[2016] Computed Tomography Imaging in Oncology.

download [2016] Computed Tomography Imaging in Oncology.

of 15

Transcript of [2016] Computed Tomography Imaging in Oncology.

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    1/15

    Computed TomographyI m a g i n g i n O n c o l o g y

    Lisa J. Forrest,   VMD

    COMPUTED TOMOGRAPHY FOR CANCER STAGING: THORAX

    Thoracic imaging is the first step in cancer staging for dogs and cats with known orsuspected tumors. Following our colleagues in human oncology along with validationfrom veterinary literature, thoracic computed tomography (CT) plays an important rolein screening for pulmonary and thoracic primary and secondary malignancies.1–11

    Equipment and Technique

    Helical CT scanners allow rapid image acquisition and provide superior delineation of thoracic masses, metastases, and involved thoracic lymph nodes. Dogs and cats areusually under general anesthesia, placed in sternal recumbency, and imaged precon-trast and postcontrast administration. At our institution dogs and cats are induced inCT and immediately positioned in sternal recumbency. Using a plexiglass cylinder forcats and small dogs with light or no sedation has also been reported.12,13

    The author has nothing to disclose.Department of Surgical Sciences, University of Wisconsin-Madison School of Veterinary Medi-cine, 2015 Linden Drive, Madison, WI 53706, USAE-mail address:  [email protected]

    KEYWORDS

     CT    Dog    Cat    Oncology    Radiotherapy     IMRT     IGRT

    KEY POINTS

      The availability of CT technology in veterinary medicine has increased its use as a first-line

    imaging modality to evaluate the thorax for primary and metastatic pulmonary tumors, andmediastinal and thoracic wall tumors.

     Often, simultaneous abdominal CT imaging screens for other tumors or metastasis.

     A presurgical CT evaluation helps to inform surgeons about the extent, and whether com-plete tumor resection is possible.

     Triple-phase vascular CT imaging can identify vascular invasion of tumors.

      CT imaging plays a crucial role in radiotherapy treatment planning, and many linear accel-erators have on-board CT imaging for daily image guidance to ensure accurate treatmentdelivery.

    Vet Clin Small Anim  - (2016)  -–-http://dx.doi.org/10.1016/j.cvsm.2015.12.007   vetsmall.theclinics.com0195-5616/16/$ – see front matter 2016 Elsevier Inc. All rights reserved.

    mailto:[email protected]://dx.doi.org/10.1016/j.cvsm.2015.12.007http://vetsmall.theclinics.com/http://vetsmall.theclinics.com/http://dx.doi.org/10.1016/j.cvsm.2015.12.007mailto:[email protected]

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    2/15

     At our institution the thorax protocol on a GE helical CT scanner (GE Healthcare,Hartland, WI) is 120 kVp, 150 to 250 mA, with 1.25 mm contiguous slices for most pa-tients and 2.5 mm for large dogs. The window/level for mediastinum and precontrastevaluation is W 5 400/L 5 40 and for lung is W 5 1500/L5  700 ( Table 1 ). Patientsare manually hyperventilated just before slice acquisition to reduce expired CO2. Thisdecreases respiratory motion on images. Dorsal and sagittal plane reconstructions areobtained in lung window and mediastinal window postcontrast administration.4 Otherprotocols also exist in the literature.9,14–17

    Pulmonary and Thoracic Masses

    Sensitivity of CT for metastasis detection is far superior to radiographs.1,2,5,6,8,9 Iden-tification and delineation of primary lung, mediastinal, heart base, and pleural tumorsis also superior with CT imaging.1,3,4,7,10 However, as in human patients, no specificCT roentgen signs have been associated with neoplastic conditions in dogs and

    cats.18,19

    Possible exceptions to this include bronchioalveolar carcinoma in thecat20,21 and histiocytic sarcoma in the dog.22,23 Feline and human pulmonary bron-chioalveolar carcinoma can present with cavitated pulmonary masses, bronchiec-tasis, and bronchial wall thickening ( Fig. 1 ).20,21,24 Canine pulmonary histiocyticsarcoma has been reported to present as a large mass with thoracic lymphadenopa-thy and an internal bronchus with a predilection for right middle or left cranial lunglobes.22,23 Primary lung tumors generally metastasize to tracheobronchial lymphnodes ( Fig. 2 ),3,4,7 but dogs with histiocytic sarcoma also show involvement of cranio-mediastinal and sternal lymph nodes.23

    Common mediastinal tumors in dogs and cats include thymoma, heart base tumors,

    and lymphoma.25

     Additional tumor types also include carcinoma, ectopic thyroid car-cinoma, and mesothelioma.26 CT evaluation of these tumors is generally nonspecific;however, thymoma tumors often have heterogeneous contrast uptake, and CT evalu-ation inconsistently detects vessel invasion ( Fig. 3 ).27,28

    COMPUTED TOMOGRAPHY FOR SURGICAL PLANNING: THORAX

    Similar techniques are used for surgical CT planning. Smaller slice thickness through aparticular area may be requested by the radiologist to better delineate margins andinvasiveness.28 Use of CT angiograms and three-dimensional reconstruction software

    improves diagnostic quality.

    Table 1

    CT techniques

    Technique Slice Thickness Window/Level

    Thorax CT

    120 kVp/150–250 mA 1.25–2.5 mm Mediastinum: W 5 400/L 5 40Lung: W 5 1500/L 5 700

    Skull CT

    120 kVp/100–150 mA 0.625–1.25 mm Soft tissue: W 5 400/L 5 40Bone: W 5 2000/L 5 300

    Neck CT

    120 kVp/100–150 mA 1.25–2.5 mm Soft tissue: W 5 400/L 5 40

    Abdomen CT

    120 kVp/150–300 mA 1.25–2.5 mm Soft tissue: W 5 400/L 5 40

    Forrest2

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    3/15

    Fig. 1.  CT images of a 15-year-old cat with fine-needle aspirate diagnosis of pulmonary car-cinoma with CT features consistent with bronchoalveolar carcinoma. On the transverse and

    dorsal plane reconstructed lung window CT images ( A,  B) note the large soft tissue attenu-ating lung mass with several gas attenuating cavitations in the dorsal left cranial lung. Bron-chial wall thickening and severe soft tissue attenuating peribronchial infiltrates are presentin the left lung (B,   C ). This ill-defined infiltrate, best seen on the transverse lung windowimage (C ), may represent bronchial metastasis from the primary tumor ( A,   B). L, left sideof patient.

    Fig. 2.  CT images of a dog with a primary lung carcinoma with metastasis to the tracheo-bronchial lymph nodes. On the transverse, postcontrast CT image at the carina region in amediastinal window ( A) note the large soft tissue attenuating masses surrounding the tra-chea (T) and aorta (Ao). The metastatic lymph nodes are also seen on the sagittal recon-structed CT image in a mediastinal window (B). Note the irregular-shaped soft tissueattenuating masses dorsal to the heart (H) and air-filled carina. TB, tracheobronchial lymphnodes.

    Computed Tomography Imaging in Oncology   3

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    4/15

    COMPUTED TOMOGRAPHY SIMULATION FOR RADIATION THERAPY PLANNING:

    THORAX

    Immobilization and motion control is paramount to treating thoracic tumors. In human

    patients the use of four-dimensional CT,29–31 breath hold techniques,32 rigid immobi-lization, and new technologies, such as dynamic contrast-enhanced imaging33,34 andViewRay (ViewRay, Oakwood, OH) real time imaging,35 are used.

     A simplified definition of breathing management in radiotherapy is putting the beamwhere the target volume is located, but in reality requires knowledge of where thetarget is at all times.30  Any helical CT scanner can be outfitted with four-dimensional CT capabilities, but the cost of software, camera, and work station can

    Fig. 3.  CT images of a mixed breed MC dog with a confirmed thymoma tumor. All imagesare postcontrast administration and in a mediastinal window. On the dorsal plane recon-structed CT image ( A) note the large soft tissue attenuating mass that is primarily on theleft side, but is on the right side cranial to the heart (H). The mass is homogeneously, mildlycontrast enhancing with small hypoattenuating areas (B,  C ). (B) is cranial to the heart. Notethat the mass encompasses the entire cranial mediastinum. (C ) The heart (H) is deviated tothe right by the large tumor. R, right side of thorax; Thy, thymoma tumor.

    Forrest4

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    5/15

    range from $165,000 to $200,000. Motion management in veterinary radiotherapy isprimarily documented   through virtual studies evaluating immobilization devices,36

    daily image guidance,37–39 adaptive radiotherapy (ART) techniques,40 and contrast-enhanced CT images.41 Motion management and accountability is essential when us-ing intensity-modulated radiotherapy (IMRT)36 techniques and becomes even morecritical when treating tumors of the thorax and   abdomen and using intensity-modulated stereotactic body radiotherapy planning.38,40,41  At our institution we arecurrently investigating slow CT scans, where slice acquisition is prolonged to repre-sent average organ motion,30 as a cost-effective strategy to manage motion in radio-therapy planning.

    COMPUTED TOMOGRAPHY FOR CANCER STAGING: HEAD AND NECK

    CT imaging of tumors of the nasal and oral cavities and of the neck is important in thestaging process of these cancers. Delineation and extent of the primary tumor along

    with imaging of regional lymph nodes guide clinicians for tissue sampling and treat-ment options.

    Equipment and Technique

     At our institution all the nasal, mandible, maxilla, and skull imaging that have neoplasiaas a differential are placed in an immobilization device consisting of a Vac-Lok mattress(Med-Tec, Orange City, IA) and bite-block system ( Fig. 4 ).36,37 Our imaging protocol is120 kVp, 150 to 250 mA, with 1.25 mm contiguous slices for most patients and 2.5 mmfor large dogs (see Table 1 ). The window/level for soft tissues and precontrast and post-contrast evaluation is W 5 400/L5 40 and for bone is W 5 2000/L5 300. Dorsal and

    sagittal plane reconstructions are obtained in bone window and soft tissue windowpostcontrast administration. Imaging of tumors of the neck is performedwith the patientin dorsal recumbency in a positioning mattress, using the same protocol as detailedpreviously.

    Nasal, Oral, and Skull Tumors

    Imaging the complex structures of the skull is well-suited for CT.42  Although tissuesampling is paramount to obtaining an accurate diagnosis, some tumors have specific

    Fig. 4.  Photograph of a dog in a Plexiglas bite block system. An individualized maxillarymold using dental material is made for each patient. This system is used when treating tu-mors of the sinonasal and oral cavity and skull. The edge of the positioning mattress (M)supports the dog’s neck.

    Computed Tomography Imaging in Oncology   5

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    6/15

    CT imaging characteristics, such as multilobular osteochondrosarcoma ( Fig. 5 )43–45

    and oral papillary squamous cell carcinoma.46

    Common CT findings of nasal neoplasia include turbinate destruction, bony lysis of surrounding bones, soft tissue attenuating material within the nasal cavity and para-nasal sinuses with heterogeneous contrast enhancement, and a mass effect. Cribi-form plate lysis, contrast enhancement of adjacent brain with falx deviation awayinvading tumor, and facial deformities from tumor extension into soft tissues dorsalto incisive, nasal, frontal, and maxillary bones can be seen in advanced cases. As isthe case with any neoplasia, histologic sampling is necessary. CT imaging with pre-contrast and postcontrast administration guides tumor and lymph nodes sampling.

    Tumors of the nasal passage and paranasal sinuses in dogs and cats47 account forapproximately 1% to 2% of all neoplasms, with most being carcinoma (60%) andsarcoma (30%) histologies in dogs. Further breakdown of histology includes adenocar-cinoma, squamous cell carcinoma, fibrosarcoma, chondrosarcoma, and osteosar-coma.48,49 Intranasal lymphoma occurs, with a higher prevalence in cats ( Fig. 6 ).47,49

     A CT staging system has been reported for dogs that was correlated with treatment out-comes and tumor histology. In this paper, the authors found that cribiform plate lysis andaggressive tumors of the following histologies squamous cell carcinoma, anaplasticcarcinoma, and undifferentiated carcinoma have a poorer treatment outcome.50

    In dogs and cats, a common tumor of the oral cavity is squamous cell carcinoma( Fig. 7 ). Fibrosarcoma, malignant melanoma, and periodontal ligament tumors arecommon in dogs, but rare in cats.51–53 CT imaging of oral cavity tumors has beendescribed in the literature with descriptions of dental neoplasms ( Fig. 8 )54 and squa-mous cell carcinoma.46,55 Tumors of the nasopharynx occur in dogs and cats, and CT

    is the best imaging modality. Tumor types include lymphoma, tonsillar and nontonsillarsquamous cell carcinoma, carcinoma, adenocarcinoma, fibrosarcoma, and mela-noma; the latter two tumor types are more common in dogs. A recent paper describesCT features in 25 dogs with nasopharyngeal masses.56 The authors concluded that CTis appropriate for staging nasopharyngeal masses, but biopsy is needed to determinetumor type.

    Fig. 5.  CT images of a dog with a multinodular osteochondrosarcoma (MLO). On the trans-verse image at the level of caudal occipital bone in a bone window ( A) note the distortionand enlargement of the right side of the head, destruction of the bony occiput, and theirregular “popcorn” bone attenuation of the MLO. On the three-dimensional reconstructionin a bone window (B) a more global view of the mass is seen. C2, spinous process of secondvertebra; R, right side of the head.

    Forrest6

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    7/15

    Neck Tumors

    Canine thyroid tumors are the most common tumor imaged in the neck. Thyroid tu-mors can occur from the base of the tongue to the base of the heart. There are reportsof ectopic thyroid tumors.57,58 Generally thoracic CT imaging is performed at the sametime because neck tumors and thyroid tumors metastasize to the lungs.

    Esophageal tumors are uncommonly reported. Esophageal tumors secondary to

    Spirocerca lupi  occur in endemic areas59; dogs present with regurgitation and caudalmediastinal masses. Because the parasite migrates through the thoracic aorta to theesophagus, changes to the aorta are seen and best identified on CT.60 Reports of leio-myoma, leiomyosarcoma, adenocarcinoma, and carcinoma tumors of the esophagusexist61–63 and are best imaged by CT.

    Fig. 6.   CT images of a cat with nasal lymphoma in a soft tissue window. The soft tissue atten-uating tumor is primarily left sided ( A), but is also seen in the nasopharynx (B). A is a trans-verse image at the level of the eyes; the asymmetry of the eyes is caused by slight obliquityof the head. B is a reconstructed sagittal view of the head. Note the soft tissue attenuating

    material in the cranial nasopharynx. DM, dental material for maxillary mold; NP, naso-pharynx; R, right side of head.

    Fig. 7.  CT images of a cat with a squamous cell carcinoma of the left mandible. On postcon-trast transverse CT image in a soft tissue window ( A) there is bony destruction of the leftmandible with a hypoattenuating mass lateral to the mandible. The mass has only rimcontrast enhancement. On the transverse CT image in a bone window ( B) note the bonydestruction of the alveolar bone and tooth root. R, right side.

    Computed Tomography Imaging in Oncology   7

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    8/15

    COMPUTED TOMOGRAPHY FOR SURGICAL PLANNING: HEAD AND NECK

    Similar techniques are used for surgical planning. Smaller slice thickness through aparticular area may be requested by the radiologist to better delineate margins andinvasiveness. Postcontrast images are especially helpful to delineate tumor extension.

    COMPUTED TOMOGRAPHY SIMULATION FOR RADIATION THERAPY PLANNING: HEAD

    AND NECK

    Immobilization of any tumor treatedwithradiation64 includinghead andneck65,66 ispara-mount to accurate delivery of radiotherapy, especially IMRT.36,37  At our institution allsuspected nasal, skull, and oral tumors that may be treated with radiation therapy areimaged in a bite block systemandVac-Lok mattress (see Fig. 4 ). Neck tumors are placedin dorsal recumbency with the head and neck to the shoulder region in a Vac-Lokmattress. Many tumors of the oral and nasal cavity, such as canine oral malignant mel-anoma, may have positive draining lymph nodes resulting in inclusion in the radiationtreatment field or if normal on fine-needle aspiration undergo prophylactic treatment.

    The importance of expanding planning target volume (PTV) when including draininglymph nodes has been studied in dogs and cats usingdaily image-guided radiation ther-apy (IGRT) and bite block systems. PTV expansions to account for the unfixed nature of lymph nodes have been studied in dogs andcats with recommended PTVexpansions.67

    COMPUTED TOMOGRAPHY FOR CANCER STAGING: ABDOMEN

    Often CT imaging of the abdomen replaces ultrasound for cancer staging and is addedto the request for thoracic CT and primary tumor imaging. Abdomen CT is also used tostage a primary abdominal tumor looking for lymph node and other organ metastasis.

     At our institution we often use a portable ultrasound machine to perform fine-needleaspiration of suspected metastasis identified on CT imaging.

    Equipment and Technique

    If there is a potential for radiotherapy for an abdominal tumor, animals are placed in aVac-Lok mattress for CT imaging. Patient positioning depends on tumor location. Pa-tients may be in dorsal or lateral recumbency. Our imaging protocol is 120 kVp, 150 to

    Fig. 8.  Transverse CT images of a cystic acanthomatous ameloblastoma of the left rostralmandible in a dog. On the transverse image postcontrast in a soft tissue window ( A) note

    the cystic component of the mass (asterisk 

    ). On the transverse image in a bone window(B) there is lysis of the alveolar bone of the rostral aspect of left mandibular canine tooth(304). R, right side of head.

    Forrest8

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    9/15

    300 mA, with 1.25 mm contiguous slices for most patients and 2.5 mm for large dogs(see   Table 1 ). The window/level for soft tissues and precontrast and postcontrastevaluation is W 5 400/L 5 40.

     Abdominal Tumors

    CT imaging for abdominal organs and potential metastasis is routine in veterinarymedicine. Often patients that present to emergency with an abdominal mass havethoracic and abdominal CT ( Fig. 9 ). Papers evaluating liver masses using triple-phase contrast CT imaging and dynamic liver CT imaging in dogs have reported dif-ferentiation among hepatocellular carcinoma, benign nodular hyperplasia, and hepaticmetastasis,68,69 and differentiation between hepatocellular carcinoma and benignnodular hyperplasia.70 Similar techniques are being used to evaluate pancreatic insu-linomas71 and splenic masses,72 and is commonly used in human medicine for renalmasses.73 CT imaging of adrenal masses in dogs has detected   adjacent tumor

    vascular invasion,

    56,74

    but is not capable of delineating tumor type.

    56

    COMPUTED TOMOGRAPHY FOR SURGICAL PLANNING: ABDOMEN

    The ability to detect vascular invasion and to differentiate between malignant andbenign lesions in the presurgical setting is of great benefit.56,68,71,72,74 CT imaging pro-vides an unobstructed view of abdominal organ anatomy and with reconstructedviews a global anatomy of tumor extension and invasiveness.

    COMPUTED TOMOGRAPHY SIMULATION FOR RADIATION THERAPY PLANNING:

    ABDOMEN

    Patient immobilization is a key to accurate radiotherapy treatment delivery. Vac-Lokmattress systems are used for abdominal radiotherapy immobilization. In a smallstudy six dogs with inoperable hepatocellular carcinoma tumors were treated withhypofractionated three-dimensional conformal radiation therapy.75 In this study fivedogs had a partial response and one dog had stable disease; only one dog had

    Fig. 9.  CT images of gastrointestinal stromal mass. On transverse image postcontrast in asoft tissue window ( A) the jejunal tumor (asterisk ) is soft tissue attenuating with pocketsof gas attenuation and a contrast-enhancing rim. On the dorsal plane reconstructed image(B) a global view of the tumor is seen (asterisk ). The CT scan was useful for surgical planning.LK, left kidney; R, right side of abdomen; S, spleen.

    Computed Tomography Imaging in Oncology   9

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    10/15

    radiation-related liver toxicity.75 Three-dimensional conformal radiation therapy is theprecursor to IMRT. Both have a multileaf collimator to shape the beam, but with IMRTthe dose rate can be modulated during treatment. An additional necessity is dailyIGRT. Studies have been done in veterinary medicine to look at IGRT in abdominalradiotherapy. Clinical veterinary radiation oncology researchers have studied urogen-ital tumors and evaluated interfraction motion using cone-beam CT,67 and evaluatedmodels of ART during treatment of urinary bladder tumors.40 This same group lookedat outcomes in a study of urogenital tumors treated with IMRT and IGRT and despitelimitations of a small cohort and retrospective study, reported a well-tolerated treat-ment with good survival times.76

     ART treatment is a feature of higher end linear accelerators and helical tomotherapy(Accuray, Madison, WI). First developed with helical tomotherapy, ART uses dailymega-voltage CT scan for daily IGRT and adapts the treatment plan if targets or organsat risk (OAR) change shape or size.77,78 ART can be labor intensive to perform on a dailybasis. At our institution we tend to use ART when there is PTV shrinkage or OAR movesinto the PTV because of weight change rather than transient motion. Regarding urogen-ital malignancies, radiotherapy attempts should be made to treat the patient at the sametime every day to have similar bladder and colon filling. Another study evaluated the useof contrast-enhanced CT images for treatment planning and delivery. This virtual studyevaluated three tumor sites (nasal, appendicular, and pelvic) and looked at usingcontrast-enhanced CT for IMRT stereotactic body radiotherapy planning.41 The goalof this study was to evaluate the dose to the gross tumor volume and OAR plans usingnoncontrast CT images, which is the gold standard, and contrast-enhanced CT. For allthree sites there was less than 1% change in dose for gross tumor volume and OAR in

    both planning scenarios. The authors concluded that dose distribution between plansmade on noncontrast and contrast-enhanced CTs was tolerable at all three treatmentsites, but recommended caution when planning stereotactic body radiation therapynear areas of high contrast enhancement, such as the urinary bladder.41

    MISCELLANEOUS TUMORS

     Appendicular osteosarcoma tumors are a site of new research using stereotactic ra-diation therapy as a treatment modality. The gold standard treatment of appendicularosteosarcoma is amputation and chemotherapy. Radiation has been used in the palli-ative setting when amputation is either declined or not an option. Studies in the pastlooking at limb sparing used intraoperative radiotherapy and had mixed results.79–81 Inone small retrospective study, definitive  radiotherapy and chemotherapy did notmatch standard of care therapy outcome.80 Other studies used single large dosesof intraoperative radiotherapy after en bloc resection of the tumor in the operatingroom. The irradiated section of tumorous bone was then reimplanted into the patientand stabilized using internal fixation.79,81 The most difficult areas to salvage are thedistal radius and tibia.79 At our institution we have a current clinical trial evaluating ste-reotactic radiation therapy without surgery for appendicular osteosarcoma. Threedoses of 8 Gy are given on a Monday, Wednesday, Friday schedule. We are finding

    the distal limbs the most challenging to plan because of the lack of soft tissues sur-rounding the tumor. It is important to spare a strip of skin that contains lymphaticdrainage to maintain healthy tissue and prevent limb edema.

    SUMMARY

    This article presents some of the commonly treated tumors and the advances made inCT imaging and radiation therapy. With current CT technology, scans are obtained

    Forrest10

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    11/15

    faster than many radiology sections can read them. The reliance of CT simulation forradiotherapy treatment planning has developed by leaps and bounds, and the exis-tence of on-board kilovolt cone-beam CT and mega-voltage CT for IGRT has takenradiotherapy into the twenty-first century closing the gap to our medical colleagues.Omissions from this article deserve an article of their own and include brain tumors,feline injection site sarcomas, and canine sarcomas of the trunk and limbs.

    REFERENCES

    1.   Prather AB, Berry CR, Thrall DE. Use of radiography in combination with

    computed tomography for the assessment of noncardiac thoracic disease in

    the dog and cat. Vet Radiol Ultrasound 2005;46(2):114–21.

    2.   Nemanic S, London CA, Wisner ER. Comparison of thoracic radiographs and sin-

    gle breath-hold helical CT for detection of pulmonary nodules in dogs with met-

    astatic neoplasia. J Vet Intern Med 2006;20(3):508–15.

    3.  Paoloni MC, Adams WM, Dubielzig RR, et al. Comparison of results of computedtomography and radiography with histopathologic findings in tracheobronchial

    lymph nodes in dogs with primary lung tumors: 14 cases (1999-2002). J Am

    Vet Med Assoc 2006;228(11):1718–22.

    4.   Ballegeer EA, Adams WM, Dubielzig RR, et al. Computed tomography character-

    istics of canine tracheobronchial lymph node metastasis. Vet Radiol Ultrasound

    2010;51(4):397–403.

    5.   Otoni CC, Rahal SC, Vulcano LC, et al. Survey radiography and computerized to-

    mography imaging of the thorax in female dogs with mammary tumors. Acta Vet

    Scand 2010;52:20.

    6.   Eberle N, Fork M, von Babo V, et al. Comparison of examination of thoracic radio-

    graphs and thoracic computed tomography in dogs with appendicular osteosar-

    coma. Vet Comp Oncol 2011;9(2):131–40.

    7.  Marolf AJ, Gibbons DS, Podell BK, et al. Computed tomographic appearance of

    primary lung tumors in dogs. Vet Radiol Ultrasound 2011;52(2):168–72.

    8.   Alexander K, Joly H, Blond L, et al. A comparison of computed tomography,

    computed radiography, and film-screen radiography for the detection of canine

    pulmonary nodules. Vet Radiol Ultrasound 2012;53(3):258–65.

    9.  Armbrust LJ, Biller DS, Bamford A, et al. Comparison of three-view thoracic radi-

    ography and computed tomography for detection of pulmonary nodules in dogswith neoplasia. J Am Vet Med Assoc 2012;240(9):1088–94.

    10.   Reetz JA, Buza EL, Krick EL. CT features of pleural masses and nodules. Vet Ra-

    diol Ultrasound 2012;53(2):121–7.

    11.   Mattoon JS, Bryan JN. The future of imaging in veterinary oncology: learning from

    human medicine. Vet J 2013;197(3):541–52.

    12.   Oliveira CR, Mitchell MA, O’Brien RT. Thoracic computed tomography in feline

    patients without use of chemical restraint. Vet Radiol Ultrasound 2011;52(4):

    368–76.

    13.   Oliveira CR, Ranallo FN, Pijanowski GJ, et al. The VetMousetrap: a device for

    computed tomographic imaging of the thorax of awake cats. Vet Radiol Ultra-sound 2011;52(1):41–52.

    14.   Johnson EG, Wisner ER. Advances in respiratory imaging. Vet Clin North Am

    Small Anim Pract 2007;37(5):879–900, vi.

    15.  Johnson VS, Ramsey IK, Thompson H, et al. Thoracic high-resolution computed

    tomography in the diagnosis of metastatic carcinoma. J Small Anim Pract 2004;

    45(3):134–43.

    Computed Tomography Imaging in Oncology   11

    http://refhub.elsevier.com/S0195-5616(15)00184-9/sref1http://refhub.elsevier.com/S0195-5616(15)00184-9/sref1http://refhub.elsevier.com/S0195-5616(15)00184-9/sref1http://refhub.elsevier.com/S0195-5616(15)00184-9/sref2http://refhub.elsevier.com/S0195-5616(15)00184-9/sref2http://refhub.elsevier.com/S0195-5616(15)00184-9/sref2http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref4http://refhub.elsevier.com/S0195-5616(15)00184-9/sref4http://refhub.elsevier.com/S0195-5616(15)00184-9/sref4http://refhub.elsevier.com/S0195-5616(15)00184-9/sref5http://refhub.elsevier.com/S0195-5616(15)00184-9/sref5http://refhub.elsevier.com/S0195-5616(15)00184-9/sref5http://refhub.elsevier.com/S0195-5616(15)00184-9/sref6http://refhub.elsevier.com/S0195-5616(15)00184-9/sref6http://refhub.elsevier.com/S0195-5616(15)00184-9/sref6http://refhub.elsevier.com/S0195-5616(15)00184-9/sref7http://refhub.elsevier.com/S0195-5616(15)00184-9/sref7http://refhub.elsevier.com/S0195-5616(15)00184-9/sref8http://refhub.elsevier.com/S0195-5616(15)00184-9/sref8http://refhub.elsevier.com/S0195-5616(15)00184-9/sref8http://refhub.elsevier.com/S0195-5616(15)00184-9/sref9http://refhub.elsevier.com/S0195-5616(15)00184-9/sref9http://refhub.elsevier.com/S0195-5616(15)00184-9/sref9http://refhub.elsevier.com/S0195-5616(15)00184-9/sref10http://refhub.elsevier.com/S0195-5616(15)00184-9/sref10http://refhub.elsevier.com/S0195-5616(15)00184-9/sref11http://refhub.elsevier.com/S0195-5616(15)00184-9/sref11http://refhub.elsevier.com/S0195-5616(15)00184-9/sref12http://refhub.elsevier.com/S0195-5616(15)00184-9/sref12http://refhub.elsevier.com/S0195-5616(15)00184-9/sref12http://refhub.elsevier.com/S0195-5616(15)00184-9/sref13http://refhub.elsevier.com/S0195-5616(15)00184-9/sref13http://refhub.elsevier.com/S0195-5616(15)00184-9/sref13http://refhub.elsevier.com/S0195-5616(15)00184-9/sref14http://refhub.elsevier.com/S0195-5616(15)00184-9/sref14http://refhub.elsevier.com/S0195-5616(15)00184-9/sref15http://refhub.elsevier.com/S0195-5616(15)00184-9/sref15http://refhub.elsevier.com/S0195-5616(15)00184-9/sref15http://refhub.elsevier.com/S0195-5616(15)00184-9/sref15http://refhub.elsevier.com/S0195-5616(15)00184-9/sref15http://refhub.elsevier.com/S0195-5616(15)00184-9/sref15http://refhub.elsevier.com/S0195-5616(15)00184-9/sref14http://refhub.elsevier.com/S0195-5616(15)00184-9/sref14http://refhub.elsevier.com/S0195-5616(15)00184-9/sref13http://refhub.elsevier.com/S0195-5616(15)00184-9/sref13http://refhub.elsevier.com/S0195-5616(15)00184-9/sref13http://refhub.elsevier.com/S0195-5616(15)00184-9/sref12http://refhub.elsevier.com/S0195-5616(15)00184-9/sref12http://refhub.elsevier.com/S0195-5616(15)00184-9/sref12http://refhub.elsevier.com/S0195-5616(15)00184-9/sref11http://refhub.elsevier.com/S0195-5616(15)00184-9/sref11http://refhub.elsevier.com/S0195-5616(15)00184-9/sref10http://refhub.elsevier.com/S0195-5616(15)00184-9/sref10http://refhub.elsevier.com/S0195-5616(15)00184-9/sref9http://refhub.elsevier.com/S0195-5616(15)00184-9/sref9http://refhub.elsevier.com/S0195-5616(15)00184-9/sref9http://refhub.elsevier.com/S0195-5616(15)00184-9/sref8http://refhub.elsevier.com/S0195-5616(15)00184-9/sref8http://refhub.elsevier.com/S0195-5616(15)00184-9/sref8http://refhub.elsevier.com/S0195-5616(15)00184-9/sref7http://refhub.elsevier.com/S0195-5616(15)00184-9/sref7http://refhub.elsevier.com/S0195-5616(15)00184-9/sref6http://refhub.elsevier.com/S0195-5616(15)00184-9/sref6http://refhub.elsevier.com/S0195-5616(15)00184-9/sref6http://refhub.elsevier.com/S0195-5616(15)00184-9/sref5http://refhub.elsevier.com/S0195-5616(15)00184-9/sref5http://refhub.elsevier.com/S0195-5616(15)00184-9/sref5http://refhub.elsevier.com/S0195-5616(15)00184-9/sref4http://refhub.elsevier.com/S0195-5616(15)00184-9/sref4http://refhub.elsevier.com/S0195-5616(15)00184-9/sref4http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref3http://refhub.elsevier.com/S0195-5616(15)00184-9/sref2http://refhub.elsevier.com/S0195-5616(15)00184-9/sref2http://refhub.elsevier.com/S0195-5616(15)00184-9/sref2http://refhub.elsevier.com/S0195-5616(15)00184-9/sref1http://refhub.elsevier.com/S0195-5616(15)00184-9/sref1http://refhub.elsevier.com/S0195-5616(15)00184-9/sref1

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    12/15

    16.  Joly H, d’Anjou MA, Alexander K, et al. Comparison of single-slice computed to-

    mography protocols for detection of pulmonary nodules in dogs. Vet Radiol Ultra-

    sound 2009;50(3):279–84.

    17.   Cardoso L, Gil F, Ramirez G, et al. Computed tomography (CT) of the lungs of the

    dog using a helical CT scanner, intravenous iodine contrast medium and different

    CT windows. Anat Histol Embryol 2007;36(5):328–31.

    18.  Scrivani PV, Thompson MS, Dykes NL, et al. Relationships among subgross anat-

    omy, computed tomography, and histologic findings in dogs with disease local-

    ized to the pulmonary acini. Vet Radiol Ultrasound 2012;53(1):1–10.

    19.   Secrest S, Sakamoto K. Halo and reverse halo signs in canine pulmonary

    computed tomography. Vet Radiol Ultrasound 2014;55(3):272–7.

    20.   Ballegeer EA, Forrest LJ, Stepien RL. Radiographic appearance of bronchoal-

    veolar carcinoma in nine cats. Vet Radiol Ultrasound 2002;43(3):267–71.

    21.   Lee KS, Kim Y, Han J, et al. Bronchioloalveolar carcinoma: clinical, histopathologic,

    and radiologic findings. Radiographics 1997;17(6):1345–57.22.  Barrett LE, Pollard RE, Zwingenberger A, et al. Radiographic characterization of

    primary lung tumors in 74 dogs. Vet Radiol Ultrasound 2014;55(5):480–7.

    23.  Tsai S, Sutherland-Smith J, Burgess K, et al. Imaging characteristics of intratho-

    racic histiocytic sarcoma in dogs. Vet Radiol Ultrasound 2012;53(1):21–7.

    24.   Gaeta M, Barone M, Caruso R, et al. CT-pathologic correlation in nodular bron-

    chioloalveolar carcinoma. J Comput Assist Tomogr 1994;18(2):229–32.

    25.  Day MJ. Review of thymic pathology in 30 cats and 36 dogs. J Small Anim Pract

    1997;38(9):393–403.

    26.   Pintore L, Bertazzolo W, Bonfanti U, et al. Cytological and histological correlationin diagnosing feline and canine mediastinal masses. J Small Anim Pract 2014;

    55(1):28–32.

    27.  Yoon J, Feeney DA, Cronk DE, et al. Computed tomographic evaluation of canine

    and feline mediastinal masses in 14 patients. Vet Radiol Ultrasound 2004;45(6):

    542–6.

    28.   Scherrer W, Kyles A, Samii V, et al. Computed tomographic assessment of

    vascular invasion and resectability of mediastinal masses in dogs and a cat.

    N Z Vet J 2008;56(6):330–3.

    29.  Chen GT, Kung JH, Rietzel E. Four-dimensional imaging and treatment planning

    of moving targets. Front Radiat Ther Oncol 2007;40:59–71.

    30.   Korreman SS. Motion in radiotherapy: photon therapy. Phys Med Biol 2012;

    57(23):R161–91.

    31.   Moorrees J, Bezak E. Four dimensional radiotherapy: a review of current technol-

    ogies and modalities. Australas Phys Eng Sci Med 2012;35(4):399–406.

    32.   Giraud P, Yorke E, Jiang S, et al. Reduction of organ motion effects in IMRT and

    conformal 3D radiation delivery by using gating and tracking techniques. Cancer

    Radiother 2006;10(5):269–82.

    33.   Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy.

    Semin Radiat Oncol 2011;21(2):147–56.34.   La Fontaine MD, McDaniel LS, Kubicek LN, et al. Patient characteristics influ-

    encing the variability of distributed parameter-based models in DCE-CT kinetic

    analysis. Vet Comp Oncol 2015. [Epub ahead of print].

    35. Saenz D, Bayouth J, Christensen N, et al. ViewRay real-time imaging of a motion

    phantom and in-vivo canine patients. Presented at the AAPM 2014 Innovation,

    56th Annual Meeting & Exhibition. Austin (TX), July 20–24, 2014.

    Forrest12

    http://refhub.elsevier.com/S0195-5616(15)00184-9/sref16http://refhub.elsevier.com/S0195-5616(15)00184-9/sref16http://refhub.elsevier.com/S0195-5616(15)00184-9/sref16http://refhub.elsevier.com/S0195-5616(15)00184-9/sref17http://refhub.elsevier.com/S0195-5616(15)00184-9/sref17http://refhub.elsevier.com/S0195-5616(15)00184-9/sref17http://refhub.elsevier.com/S0195-5616(15)00184-9/sref18http://refhub.elsevier.com/S0195-5616(15)00184-9/sref18http://refhub.elsevier.com/S0195-5616(15)00184-9/sref18http://refhub.elsevier.com/S0195-5616(15)00184-9/sref19http://refhub.elsevier.com/S0195-5616(15)00184-9/sref19http://refhub.elsevier.com/S0195-5616(15)00184-9/sref20http://refhub.elsevier.com/S0195-5616(15)00184-9/sref20http://refhub.elsevier.com/S0195-5616(15)00184-9/sref21http://refhub.elsevier.com/S0195-5616(15)00184-9/sref21http://refhub.elsevier.com/S0195-5616(15)00184-9/sref22http://refhub.elsevier.com/S0195-5616(15)00184-9/sref22http://refhub.elsevier.com/S0195-5616(15)00184-9/sref23http://refhub.elsevier.com/S0195-5616(15)00184-9/sref23http://refhub.elsevier.com/S0195-5616(15)00184-9/sref24http://refhub.elsevier.com/S0195-5616(15)00184-9/sref24http://refhub.elsevier.com/S0195-5616(15)00184-9/sref25http://refhub.elsevier.com/S0195-5616(15)00184-9/sref25http://refhub.elsevier.com/S0195-5616(15)00184-9/sref26http://refhub.elsevier.com/S0195-5616(15)00184-9/sref26http://refhub.elsevier.com/S0195-5616(15)00184-9/sref26http://refhub.elsevier.com/S0195-5616(15)00184-9/sref27http://refhub.elsevier.com/S0195-5616(15)00184-9/sref27http://refhub.elsevier.com/S0195-5616(15)00184-9/sref27http://refhub.elsevier.com/S0195-5616(15)00184-9/sref28http://refhub.elsevier.com/S0195-5616(15)00184-9/sref28http://refhub.elsevier.com/S0195-5616(15)00184-9/sref28http://refhub.elsevier.com/S0195-5616(15)00184-9/sref29http://refhub.elsevier.com/S0195-5616(15)00184-9/sref29http://refhub.elsevier.com/S0195-5616(15)00184-9/sref30http://refhub.elsevier.com/S0195-5616(15)00184-9/sref30http://refhub.elsevier.com/S0195-5616(15)00184-9/sref31http://refhub.elsevier.com/S0195-5616(15)00184-9/sref31http://refhub.elsevier.com/S0195-5616(15)00184-9/sref32http://refhub.elsevier.com/S0195-5616(15)00184-9/sref32http://refhub.elsevier.com/S0195-5616(15)00184-9/sref32http://refhub.elsevier.com/S0195-5616(15)00184-9/sref33http://refhub.elsevier.com/S0195-5616(15)00184-9/sref33http://refhub.elsevier.com/S0195-5616(15)00184-9/sref34http://refhub.elsevier.com/S0195-5616(15)00184-9/sref34http://refhub.elsevier.com/S0195-5616(15)00184-9/sref34http://refhub.elsevier.com/S0195-5616(15)00184-9/sref34http://refhub.elsevier.com/S0195-5616(15)00184-9/sref34http://refhub.elsevier.com/S0195-5616(15)00184-9/sref34http://refhub.elsevier.com/S0195-5616(15)00184-9/sref33http://refhub.elsevier.com/S0195-5616(15)00184-9/sref33http://refhub.elsevier.com/S0195-5616(15)00184-9/sref32http://refhub.elsevier.com/S0195-5616(15)00184-9/sref32http://refhub.elsevier.com/S0195-5616(15)00184-9/sref32http://refhub.elsevier.com/S0195-5616(15)00184-9/sref31http://refhub.elsevier.com/S0195-5616(15)00184-9/sref31http://refhub.elsevier.com/S0195-5616(15)00184-9/sref30http://refhub.elsevier.com/S0195-5616(15)00184-9/sref30http://refhub.elsevier.com/S0195-5616(15)00184-9/sref29http://refhub.elsevier.com/S0195-5616(15)00184-9/sref29http://refhub.elsevier.com/S0195-5616(15)00184-9/sref28http://refhub.elsevier.com/S0195-5616(15)00184-9/sref28http://refhub.elsevier.com/S0195-5616(15)00184-9/sref28http://refhub.elsevier.com/S0195-5616(15)00184-9/sref27http://refhub.elsevier.com/S0195-5616(15)00184-9/sref27http://refhub.elsevier.com/S0195-5616(15)00184-9/sref27http://refhub.elsevier.com/S0195-5616(15)00184-9/sref26http://refhub.elsevier.com/S0195-5616(15)00184-9/sref26http://refhub.elsevier.com/S0195-5616(15)00184-9/sref26http://refhub.elsevier.com/S0195-5616(15)00184-9/sref25http://refhub.elsevier.com/S0195-5616(15)00184-9/sref25http://refhub.elsevier.com/S0195-5616(15)00184-9/sref24http://refhub.elsevier.com/S0195-5616(15)00184-9/sref24http://refhub.elsevier.com/S0195-5616(15)00184-9/sref23http://refhub.elsevier.com/S0195-5616(15)00184-9/sref23http://refhub.elsevier.com/S0195-5616(15)00184-9/sref22http://refhub.elsevier.com/S0195-5616(15)00184-9/sref22http://refhub.elsevier.com/S0195-5616(15)00184-9/sref21http://refhub.elsevier.com/S0195-5616(15)00184-9/sref21http://refhub.elsevier.com/S0195-5616(15)00184-9/sref20http://refhub.elsevier.com/S0195-5616(15)00184-9/sref20http://refhub.elsevier.com/S0195-5616(15)00184-9/sref19http://refhub.elsevier.com/S0195-5616(15)00184-9/sref19http://refhub.elsevier.com/S0195-5616(15)00184-9/sref18http://refhub.elsevier.com/S0195-5616(15)00184-9/sref18http://refhub.elsevier.com/S0195-5616(15)00184-9/sref18http://refhub.elsevier.com/S0195-5616(15)00184-9/sref17http://refhub.elsevier.com/S0195-5616(15)00184-9/sref17http://refhub.elsevier.com/S0195-5616(15)00184-9/sref17http://refhub.elsevier.com/S0195-5616(15)00184-9/sref16http://refhub.elsevier.com/S0195-5616(15)00184-9/sref16http://refhub.elsevier.com/S0195-5616(15)00184-9/sref16

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    13/15

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    14/15

    55.   Gendler A, Lewis JR, Reetz JA, et al. Computed tomographic features of oral

    squamous cell carcinoma in cats: 18 cases (2002-2008). J Am Vet Med Assoc

    2010;236(3):319–25.

    56.   Carozzi G, Zotti A, Alberti M, et al. Computed tomographic features of pharyngeal

    neoplasia in 25 dogs. Vet Radiol Ultrasound 2015;56(6):628–37.

    57.  Liptak JM, Kamstock DA, Dernell WS, et al. Cranial mediastinal carcinomas in

    nine dogs. Vet Comp Oncol 2008;6(1):19–30.

    58.  Rossi F, Caleri E, Bacci B, et al. Computed tomographic features of basihyoid

    ectopic thyroid carcinoma in dogs. Vet Radiol Ultrasound 2013;54(6):575–81.

    59.   Ranen E, Lavy E, Aizenberg I, et al. Spirocercosis-associated esophageal sar-

    comas in dogs. A retrospective study of 17 cases (1997-2003). Vet Parasitol

    2004;119(2–3):209–21.

    60.   Kirberger RM, Stander N, Cassel N, et al. Computed tomographic and radio-

    graphic characteristics of aortic lesions in 42 dogs with spirocercosis. Vet Radiol

    Ultrasound 2013;54(3):212–22.61.   Arnell K, Hill S, Hart J, et al. Persistent regurgitation in four dogs with caudal

    esophageal neoplasia. J Am Anim Hosp Assoc 2013;49(1):58–63.

    62.  Farese JP, Bacon NJ, Ehrhart NP, et al. Oesophageal leiomyosarcoma in dogs:

    surgical management and clinical outcome of four cases. Vet Comp Oncol

    2008;6(1):31–8.

    63.   Ranen E, Dank G, Lavy E, et al. Oesophageal sarcomas in dogs: histological and

    clinical evaluation. Vet J 2008;178(1):78–84.

    64.   Green EM, Forrest LJ, Adams WM. A vacuum-formable mattress for veterinary

    radiotherapy positioning: comparison with conventional methods. Vet Radiol Ul-trasound 2003;44(4):476–9.

    65.   Charney SC, Lutz WR, Klein MK, et al. Evaluation of a head-repositioner and Z-

    plate system for improved accuracy of dose delivery. Vet Radiol Ultrasound

    2009;50(3):323–9.

    66.   Harmon J, Van Ufflen D, Larue S. Assessment of a radiotherapy patient cranial

    immobilization device using daily on-board kilovoltage imaging. Vet Radiol Ultra-

    sound 2009;50(2):230–4.

    67.   Harmon J Jr, Yoshikawa H, Custis J, et al. Evaluation of canine prostate intrafrac-

    tional motion using serial cone beam computed tomography imaging. Vet Radiol

    Ultrasound 2013;54(1):93–8.

    68.  Fukushima K, Kanemoto H, Ohno K, et al. CT characteristics of primary hepatic

    mass lesions in dogs. Vet Radiol Ultrasound 2012;53(3):252–7.

    69.   Kutara K, Seki M, Ishikawa C, et al. Triple-phase helical computed tomography in

    dogs with hepatic masses. Vet Radiol Ultrasound 2014;55(1):7–15.

    70.  Taniura T, Marukawa K, Yamada K, et al. Differential diagnosis of hepatic tumor-

    like lesions in dog by using dynamic CT scanning. Hiroshima J Med Sci 2009;

    58(1):17–24.

    71.   Fukushima K, Fujiwara R, Yamamoto K, et al. Characterization of triple-phase

    computed tomography in dogs with pancreatic insulinoma. J Vet Med Sci2016;77:1549–53.

    72.  Fife WD, Samii VF, Drost WT, et al. Comparison between malignant and nonma-

    lignant splenic masses in dogs using contrast-enhanced computed tomography.

    Vet Radiol Ultrasound 2004;45(4):289–97.

    73.   Prasad SR, Dalrymple NC, Surabhi VR. Cross-sectional imaging evaluation of

    renal masses. Radiol Clin North Am 2008;46(1):95–111, vi–vii.

    Forrest14

    http://refhub.elsevier.com/S0195-5616(15)00184-9/sref55http://refhub.elsevier.com/S0195-5616(15)00184-9/sref55http://refhub.elsevier.com/S0195-5616(15)00184-9/sref55http://refhub.elsevier.com/S0195-5616(15)00184-9/sref56http://refhub.elsevier.com/S0195-5616(15)00184-9/sref56http://refhub.elsevier.com/S0195-5616(15)00184-9/sref57http://refhub.elsevier.com/S0195-5616(15)00184-9/sref57http://refhub.elsevier.com/S0195-5616(15)00184-9/sref58http://refhub.elsevier.com/S0195-5616(15)00184-9/sref58http://refhub.elsevier.com/S0195-5616(15)00184-9/sref59http://refhub.elsevier.com/S0195-5616(15)00184-9/sref59http://refhub.elsevier.com/S0195-5616(15)00184-9/sref59http://refhub.elsevier.com/S0195-5616(15)00184-9/sref60http://refhub.elsevier.com/S0195-5616(15)00184-9/sref60http://refhub.elsevier.com/S0195-5616(15)00184-9/sref60http://refhub.elsevier.com/S0195-5616(15)00184-9/sref61http://refhub.elsevier.com/S0195-5616(15)00184-9/sref61http://refhub.elsevier.com/S0195-5616(15)00184-9/sref62http://refhub.elsevier.com/S0195-5616(15)00184-9/sref62http://refhub.elsevier.com/S0195-5616(15)00184-9/sref62http://refhub.elsevier.com/S0195-5616(15)00184-9/sref63http://refhub.elsevier.com/S0195-5616(15)00184-9/sref63http://refhub.elsevier.com/S0195-5616(15)00184-9/sref64http://refhub.elsevier.com/S0195-5616(15)00184-9/sref64http://refhub.elsevier.com/S0195-5616(15)00184-9/sref64http://refhub.elsevier.com/S0195-5616(15)00184-9/sref65http://refhub.elsevier.com/S0195-5616(15)00184-9/sref65http://refhub.elsevier.com/S0195-5616(15)00184-9/sref65http://refhub.elsevier.com/S0195-5616(15)00184-9/sref66http://refhub.elsevier.com/S0195-5616(15)00184-9/sref66http://refhub.elsevier.com/S0195-5616(15)00184-9/sref66http://refhub.elsevier.com/S0195-5616(15)00184-9/sref67http://refhub.elsevier.com/S0195-5616(15)00184-9/sref67http://refhub.elsevier.com/S0195-5616(15)00184-9/sref67http://refhub.elsevier.com/S0195-5616(15)00184-9/sref68http://refhub.elsevier.com/S0195-5616(15)00184-9/sref68http://refhub.elsevier.com/S0195-5616(15)00184-9/sref69http://refhub.elsevier.com/S0195-5616(15)00184-9/sref69http://refhub.elsevier.com/S0195-5616(15)00184-9/sref70http://refhub.elsevier.com/S0195-5616(15)00184-9/sref70http://refhub.elsevier.com/S0195-5616(15)00184-9/sref70http://refhub.elsevier.com/S0195-5616(15)00184-9/sref71http://refhub.elsevier.com/S0195-5616(15)00184-9/sref71http://refhub.elsevier.com/S0195-5616(15)00184-9/sref71http://refhub.elsevier.com/S0195-5616(15)00184-9/sref72http://refhub.elsevier.com/S0195-5616(15)00184-9/sref72http://refhub.elsevier.com/S0195-5616(15)00184-9/sref72http://refhub.elsevier.com/S0195-5616(15)00184-9/sref73http://refhub.elsevier.com/S0195-5616(15)00184-9/sref73http://refhub.elsevier.com/S0195-5616(15)00184-9/sref73http://refhub.elsevier.com/S0195-5616(15)00184-9/sref73http://refhub.elsevier.com/S0195-5616(15)00184-9/sref72http://refhub.elsevier.com/S0195-5616(15)00184-9/sref72http://refhub.elsevier.com/S0195-5616(15)00184-9/sref72http://refhub.elsevier.com/S0195-5616(15)00184-9/sref71http://refhub.elsevier.com/S0195-5616(15)00184-9/sref71http://refhub.elsevier.com/S0195-5616(15)00184-9/sref71http://refhub.elsevier.com/S0195-5616(15)00184-9/sref70http://refhub.elsevier.com/S0195-5616(15)00184-9/sref70http://refhub.elsevier.com/S0195-5616(15)00184-9/sref70http://refhub.elsevier.com/S0195-5616(15)00184-9/sref69http://refhub.elsevier.com/S0195-5616(15)00184-9/sref69http://refhub.elsevier.com/S0195-5616(15)00184-9/sref68http://refhub.elsevier.com/S0195-5616(15)00184-9/sref68http://refhub.elsevier.com/S0195-5616(15)00184-9/sref67http://refhub.elsevier.com/S0195-5616(15)00184-9/sref67http://refhub.elsevier.com/S0195-5616(15)00184-9/sref67http://refhub.elsevier.com/S0195-5616(15)00184-9/sref66http://refhub.elsevier.com/S0195-5616(15)00184-9/sref66http://refhub.elsevier.com/S0195-5616(15)00184-9/sref66http://refhub.elsevier.com/S0195-5616(15)00184-9/sref65http://refhub.elsevier.com/S0195-5616(15)00184-9/sref65http://refhub.elsevier.com/S0195-5616(15)00184-9/sref65http://refhub.elsevier.com/S0195-5616(15)00184-9/sref64http://refhub.elsevier.com/S0195-5616(15)00184-9/sref64http://refhub.elsevier.com/S0195-5616(15)00184-9/sref64http://refhub.elsevier.com/S0195-5616(15)00184-9/sref63http://refhub.elsevier.com/S0195-5616(15)00184-9/sref63http://refhub.elsevier.com/S0195-5616(15)00184-9/sref62http://refhub.elsevier.com/S0195-5616(15)00184-9/sref62http://refhub.elsevier.com/S0195-5616(15)00184-9/sref62http://refhub.elsevier.com/S0195-5616(15)00184-9/sref61http://refhub.elsevier.com/S0195-5616(15)00184-9/sref61http://refhub.elsevier.com/S0195-5616(15)00184-9/sref60http://refhub.elsevier.com/S0195-5616(15)00184-9/sref60http://refhub.elsevier.com/S0195-5616(15)00184-9/sref60http://refhub.elsevier.com/S0195-5616(15)00184-9/sref59http://refhub.elsevier.com/S0195-5616(15)00184-9/sref59http://refhub.elsevier.com/S0195-5616(15)00184-9/sref59http://refhub.elsevier.com/S0195-5616(15)00184-9/sref58http://refhub.elsevier.com/S0195-5616(15)00184-9/sref58http://refhub.elsevier.com/S0195-5616(15)00184-9/sref57http://refhub.elsevier.com/S0195-5616(15)00184-9/sref57http://refhub.elsevier.com/S0195-5616(15)00184-9/sref56http://refhub.elsevier.com/S0195-5616(15)00184-9/sref56http://refhub.elsevier.com/S0195-5616(15)00184-9/sref55http://refhub.elsevier.com/S0195-5616(15)00184-9/sref55http://refhub.elsevier.com/S0195-5616(15)00184-9/sref55

  • 8/17/2019 [2016] Computed Tomography Imaging in Oncology.

    15/15

    74.   Schultz RM, Wisner ER, Johnson EG, et al. Contrast-enhanced computed tomog-

    raphy as a preoperative indicator of vascular invasion from adrenal masses in

    dogs. Vet Radiol Ultrasound 2009;50(6):625–9.

    75.   Mori T, Ito Y, Kawabe M, et al. Three-dimensional conformal radiation therapy for

    inoperable massive hepatocellular carcinoma in six dogs. J Small Anim Pract

    2015;56(7):441–5.

    76.  Nolan MW, Kogan L, Griffin LR, et al. Intensity-modulated and image-guided ra-

    diation therapy for treatment of genitourinary carcinomas in dogs. J Vet Intern

    Med 2012;26(4):987–95.

    77.   Kupelian P, Langen K. Helical tomotherapy: image-guided and adaptive radio-

    therapy. Front Radiat Ther Oncol 2011;43:165–80.

    78.   Welsh JS, Lock M, Harari PM, et al. Clinical implementation of adaptive helical to-

    motherapy: a unique approach to image-guided intensity modulated radio-

    therapy. Technol Cancer Res Treat 2006;5(5):465–79.

    79.  Liptak JM, Dernell WS, Lascelles BD, et al. Intraoperative extracorporeal irradia-

    tion for limb sparing in 13 dogs. Vet Surg 2004;33(5):446–56.

    80.  Walter CU, Dernell WS, LaRue SM, et al. Curative-intent radiation therapy as a

    treatment modality for appendicular and axial osteosarcoma: a preliminary retro-

    spective evaluation of 14 dogs with the disease. Vet Comp Oncol 2005;3(1):1–7.

    81.   Boston SE, Duerr F, Bacon N, et al. Intraoperative radiation for limb sparing of the

    distal aspect of the radius without transcarpal plating in five dogs. Vet Surg 2007;

    36(4):314–23.

    Computed Tomography Imaging in Oncology   15

    http://refhub.elsevier.com/S0195-5616(15)00184-9/sref74http://refhub.elsevier.com/S0195-5616(15)00184-9/sref74http://refhub.elsevier.com/S0195-5616(15)00184-9/sref74http://refhub.elsevier.com/S0195-5616(15)00184-9/sref75http://refhub.elsevier.com/S0195-5616(15)00184-9/sref75http://refhub.elsevier.com/S0195-5616(15)00184-9/sref75http://refhub.elsevier.com/S0195-5616(15)00184-9/sref76http://refhub.elsevier.com/S0195-5616(15)00184-9/sref76http://refhub.elsevier.com/S0195-5616(15)00184-9/sref76http://refhub.elsevier.com/S0195-5616(15)00184-9/sref77http://refhub.elsevier.com/S0195-5616(15)00184-9/sref77http://refhub.elsevier.com/S0195-5616(15)00184-9/sref78http://refhub.elsevier.com/S0195-5616(15)00184-9/sref78http://refhub.elsevier.com/S0195-5616(15)00184-9/sref78http://refhub.elsevier.com/S0195-5616(15)00184-9/sref79http://refhub.elsevier.com/S0195-5616(15)00184-9/sref79http://refhub.elsevier.com/S0195-5616(15)00184-9/sref80http://refhub.elsevier.com/S0195-5616(15)00184-9/sref80http://refhub.elsevier.com/S0195-5616(15)00184-9/sref80http://refhub.elsevier.com/S0195-5616(15)00184-9/sref81http://refhub.elsevier.com/S0195-5616(15)00184-9/sref81http://refhub.elsevier.com/S0195-5616(15)00184-9/sref81http://refhub.elsevier.com/S0195-5616(15)00184-9/sref81http://refhub.elsevier.com/S0195-5616(15)00184-9/sref81http://refhub.elsevier.com/S0195-5616(15)00184-9/sref81http://refhub.elsevier.com/S0195-5616(15)00184-9/sref80http://refhub.elsevier.com/S0195-5616(15)00184-9/sref80http://refhub.elsevier.com/S0195-5616(15)00184-9/sref80http://refhub.elsevier.com/S0195-5616(15)00184-9/sref79http://refhub.elsevier.com/S0195-5616(15)00184-9/sref79http://refhub.elsevier.com/S0195-5616(15)00184-9/sref78http://refhub.elsevier.com/S0195-5616(15)00184-9/sref78http://refhub.elsevier.com/S0195-5616(15)00184-9/sref78http://refhub.elsevier.com/S0195-5616(15)00184-9/sref77http://refhub.elsevier.com/S0195-5616(15)00184-9/sref77http://refhub.elsevier.com/S0195-5616(15)00184-9/sref76http://refhub.elsevier.com/S0195-5616(15)00184-9/sref76http://refhub.elsevier.com/S0195-5616(15)00184-9/sref76http://refhub.elsevier.com/S0195-5616(15)00184-9/sref75http://refhub.elsevier.com/S0195-5616(15)00184-9/sref75http://refhub.elsevier.com/S0195-5616(15)00184-9/sref75http://refhub.elsevier.com/S0195-5616(15)00184-9/sref74http://refhub.elsevier.com/S0195-5616(15)00184-9/sref74http://refhub.elsevier.com/S0195-5616(15)00184-9/sref74