with Mammography: Effect of an Ar=ficial Intelligence Support System. Radiology. 2019;290(2):305-314.

1512. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, et al. Can we reduce the workload of mammographic screening by automa=c iden=fica=on of normal exams with ar=ficial intelligence? A feasibility study. European radiology. 2019;29(9):4825-4832.

1513. Roy AG, Conje= S, Navab N, Wachinger C. Bayesian QuickNAT: Model uncertainty in deep whole-brain segmenta=on for structure-wise quality control. NeuroImage. 2019;195:11-22.

1514. Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology. European journal of radiology. 2019;114:14-24.

1515. Sadik M, Lind E, Polymeri E, Enqvist O, Ulen J, Tragardh E. Automated quan=fica=on of reference levels in liver and medias=nal blood pool for the Deauville therapy response classifica=on using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging. 2019;39(1):78-84.

1516. Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radia=on therapy. Medical physics. 2019;46(1):e1-e36.

Page 115: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1517. San=n M, Brama C, Thero H, et al. Detec=ng abnormal thyroid car=lages on CT using deep learning. Diagn Interv Imaging. 2019;100(4):251-257.

1518. Savadjiev P, Chong J, Dohan A, et al. Image-based biomarkers for solid tumor quan=fica=on. European radiology. 2019;29(10):5431-5440.

1519. Savadjiev P, Chong J, Dohan A, et al. Demys=fica=on of AI-driven medical image interpreta=on: past, present and future. European radiology. 2019;29(3):1616-1624.

1520. Savareh BA, Emami H, Hajiabadi M, Azimi SM, Ghafoori M. Wavelet-enhanced convolu=onal neural network: a new idea in a deep learning paradigm. Biomedizinische Technik Biomedical engineering. 2019;64(2):195-205.

1521. Scheinost D, Noble S, Horien C, et al. Ten simple rules for predic=ve modeling of individual differences in neuroimaging. NeuroImage. 2019;193:35-45.

1522. Schlemper J, Oktay O, Schaap M, et al. A+en=on gated networks: Learning to leverage salient regions in medical images. Medical image analysis. 2019;53:197-207.

1523. Schle+ CL, Na+enmuller J, Tsuchiya N, et al. Noncontrast Chest Computed Tomographic Imaging of Obesity and the Metabolic Syndrome: Part I Cardiovascular Findings. J Thorac Imaging. 2019;34(2):116-125.

1524. Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagn Interv Imaging. 2019;100(4):227-233.

1525. Schoepf UJ, Tesche C. Oracle of Our Time: Machine Learning for Predic=ng Cardiovascular Events. Radiology. 2019;292(2):363-364.

1526. Scialpi M, Bianconi F, Can=sani V, Palumbo B. Radiomic Machine Learning: Is It Really a Useful Method for the Characteriza=on of Prostate Cancer? Radiology. 2019;291(1):269-270.

1527. Seah JCY, Tang JSN, Kitchen A, Gaillard F, Dixon AF. Chest Radiographs in Conges=ve Heart Failure: Visualizing Neural Network Learning. Radiology. 2019;290(2):514-522.

1528. Sensakovic WF, Mahesh M. Role of the Medical Physicist in the Health Care Ar=ficial Intelligence Revolu=on. Journal of the American College of Radiology : JACR. 2019;16(3):393-394.

1529. Shaish H, Mutasa S, Makkar J, Chang P, Schwartz L, Ahmed F. Predic=on of Lymph Node Maximum Standardized Uptake Value in Pa=ents With Cancer Using a 3D Convolu=onal Neural Network: A Proof-of-Concept Study. AJR Am J Roentgenol. 2019;212(2):238-244.

1530. Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma aker cura=ve tumor resec=on or abla=on. Cancer Imaging. 2019;19(1):11.

1531. Shen G, Horikawa T, Majima K, Kamitani Y. Deep image reconstruc=on from human brain ac=vity. PLoS computa4onal biology. 2019;15(1):e1006633.

1532. Shibutani T, Nakajima K, Wakabayashi H, et al. Accuracy of an ar=ficial neural network for detec=ng a regional abnormality in myocardial perfusion SPECT. Annals of nuclear medicine. 2019;33(2):86-92.

1533. Siegel EL. What Can We Learn from the RSNA Pediatric Bone Age Machine Learning Challenge? Radiology. 2019;290(2):504-505.

1534. Sitek A, Wolfe JM. Assessing Cancer Risk from Mammograms: Deep Learning Is Superior to Conven=onal Risk Models. Radiology. 2019;292(1):67-68.

Page 116: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1535. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolu=onal Neural Networks for Radiologic Images: A Radiologist's Guide. Radiology. 2019;290(3):590-606.

1536. Song J, Zhang Z. Brain Tissue Segmenta=on and Bias Field Correc=on of MR Image Based on Spa=ally Coherent FCM with Nonlocal Constraints. Computa4onal and mathema4cal methods in medicine. 2019;2019:4762490.

1537. Su C, Jiang J, Zhang S, et al. Radiomics based on mul=contrast MRI can precisely differen=ate among glioma subtypes and predict tumour-prolifera=ve behaviour. European radiology. 2019;29(4):1986-1996.

1538. Sun J, Chen W, Peng S, Liu B. DRRNet: Dense Residual Refine Networks for Automa=c Brain Tumor Segmenta=on. Journal of medical systems. 2019;43(7):221.

1539. Sun X, Liu L, Xu K, et al. Predic=on of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images. Medicine. 2019;98(14):e15022.

1540. Sun Y, Reynolds HM, Parameswaran B, et al. Mul=parametric MRI and radiomics in prostate cancer: a review. Australasian physical & engineering sciences in medicine. 2019;42(1):3-25.

1541. Sundararajan SK, Sankaragomathi B, Priya DS. Deep Belief CNN Feature Representa=on Based Content Based Image Retrieval for Medical Images. Journal of medical systems. 2019;43(6):174.

1542. Suresh A, Udendhran R, Balamurgan M, Varatharajan R. A Novel Internet of Things Framework Integrated with Real Time Monitoring for Intelligent Healthcare Environment. Journal of medical systems. 2019;43(6):165.

1543. Tajmir SH, Lee H, Shailam R, et al. Ar=ficial intelligence-assisted interpreta=on of bone age radiographs improves accuracy and decreases variability. Skeletal radiology. 2019;48(2):275-283.

1544. Tan Y, Zhang ST, Wei JW, et al. A radiomics nomogram may improve the predic=on of IDH genotype for astrocytoma before surgery. European radiology. 2019;29(7):3325-3337.

1545. Tang CX, Wang YN, Zhou F, et al. Diagnos=c performance of frac=onal flow reserve derived from coronary CT angiography for detec=on of lesion-specific ischemia: A mul=-center study and meta-analysis. European journal of radiology. 2019;116:90-97.

1546. Tatsugami F, Higaki T, Nakamura Y, et al. Deep learning-based image restora=on algorithm for coronary CT angiography. European radiology. 2019;29(10):5322-5329.

1547. Thillaikkarasi R, Saravanan S. An Enhancement of Deep Learning Algorithm for Brain Tumor Segmenta=on Using Kernel Based CNN with M-SVM. Journal of medical systems. 2019;43(4):84.

1548. Tong N, Gou S, Yang S, Cao M, Sheng K. Shape constrained fully convolu=onal DenseNet with adversarial training for mul=organ segmenta=on on head and neck CT and low-field MR images. Medical physics. 2019;46(6):2669-2682.

1549. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, et al. Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR A+enua=on Correc=on. J Nucl Med. 2019;60(3):429-435.

Page 117: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1550. Trimboli RM, Codari M, Guazzi M, Sardanelli F. Screening mammography beyond breast cancer: breast arterial calcifica=ons as a sex-specific biomarker of cardiovascular risk. European journal of radiology. 2019;119:108636.

1551. Trivedi G, Hong C, Dadashzadeh ER, Handzel RM, Hochheiser H, Visweswaran S. Iden=fying incidental findings from radiology reports of trauma pa=ents: An evalua=on of automated feature representa=on methods. Int J Med Inform. 2019;129:81-87.

1552. Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C. Radiomic versus Convolu=onal Neural Networks Analysis for Classifica=on of Contrast-enhancing Lesions at Mul=parametric Breast MRI. Radiology. 2019;290(2):290-297.

1553. Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology. Japanese journal of radiology. 2019;37(1):15-33.

1554. Ueda D, Yamamoto A, Nishimori M, et al. Deep Learning for MR Angiography: Automated Detec=on of Cerebral Aneurysms. Radiology. 2019;290(1):187-194.

1555. Uthoff J, Stephens MJ, Newell JD, Jr., et al. Machine learning approach for dis=nguishing malignant and benign lung nodules u=lizing standardized perinodular parenchymal features from CT. Medical physics. 2019;46(7):3207-3216.

1556. Uzunova H, Schultz S, Handels H, Ehrhardt J. Unsupervised pathology detec=on in medical images using condi=onal varia=onal autoencoders. Interna4onal journal of computer assisted radiology and surgery. 2019;14(3):451-461.

1557. Vaidya T, Agrawal A, Mahajan S, Thakur MH, Mahajan A. The Con=nuing Evolu=on of Molecular Func=onal Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther. 2019;23(1):27-51.

1558. Valverde S, Salem M, Cabezas M, et al. One-shot domain adapta=on in mul=ple sclerosis lesion segmenta=on using convolu=onal neural networks. Neuroimage Clin. 2019;21:101638.

1559. van Assen M, De Cecco CN, Eid M, et al. Prognos=c value of CT myocardial perfusion imaging and CT-derived frac=onal flow reserve for major adverse cardiac events in pa=ents with coronary artery disease. Journal of cardiovascular computed tomography. 2019;13(3):26-33.

1560. van der Sommen F. Time for second-genera=on ar=ficial intelligence in medical imaging. Endoscopy. 2019;51(12):1113-1114.

1561. van Hamersvelt RW, Zreik M, Voskuil M, Viergever MA, Isgum I, Leiner T. Deep learning analysis of lek ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnos=c accuracy for iden=fica=on of func=onally significant stenosis. European radiology. 2019;29(5):2350-2359.

1562. Van Opbroek A, Achterberg HC, Vernooij MW, De Bruijne M. Transfer Learning for Image Segmenta=on by Combining Image Weigh=ng and Kernel Learning. IEEE transac4ons on medical imaging. 2019;38(1):213-224.

1563. Vido+o M, De Momi E, Gazzara M, Ma+os LS, Ferrigno G, Moccia S. FCNN-based axon segmenta=on for convec=on-enhanced delivery op=miza=on. Interna4onal journal of computer assisted radiology and surgery. 2019;14(3):493-499.

Page 118: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1564. Viswanath SE, Chirra PV, Yim MC, et al. Comparing radiomic classifiers and classifier ensembles for detec=on of peripheral zone prostate tumors on T2-weighted MRI: a mul=-site study. BMC Med Imaging. 2019;19(1):22.

1565. Vogl F, Friesenbichler B, Husken L, Kramers-de Quervain IA, Taylor WR. Can low-frequency guided waves at the =bia paired with machine learning differen=ate between healthy and osteopenic/osteoporo=c subjects? A pilot study. Ultrasonics. 2019;94:109-116.

1566. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, et al. Coronary CT angiography-derived plaque quan=fica=on with ar=ficial intelligence CT frac=onal flow reserve for the iden=fica=on of lesion-specific ischemia. European radiology. 2019;29(5):2378-2387.

1567. Wang B, Lei Y, Tian S, et al. Deeply supervised 3D fully convolu=onal networks with group dilated convolu=on for automa=c MRI prostate segmenta=on. Medical physics. 2019;46(4):1707-1718.

1568. Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part II: convolu=onal neural network interpreta=on using radiologic imaging features. European radiology. 2019;29(7):3348-3357.

1569. Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnos=c performance for assessing liver fibrosis in chronic hepa==s B: a prospec=ve mul=centre study. Gut. 2019;68(4):729-741.

1570. Wang L, Yang S, Yang S, et al. Automa=c thyroid nodule recogni=on and diagnosis in ultrasound imaging with the YOLOv2 neural network. World J Surg Oncol. 2019;17(1):12.

1571. Wang M, Xie P, Ran Z, et al. Full convolu=onal network based mul=ple side-output fusion architecture for the segmenta=on of rectal tumors in magne=c resonance images: A mul=-vendor study. Medical physics. 2019;46(6):2659-2668.

1572. Wang T, Lei Y, Tian S, et al. Learning-based automa=c segmenta=on of arteriovenous malforma=ons on contrast CT images in brain stereotac=c radiosurgery. Medical physics. 2019;46(7):3133-3141.

1573. Wang X, Mao K, Wang L, Yang P, Lu D, He P. An Appraisal of Lung Nodules Automa=c Classifica=on Algorithms for CT Images. Sensors (Basel, Switzerland). 2019;19(1).

1574. Wang Y, Yan F, Lu X, et al. IILS: Intelligent imaging layout system for automa=c imaging report standardiza=on and intra-interdisciplinary clinical workflow op=miza=on. EBioMedicine. 2019;44:162-181.

1575. Wei R, Lin K, Yan W, et al. Computer-Aided Diagnosis of Pancreas Serous Cys=c Neoplasms: A Radiomics Method on Preopera=ve MDCT Images. Technology in cancer research & treatment. 2019;18:1533033818824339.

1576. Weston AD, Korfia=s P, Kline TL, et al. Automated Abdominal Segmenta=on of CT Scans for Body Composi=on Analysis Using Deep Learning. Radiology. 2019;290(3):669-679.

1577. Willemink MJ, Noel PB. The evolu=on of image reconstruc=on for CT-from filtered back projec=on to ar=ficial intelligence. European radiology. 2019;29(5):2185-2195.

1578. Winkel DJ, Heye T, Weikert TJ, Boll DT, S=eltjes B. Evalua=on of an AI-Based Detec=on Sokware for Acute Findings in Abdominal Computed Tomography Scans: Toward an Automated Work List Priori=za=on of Rou=ne CT Examina=ons. Invest Radiol. 2019;54(1):55-59.

Page 119: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1579. Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Isgum I. Coronary artery centerline extrac=on in cardiac CT angiography using a CNN-based orienta=on classifier. Medical image analysis. 2019;51:46-60.

1580. Wong SH, Al-Hasani H, Alam Z, Alam A. Ar=ficial intelligence in radiology: how will we be affected? European radiology. 2019;29(1):141-143.

1581. Wu D, Wang X, Bai J, et al. Automated anatomical labeling of coronary arteries via bidirec=onal tree LSTMs. Interna4onal journal of computer assisted radiology and surgery. 2019;14(2):271-280.

1582. Wu S, Meng J, Yu Q, Li P, Fu S. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype predic=on of diffuse gliomas. Journal of cancer research and clinical oncology. 2019;145(3):543-550.

1583. Xu G, Yang HY, Xu HF. Predic=on of microvascular invasion in hepatocellular carcinoma with preopera=ve imaging radiomic analysis: Is it ready for prime =me? Hepatobiliary Pancreat Dis Int. 2019;18(3):289-290.

1584. Xu M, Qi S, Yue Y, et al. Segmenta=on of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomedical engineering online. 2019;18(1):2.

1585. Yamada A, Oyama K, Fujita S, et al. Dynamic contrast-enhanced computed tomography diagnosis of primary liver cancers using transfer learning of pretrained convolu=onal neural networks: Is registra=on of mul=phasic images necessary? Interna4onal journal of computer assisted radiology and surgery. 2019;14(8):1295-1301.

1586. Yamashita AY, Falcao AX, Leite NJ. The Residual Center of Mass: An Image Descriptor for the Diagnosis of Alzheimer Disease. Neuroinforma4cs. 2019;17(2):307-321.

1587. Yan K, Wang X, Kim J, Khadra M, Fulham M, Feng D. A propaga=on-DNN: Deep combina=on learning of mul=-level features for MR prostate segmenta=on. Computer methods and programs in biomedicine. 2019;170:11-21.

1588. Yan Y, Somer E, Grau V. Classifica=on of amyloid PET images using novel features for early diagnosis of Alzheimer's disease and mild cogni=ve impairment conversion. Nucl Med Commun. 2019;40(3):242-248.

1589. Yanagawa M, Niioka H, Hata A, et al. Applica=on of deep learning (3-dimensional convolu=onal neural network) for the predic=on of pathological invasiveness in lung adenocarcinoma: A preliminary study. Medicine. 2019;98(25):e16119.

1590. Yang J, Faraji M, Basu A. Robust segmenta=on of arterial walls in intravascular ultrasound images using Dual Path U-Net. Ultrasonics. 2019;96:24-33.

1591. Yang X, Wang T, Lei Y, et al. MRI-based a+enua=on correc=on for brain PET/MRI based on anatomic signature and machine learning. Phys Med Biol. 2019;64(2):025001.

1592. Ye W, Gu W, Guo X, et al. Detec=on of pulmonary ground-glass opacity based on deep learning computer ar=ficial intelligence. Biomedical engineering online. 2019;18(1):6.

1593. Yin P, Mao N, Zhao C, et al. Comparison of radiomics machine-learning classifiers and feature selec=on for differen=a=on of sacral chordoma and sacral giant cell tumour b a s e d o n 3 D co m p u te d to m o g ra p hy fe at u re s . Eu r o p e a n r a d i o l o g y. 2019;29(4):1841-1847.

Page 120: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1594. Yu L, Tao G, Zhu L, et al. Predic=on of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis. BMC cancer. 2019;19(1):464.

1595. Yuan Y, Qin W, Buyyounouski M, et al. Prostate cancer classifica=on with mul=parametric MRI transfer learning model. Medical physics. 2019;46(2):756-765.

1596. Yun J, Park J, Yu D, et al. Improvement of fully automated airway segmenta=on on volumetric computed tomographic images using a 2.5 dimensional convolu=onal neural net. Medical image analysis. 2019;51:13-20.

1597. Zarshenas A, Liu J, For= P, Suzuki K. Separa=on of bones from sok =ssue in chest radiographs: Anatomy-specific orienta=on-frequency-specific deep neural network convolu=on. Medical physics. 2019;46(5):2232-2242.

1598. Zavala Bojorquez JA, Jodoin PM, Bricq S, Walker PM, Bruno+e F, Lalande A. Automa=c classifica=on of =ssues on pelvic MRI based on relaxa=on =mes and support vector machine. PloS one. 2019;14(2):e0211944.

1599. Zhang Q, Qiao H, Dou J, et al. Plaque components segmenta=on in caro=d artery on simultaneous non-contrast angiography and intraplaque hemorrhage imaging using machine learning. Magne4c resonance imaging. 2019;60:93-100.

1600. Zhang Q, Song S, Xiao Y, Chen S, Shi J, Zheng H. Dual-mode ar=ficially-intelligent diagnosis of breast tumours in shear-wave elastography and B-mode ultrasound using deep polynomial networks. Medical engineering & physics. 2019;64:1-6.

1601. Zhang Y, Zhang B, Liang F, et al. Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types. European radiology. 2019;29(4):2157-2165.

1602. Zhong BY, Ni CF, Ji JS, et al. Nomogram and Ar=ficial Neural Network for Prognos=c Performance on the Albumin-Bilirubin Grade for Hepatocellular Carcinoma Undergoing Transarterial Chemoemboliza=on. Journal of vascular and interven4onal radiology : JVIR. 2019;30(3):330-338.

1603. Zhong X, Strobel N, Birkhold A, Kowarschik M, Fahrig R, Maier A. A machine learning pipeline for internal anatomical landmark embedding based on a pa=ent surface model. Interna4onal journal of computer assisted radiology and surgery. 2019;14(1):53-61.

1604. Zhong Y, Vinogradskiy Y, Chen L, et al. Technical Note: Deriving ven=la=on imaging from 4DCT by deep convolu=onal neural network. Medical physics. 2019;46(5):2323-2329.

1605. Zhong Z, Kim Y, Plichta K, et al. Simultaneous cosegmenta=on of tumors in PET-CT images using deep fully convolu=onal networks. Medical physics. 2019;46(2):619-633.

1606. Zhou H, Chang K, Bai HX, et al. Machine learning reveals mul=modal MRI pa+erns predic=ve of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. J Neurooncol. 2019;142(2):299-307.

1607. Zhou LQ, Wang JY, Yu SY, et al. Ar=ficial intelligence in medical imaging of the liver. World journal of gastroenterology. 2019;25(6):672-682.

1608. Zhou R, Fenster A, Xia Y, Spence JD, Ding M. Deep learning-based caro=d media-adven==a and lumen-in=ma boundary segmenta=on from three-dimensional ultrasound images. Medical physics. 2019;46(7):3180-3193.

Page 121: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1609. Zhou R, Luo Y, Fenster A, Spence JD, Ding M. Fractal dimension based caro=d plaque characteriza=on from three-dimensional ultrasound images. Medical & biological engineering & compu4ng. 2019;57(1):135-146.

1610. Zhou S, Zhang X, Zhang R. Iden=fying Cardiomegaly in ChestX-ray8 Using Transfer Learning. Studies in health technology and informa4cs. 2019;264:482-486.

1611. Zhu H, He G, Wang Z. Patch-based local learning method for cerebral blood flow quan=fica=on with arterial spin-labeling MRI. Medical & biological engineering & compu4ng. 2018;56(6):951-956.

1612. Zhu N, Najafi M, Han B, Hancock S, Hristov D. Feasibility of Image Registra=on for Ultrasound-Guided Prostate Radiotherapy Based on Similarity Measurement by a Convolu=onal Neural Network. Technology in cancer research & treatment. 2019;18:1533033818821964.

1613. Zhu R, Dornaika F, Ruichek Y. Learning a discriminant graph-based embedding with feature selec=on for image categoriza=on. Neural networks : the official journal of the Interna4onal Neural Network Society. 2019;111:35-46.

1614. Zhu X, Suk HI, Lee SW, Shen D. Discrimina=ve self-representa=on sparse regression for neuroimaging-based alzheimer's disease diagnosis. Brain Imaging Behav. 2019;13(1):27-40.

1615. Zhu Y, Man C, Gong L, et al. A deep learning radiomics model for preopera=ve grading in meningioma. European journal of radiology. 2019;116:128-134.

1616. Zhuang Z, Lei N, Joseph Raj AN, Qiu S. Applica=on of fractal theory and fuzzy enhancement in ultrasound image segmenta=on. Medical & biological engineering & compu4ng. 2019;57(3):623-632.

1617. Zukotynski K, Gaudet V, Kuo PH, et al. The Use of Random Forests to Classify Amyloid Brain PET. Clin Nucl Med. 2019;44(10):784-788.

1618. Abdolhosseinzadeh A, Mojra A, Ashrafizadeh A. A numerical study on thermal abla=on of brain tumor with intraopera=ve focused ultrasound. J Therm Biol. 2019;83:119-133.

1619. Adler TJ, Ardizzone L, Vemuri A, et al. Uncertainty-aware performance assessment of op=cal imaging modali=es with inver=ble neural networks. Interna4onal journal of computer assisted radiology and surgery. 2019;14(6):997-1007.

1620. Alawieh A, Zaraket F, Alawieh MB, Cha+erjee AR, Spio+a A. Using machine learning to op=mize selec=on of elderly pa=ents for endovascular thrombectomy. Journal of neurointerven4onal surgery. 2019;11(8):847-851.

1621. Ames CP, Smith JS, Pellise F, et al. Ar=ficial Intelligence Based Hierarchical Clustering of Pa=ent Types and Interven=on Categories in Adult Spinal Deformity Surgery: Towards a New Classifica=on Scheme that Predicts Quality and Value. Spine. 2019;44(13):915-926.

1622. Azari DP, Frasier LL, Quamme SRP, et al. Modeling Surgical Technical Skill Using Expert Assessment for Automated Computer Ra=ng. Ann Surg. 2019;269(3):574-581.

1623. Choi HI, Jung SK, Baek SH, et al. Ar=ficial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J Craniofac Surg. 2019;30(7):1986-1989.

Page 122: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

1624. Danilov G, Ko=k K, Shifrin M, Strunina U, Pronkina T, Potapov A. Predic=on of Postopera=ve Hospital Stay with Deep Learning Based on 101 654 Opera=ve Reports in Neurosurgery. Studies in health technology and informa4cs. 2019;258:125-129.

1625. Fuentes-Hurtado F, Kadkhodamohammadi A, Flouty E, Barbarisi S, Luengo I, Stoyanov D. EasyLabels: weak labels for scene segmenta=on in laparoscopic videos. Interna4onal journal of computer assisted radiology and surgery. 2019;14(7):1247-1257.

1626. Funke I, Mees ST, Weitz J, Speidel S. Video-based surgical skill assessment using 3D convolu=onal neural networks. Interna4onal journal of computer assisted radiology and surgery. 2019;14(7):1217-1225.

1627. Ghogawala Z, Dunbar M, Essa I. Ar=ficial Intelligence for the Treatment of Lumbar Spondylolisthesis. Neurosurg Clin N Am. 2019;30(3):383-389.

1628. Ghogawala Z, Dunbar MR, Essa I. Lumbar spondylolisthesis: modern registries and the development of ar=ficial intelligence. J Neurosurg Spine. 2019;30(6):729-735.

1629. Hassanipour S, Ghaem H, Arab-Zozani M, et al. Comparison of ar=ficial neural network and logis=c regression models for predic=on of outcomes in trauma pa=ents: A systema=c review and meta-analysis. Injury. 2019;50(2):244-250.

1630. Johnston SS, Morton JM, Kalsekar I, Ammann EM, Hsiao CW, Reps J. Using Machine Learning Applied to Real-World Healthcare Data for Predic=ve Analy=cs: An Applied Example in Bariatric Surgery. Value Health. 2019;22(5):580-586.

1631. Lee CC, Yang HC, Lin CJ, et al. Intervening Nidal Brain Parenchyma and Risk of Radia=on-Induced Changes Aker Radiosurgery for Brain Arteriovenous Malforma=on: A Study Using an Unsupervised Machine Learning Algorithm. World neurosurgery. 2019;125:e132-e138.

1632. Levites HA, Thomas AB, Levites JB, Zenn MR. The Use of Emo=onal Ar=ficial Intelligence in Plas=c Surgery. Plast Reconstr Surg. 2019;144(2):499-504.

1633. Liu L, Ni Y, Zhang N, Nick Pratap J. Mining pa=ent-specific and contextual data with machine learning technologies to predict cancella=on of children's surgery. Int J Med Inform. 2019;129:234-241.

1634. Liu X, Jiang D, Wang M, Song Z. Image synthesis-based mul=-modal image registra=on framework by using deep fully convolu=onal networks. Medical & biological engineering & compu4ng. 2019;57(5):1037-1048.

1635. Maubert A, Birtwisle L, Bernard JL, Benizri E, Bereder JM. Can machine learning predict resecability of a peritoneal carcinomatosis? Surg Oncol. 2019;29:120-125.

1636. Menendez ME, Shaker J, Lawler SM, Ring D, Jawa A. Nega=ve Pa=ent-Experience Comments Aker Total Shoulder Arthroplasty. J Bone Joint Surg Am. 2019;101(4):330-337.

1637. Merali ZG, Wi=w CD, Badhiwala JH, Wilson JR, Fehlings MG. Using a machine learning approach to predict outcome aker surgery for degenera=ve cervical myelopathy. PloS one. 2019;14(4):e0215133.

1638. Navines Lopez J. Ar=ficial intelligence applied to evidence-based surgery. Cir Esp. 2019;97(2):63-64.

1639. O'Sullivan S, Nevejans N, Allen C, et al. Legal, regulatory, and ethical frameworks for development of standards in ar=ficial intelligence (AI) and autonomous robo=c surgery.

Page 123: 2019 ML in healthcare review - brainxai.org · strategy, in augmenting our tele-ICU practice and in triaging post-surgical patients. Dr. Bhattacharyya is a critical care medicine

The interna4onal journal of medical robo4cs + computer assisted surgery : MRCAS. 2019;15(1):e1968.

1640. Pfeiffer M, Riediger C, Weitz J, Speidel S. Learning sok =ssue behavior of organs for surgical naviga=on with convolu=onal neural networks. Interna4onal journal of computer assisted radiology and surgery. 2019;14(7):1147-1155.

1641. Schnelldorfer T, Ware MP, Liu LP, Sarr MG, Birke+ DH, Ruthazer R. Can We Accurately Iden=fy Peritoneal Metastases Based on Their Appearance? An Assessment of the Current Prac=ce of Intraopera=ve Gastrointes=nal Cancer Staging. Annals of surgical oncology. 2019;26(6):1795-1804.

1642. Taki AP, Dong Y, Habermann E, Liu H, Herasevich V. Rela=onship Between Very Cold Outside Weather and Surgical Outcome: Integra=ng Shallow and Deep Ar=ficial Neural Nets. Studies in health technology and informa4cs. 2019;264:1783-1784.

1643. Tourani R, Murphree DH, Melton-Meaux G, Wick E, Kor DJ, Simon GJ. The Value of Aggregated High-Resolu=on Intraopera=ve Data for Predic=ng Post-Surgical Infec=ous Complica=ons at Two Independent Sites. Studies in health technology and informa4cs. 2019;264:398-402.

1644. Tuwatananurak JP, Zadeh S, Xu X, et al. Machine Learning Can Improve Es=ma=on of Surgical Case Dura=on: A Pilot Study. Journal of medical systems. 2019;43(3):44.

1645. Zhao B, Waterman RS, Urman RD, Gabriel RA. A Machine Learning Approach to Predic=ng Case Dura=on for Robot-Assisted Surgery. Journal of medical systems. 2019;43(2):32.

1646. Zuo Z, Wang K, Gao L, Ho V, Mao H, Qian D. A Novel Mass-Producible Capaci=ve Sensor with Fully Symmetric 3D Structure and Microfluidics for Cells Detec=on. Sensors (Basel, Switzerland). 2019;19(2).