(2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide...

10
Systematic Botany (2016), 41(3) © Copyright 2016 by the American Society of Plant Taxonomists DOI 10.1600/036364416X692334 Date of publication July 28, 2016 A Revised Framework of Dryopteris subg. Nothoperanema (Dryopteridaceae) Inferred from Phylogenetic Evidence, with Descriptions of Two New Sections Li-Yaung Kuo, 1 Yi-Han Chang, 2,8 Jennifer M. O. Glowienka, 3 Victor B. Amoroso, 4 Shi-Yong Dong, 5 Tzu-Tong Kao, 6 Chun-Neng Wang, 1,8 and Wen-Liang Chiou 2,7 1 Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan. 2 Botanical Garden Division, Taiwan Forestry Research Institute, Taipei 100, Taiwan. 3 Department of Life and Environmental Sciences, Carroll College, 1601 North Benton Avenue, Helena, Montana 59625, U. S. A. 4 Center for Biodiversity Research and Extension in Mindanao (CEBREM) and Central Mindanao University, Mindanao, the Philippines. 5 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. 6 Department of Biology, Duke University, Durham, North Carolina 27708, U. S. A. 7 Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation/Conservation Center, Pingtung County 906, Taiwan. 8 Authors for Correspondence (YHC: [email protected]; CNW: [email protected]) Communicating Editor: Mark P. Simmons AbstractDryopteris subgenus Nothoperanema (Dryopteridaceae) includes sections Acrophorus, Diacalpe, Nothoperanema, and Peranema. Phylogenetic relationships among these sections and their relationship to sect. Dryopsis (genus Dryopteris subgenus Erythrovariae, Dryopteridaceae) are unclear. Additionally, previous phylogenetic work has not included Stenolepia, which has been suggested as an impor- tant relative of Peranema based on morphology. In this study, we examined phylogenetic relationships within subgenus Nothoperanema by including Stenolepia and utilizing six plastid regions (5,500 characters). Our inferred phylogeny revealed that sect. Dryopsis is not mono- phyletic. The Nothoperanema clade is highly supported, and includes sect. Acrophorus, sect. Diacalpe, sect. Nothoperanema, sect. Peranema, certain Dryopsis species, and Stenolepia. By re-examining diagnostic morphological characters, we establish and describe two new sections under subgenus Nothoperanema: sect. Shiehia and sect. Stenolepia. This revision accommodates new species transferred from sects. Dryopsis and Stenolepia, and makes subgenus Nothoperanema and each of its sections natural groups. Finally, we provide a table with morphological comparisons and a key to sections. KeywordsAcrophorus, Diacalpe, Dryopsis, Shiehia, Peranema, Stenolepia. Dryopteris subgenus Nothoperanema Tagawa was first estab- lished by Tagawa (1938) within Dryopteridaceae, and was later raised to genus level (as Nothoperanema) within Dryopteridaceae (Ching 1966). This subgenus differs from others in Dryopteris by bearing hair-like scales (i.e. Holttum and Edwards 1986; Widén et al. 2001; or setae, cf. Zhang et al. 2013) on the adaxial surface of laminae (Fig. 1A; Tagawa 1938; Ching 1966; Kramer et al. 1990; Wu and Ching 1991; Zhang et al. 2013). Based on phylogenetic evidence, Peranema D. Don, Diacalpe Blume, and Acrophorus C. Presl were also included in this subgenus as dif- ferent sections (Zhang and Zhang 2012). These three genera have been treated as distinct group(s) within the Dryopteridaceae because their sori are more or less enclosed and wrapped by inferior indusia (Kramer et al. 1990). Peranema is characterized by its stalked sorus, which is enclosed in a spherical indusium and suspended by an elongated and vascularized sorophore (stalk) underneath the abaxial surface of fertile leaves (Fig. 1F). Diacalpe is similar to Peranema but has sessile sori without sorophores (Fig. 1E). Acrophorus differs from the other two genera in having hemispherical sori. Because of their distinctive soral morphology, these three genera have complex taxonomic histories; for example, they have been recognized together as comprising an independent family, Peranemaceae (Ching 1940). Recently, they were revealed to have close relationships with Nothoperanema and certain species of Dryopsis Holttum & Edwards that have round or reniform superior indusia (Li and Lu 2006; Liu et al. 2007; Ebihara 2011; McKeown et al. 2012). Dryopsis is phylogenetically imbedded in Dryopteris (Li and Lu 2006; Liu et al. 2007; Ebihara 2011; McKeown et al. 2012; Zhang and Zhang 2012). Most recently, Dryopsis species have been assigned to Dryopteris subgenus Erythrovariae sect. Dryopsis (Zhang 2012). The relationships between Nothoperanema and its allies including Dryopsis remain unclear. These unresolved rela- tionships may result from insufficient phylogenetic informa- tion; some of the phylogenetic inferences were based on only one or two genetic regions (e.g. Li and Lu 2006; Liu et al. 2007; Ebihara 2011). Additionally, some previous phylogenies implied conflicting relationships (Li and Lu 2006; Liu et al. 2007; Ebihara 2011; McKeown et al. 2012; Zhang and Zhang 2012; Zhang et al. 2012). For example, Dryopteris maximowicziana (Miq.) C. Chr. [i.e. Dryopsis maximowicziana (Miq.) Holttum & P. J. Edwards or Ctenitis maximowicziana (Miq.) Ching] was alter- natively resolved as sister to Acrophorus + Nothoperanema or nested in Nothoperanema (Ebihara 2011; McKeown et al. 2012), but also shown as being distantly related to Acrophorus + Nothoperanema + Diacalpe + Peranema in another study (Zhang et al. 2012). None of the current phylogenetic work includes Stenolepia Alderw., which has been suggested as an important relative of Peranema based on morphology (Holttum and Edwards 1986; Kramer et al. 1990). To resolve the relationships of Nothoperanema and its relatives, this study utilizes not only non-coding regions (rps16-matK IGS, ndhF-trnN, and trnL-F region), but also rapidly evolving coding regions ( matK, ndhF , and chlL) that have been applied to overcome similar difficulties in other fern phylogenies (Kuo et al. 2011; Rothfels et al. 2012; Shinohara et al. 2013), for phylogenetic analy- ses. We include Stenolepia, Dryopsis species, and all sections of subg. Nothoperanema in our analyses to avoid any topological uncertainties due to incomplete taxon sampling of represented lin- eages. Additionally, the diagnostic morphological characteristics

Transcript of (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide...

Page 1: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

Systematic Botany (2016), 41(3)© Copyright 2016 by the American Society of Plant TaxonomistsDOI 10.1600/036364416X692334Date of publication July 28, 2016

A Revised Framework of Dryopteris subg. Nothoperanema (Dryopteridaceae) Inferredfrom Phylogenetic Evidence, with Descriptions of Two New Sections

Li-Yaung Kuo,1 Yi-Han Chang,2,8 Jennifer M. O. Glowienka,3 Victor B. Amoroso,4 Shi-Yong Dong,5

Tzu-Tong Kao,6 Chun-Neng Wang,1,8 and Wen-Liang Chiou2,7

1Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan.2Botanical Garden Division, Taiwan Forestry Research Institute, Taipei 100, Taiwan.

3Department of Life and Environmental Sciences, Carroll College, 1601 North Benton Avenue,Helena, Montana 59625, U. S. A.

4Center for Biodiversity Research and Extension in Mindanao (CEBREM) and Central Mindanao University,Mindanao, the Philippines.

5Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden,Chinese Academy of Sciences, Guangzhou 510650, China.

6Department of Biology, Duke University, Durham, North Carolina 27708, U. S. A.7Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation/Conservation Center,

Pingtung County 906, Taiwan.8Authors for Correspondence (YHC: [email protected]; CNW: [email protected])

Communicating Editor: Mark P. Simmons

Abstract—Dryopteris subgenus Nothoperanema (Dryopteridaceae) includes sections Acrophorus, Diacalpe, Nothoperanema, and Peranema.Phylogenetic relationships among these sections and their relationship to sect. Dryopsis (genus Dryopteris subgenus Erythrovariae,Dryopteridaceae) are unclear. Additionally, previous phylogenetic work has not included Stenolepia, which has been suggested as an impor-tant relative of Peranema based on morphology. In this study, we examined phylogenetic relationships within subgenus Nothoperanema byincluding Stenolepia and utilizing six plastid regions (∼5,500 characters). Our inferred phylogeny revealed that sect. Dryopsis is not mono-phyletic. The Nothoperanema clade is highly supported, and includes sect. Acrophorus, sect. Diacalpe, sect. Nothoperanema, sect. Peranema,certain Dryopsis species, and Stenolepia. By re-examining diagnostic morphological characters, we establish and describe two new sectionsunder subgenus Nothoperanema: sect. Shiehia and sect. Stenolepia. This revision accommodates new species transferred from sects. Dryopsisand Stenolepia, and makes subgenus Nothoperanema and each of its sections natural groups. Finally, we provide a table with morphologicalcomparisons and a key to sections.

Keywords—Acrophorus, Diacalpe, Dryopsis, Shiehia, Peranema, Stenolepia.

Dryopteris subgenus Nothoperanema Tagawa was first estab-lished by Tagawa (1938) within Dryopteridaceae, and was laterraised to genus level (as Nothoperanema) within Dryopteridaceae(Ching 1966). This subgenus differs from others in Dryopterisby bearing hair-like scales (i.e. Holttum and Edwards 1986;Widén et al. 2001; or setae, cf. Zhang et al. 2013) on the adaxialsurface of laminae (Fig. 1A; Tagawa 1938; Ching 1966; Krameret al. 1990; Wu and Ching 1991; Zhang et al. 2013). Based onphylogenetic evidence, Peranema D. Don, Diacalpe Blume, andAcrophorus C. Presl were also included in this subgenus as dif-ferent sections (Zhang andZhang 2012). These three genera havebeen treated as distinct group(s) within the Dryopteridaceaebecause their sori are more or less enclosed and wrapped byinferior indusia (Kramer et al. 1990). Peranema is characterizedby its stalked sorus, which is enclosed in a spherical indusiumand suspended by an elongated and vascularized sorophore(stalk) underneath the abaxial surface of fertile leaves (Fig. 1F).Diacalpe is similar to Peranema but has sessile sori withoutsorophores (Fig. 1E). Acrophorus differs from the other twogenera in having hemispherical sori. Because of their distinctivesoral morphology, these three genera have complex taxonomichistories; for example, they have been recognized together ascomprising an independent family, Peranemaceae (Ching 1940).Recently, they were revealed to have close relationships withNothoperanema and certain species of Dryopsis Holttum &Edwards that have round or reniform superior indusia (Li andLu 2006; Liu et al. 2007; Ebihara 2011; McKeown et al. 2012).Dryopsis is phylogenetically imbedded in Dryopteris (Li and Lu2006; Liu et al. 2007; Ebihara 2011; McKeown et al. 2012; Zhangand Zhang 2012). Most recently, Dryopsis species have been

assigned to Dryopteris subgenus Erythrovariae sect. Dryopsis(Zhang 2012).

The relationships between Nothoperanema and its alliesincluding Dryopsis remain unclear. These unresolved rela-tionships may result from insufficient phylogenetic informa-tion; some of the phylogenetic inferences were based on onlyone or two genetic regions (e.g. Li and Lu 2006; Liu et al.2007; Ebihara 2011). Additionally, some previous phylogeniesimplied conflicting relationships (Li and Lu 2006; Liu et al.2007; Ebihara 2011; McKeown et al. 2012; Zhang and Zhang2012; Zhang et al. 2012). For example, Dryopteris maximowicziana(Miq.) C. Chr. [i.e. Dryopsis maximowicziana (Miq.) Holttum &P. J. Edwards or Ctenitis maximowicziana (Miq.) Ching] was alter-natively resolved as sister to Acrophorus + Nothoperanema or nestedin Nothoperanema (Ebihara 2011; McKeown et al. 2012), but alsoshown as being distantly related to Acrophorus + Nothoperanema +Diacalpe + Peranema in another study (Zhang et al. 2012). None ofthe current phylogenetic work includes Stenolepia Alderw., whichhas been suggested as an important relative of Peranema based onmorphology (Holttum and Edwards 1986; Kramer et al. 1990).

To resolve the relationships of Nothoperanema and its relatives,this study utilizes not only non-coding regions (rps16-matK IGS,ndhF-trnN, and trnL-F region), but also rapidly evolving codingregions (matK, ndhF, and chlL) that have been applied to overcomesimilar difficulties in other fern phylogenies (Kuo et al. 2011;Rothfels et al. 2012; Shinohara et al. 2013), for phylogenetic analy-ses. We include Stenolepia, Dryopsis species, and all sections ofsubg. Nothoperanema in our analyses to avoid any topologicaluncertainties due to incomplete taxon sampling of represented lin-eages. Additionally, the diagnostic morphological characteristics

Page 2: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

for the Nothoperanema clade, the clade containing subg.Nothoperanema and sister to the Aemulae clade (Zhang et al.2012), and each lineage within this clade were re-examined. Basedon the phylogenetic and morphological evidence, this study fur-ther provides a revised framework of Dryopteris subgenusNothoperanema and a key to identify its infra-subgeneric sections.

Materials and Methods

Phylogenetic Sampling—A total of 33 Dryopteris species and twooutgroups in the two most closely related genera [i.e. Polystichum Roth and

Arachniodes Blume (Li and Lu 2006; Liu et al. 2007; Ebihara 2011;McKeown et al. 2012; Zhang et al. 2012)] were included in our phyloge-netic analyses. The sampling of Dryopteris species included representativesfrom each of the major clades revealed in previous analyses using compre-hensive taxon sampling (Zhang et al. 2012). Between 27% and 100% of rec-ognized species were sampled for each section in subg. Nothoperanema(sensu Zhang and Zhang 2012, and Zhang and Liu 2014). For sect.Dryopsis, eight of 21 species were sampled (sensu Zhang 2012). Weincluded only one sample of Stenolepia, which is presumably monotypic(Kramer et al. 1990). Voucher information is summarized in Appendix 1.

Phylogenetic Analyses—DNA was extracted using a modified CTABprocedure (Wang et al. 2004). Universal and newly designed specificprimers were used for amplifying cpDNA regions, including trnL-L-F(trnL-F IGS + trnL gene), rps16-matK IGS, matK, ndhF, ndhF-trnN IGS, and

Fig. 1. The morphological characters of subg. Nothoperanema. A. Hair-like scales on laminae adaxial surface of Dryopteris hendersonii (sect.Nothoperanema). B. Membranaceous and cordate scales on adaxial side of costae-rachis junctions of D. paleolata (sect. Acrophorus). C. Confluent groovebetween rachis and costae of D. squamiseta (sect. Nothoperanema). D. Non-confluent groove between rachis and costae of D. hypolepioides. E. Globose soriof D. pseudocaenopteris (sect. Diacalpe). F. Stalked and globose sori of D. peranema (sect. Peranema).

SYSTEMATIC BOTANY [Volume 41

Page 3: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

chlL. The PCR reactions were performed in 15 μL reaction volumes,including 20 ng genomic DNA, 1 × PCR buffer, 200 μM dNTP, 15 pmolof each primer, and 0.5 U taq polymerase (ProTaq, PROTECH, Taipei,Taiwan) or 0.75 U Phusion polymerase (FINNZYMES, Espoo, Finland).Primer information is in Table 1. After sequencing, DNA sequences werealigned by ClustalW implemented in BioEdit v. 7.0.5.3 (Hall 1999) usingthe default settings. Ambiguously aligned tandem repeats in rps16-matKIGS were removed from the alignments manually. The alignment wasdeposited in Dryad (http://dx.doi.org/10.5061/dryad.mr076). To inferthe appropriate nucleotide substitution model of each cpDNA region forphylogenetic analyses, jModelTest v. 0.1.1 (Posada 2008) was employed,and the appropriate substitution models were selected based on theAkaike information criterion (Akaike 1974). Garli 2.0 (Zwickl 2006) wasused to reconstruct the maximum likelihood (ML) phylogeny. The pro-portions of invariant sites and state frequencies were estimated by theprogram. The “genthreshfortopoterm” option was set to 20,000. To findthe most likely ML tree, ten independent searches were carried out, andthe tree with highest likelihood was selected. To calculate ML bootstrapsupport (BS) values (Felsenstein 1985), 500 replicates were run under thesame criteria, except only one search was completed for each replicate.Phylogenetic analysis via Bayesian inference (PP) was performed usingMrBayes v.3.1.2 (Yang and Rannala 1997; Ronquist and Huelsenbeck2003). Two simultaneous runs were carried out with four chains (106

generations each), in which each chain was sampled every 1,000 gen-erations. Log likelihoods of MCMC runs were inspected in Tracer v1.6(Rambaut and Drummond 2013) to determine convergence. The first25% of the sample was discarded as burn-in, and the rest was used tocalculate the 50% majority-rule consensus tree. The maximum parsi-mony (MP) phylogeny was reconstructed using PAUP* 4.0 (Swofford2003) under the setting of random-taxon-addition, TBR swapping, gapsas missing data, and equal weighting. Heuristic bootstrap analysis ofthe MP phylogeny was performed with 500 bootstrap replicates, tenrandom addition cycles per bootstrap replicate, TBR swapping, andequal weighting.

Perispore Morphology—A scanning electron microscope (TM-3000Hitachi) was used to examine perispore characters. Spore samples werepre-treated with gold-coating. The voucher information for all sporesamples is provided in Appendix 2.

Results

Phylogeny—The cpDNA alignment matrix of trnL-L-F +rps16-matK IGS + matK + ndhF + ndhF-trnN IGS + chlL com-prised a total of 5,473 characters with 1,618 variable sites,which were generated from 33 Dryopteris species and twooutgroups in Dryopteridaceae. The highest log-likelihood valueof the ML tree (Fig. 2) was -20,396.989845. Sect. Dryopsis was notmonophyletic; species classified in section Dryopsis were resolvedin the Dryopsis and Nothoperanema clades separately. In addi-tion to sect. Nothoperanema, Acrophorus, Diacalpe, and Peranema,

two Dryopsis members [i.e. Dryopteris maximowicziana and D.manipurensis (Bedd.) C. Chr.] and Stenolepia (i.e. Dryopterishypolepioides Rosenst.) were embedded in the Nothoperanemaclade, which was a highly supported monophyletic group(MLBS = 100, PP = 1.00, and MPBS = 100) and sister to theAemulae clade (Fig. 2). The tree file was deposited in Dryad(http://dx.doi.org/10.5061/dryad.mr076).

Perispore Morphology—The perispore morphology of allspecies examined are shown in Fig. 3, and these morphol-ogies are congruent with those described in previous studies(Holttum and Edwards 1986; Tryon and Lugardon 1991;Chen 2007; Lu et al. 2007; Wang and Dai 2010; Ding et al.2013). The species belonging to subgenus Nothoperanemahave folded perispores and the folds on perispores are usuallyreticulate (Fig. 3A–D). Dryopteris hypolepioides has such reticulateperispore folds. Three species of sect. Dryopsis, D. manipurensis,D. maximowicziana, and D. scabrosa, also have folded perisporesbut their folds are laminate (Fig. 3F–H). Dryopteris apiciflora, thetype species of sect. Dryopsis, has spiny perispores (Fig. 3I),which are similar to those found in the remaining Dryopsismembers except for D. obtusiloba (Holttum and Edwards 1986;Tryon and Lugardon 1991; Chen 2007; Lu et al. 2007; Wang andDai 2010; Ding et al. 2013).

Discussion

Phylogenetic Patterns—The relationships among cladesin our phylogeny are consistent with previous studies, whilerelationships within the Nothoperanema clade showed somedifferences (Geiger and Ranker 2005; Li and Lu 2006; Liuet al. 2007; Ebihara 2011; McKeown et al. 2012; Sessa et al.2012; Zhang and Zhang 2012; Zhang et al. 2012). Based onthe rapidly evolving coding regions (i.e. matK, ndhF, andchlL), our inferred phylogeny successfully resolved majorrelationships within the Nothoperanema clade. The inter-section phylogenetic relationships in subg. Nothoperanemainferred using these rapidly evolving coding regions alonereceived higher bootstrap values compared to those resolvedusing only non-coding regions (data not shown). Addition-ally, the phylogeny based on these coding regions revealedthe same inter-section relationships as the phylogenyinferred using all regions (i.e. non-coding + coding; Fig. 2).This phylogeny strongly suggests the monophyly of sect.Peranema + Diacalpe + Acrophorus (MLBS = 86, PP = 1.00, and

Table 1. The PCR primers used in this study. (*primer for sequencing)

Primer names Primer sequence 5′-3′ Target region Target taxon Reference

FERN chlN rEDS* GTACCYACTACTARGAAAAARCTATCTTC chlL for all ferns This studyFernN 3517 AACAGCCGACCGCTCTACC chlL for all ferns This studyDry chlL rFDA* GGGCATCRAATCCATTATCAG chlL for Dryopteris This studyDry chlL fGVD GGTTAYGGCGGAGTAGAC chlL for Dryopteris This studyFERN rpsl6 fSRQE* CCCGRMRAGAAGGGARAG rps16-matK IGS for all ferns Kuo et al. 2011EuI rps16 fQST AACCGTTCGTGATATYTTGAAACG rps16-matK IGS for eupolypod I ferns This studyFERmatK fEDR* ATTCATTCRATRTTTTTATTTHTGGARGAYAGATT matK for all ferns Kuo et al. 2011FERmatK rAGK CGTRTTGTACTYYTRTGTTTRCVAGC matK for all ferns Kuo et al. 2011EuI matK rGLR ATCTCAATCTMCGCAATCCAT matK for eupolypod I ferns Kuo et al. 2011Dry matK rNLH* GCGAACTRSAGYTTCTAVRTGAA matK for Dryopteris This studyFERndhF fTMV* GCTCTHATHCAYGCNGCWACTATGGTRGC ndhF + ndhF-trnN IGS for all ferns Chen et al. 2013FernN 2245 CTACGACCMATCGGTTAACAGCCG ndhF + ndhF-trnN IGS for all ferns Chen et al. 2013Dry ndhF fESN* TGCTACATCCCCRAGAATCAAAT ndhF + ndhF-trnN IGS for Dryopteris This studyDry ndhf rGMD TCAAACGGGAGRTCCRTACCAG ndhF + ndhF-trnN IGS for Dryopteris This studyf* ATTTGAACTGGTGACACGAG trnL-L-F for all ferns Taberlet et al. 1991FernL 1Ir1* GGYAATCCTGAGCCAAATC trnL-L-F for all ferns Li et al. 2010

2016] KUO ET AL.: REVISION OF SUBG. NOTHOPERANEMA

Page 4: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

MPBS = 70; Fig. 2). This relationship was neither resolvednor supported in the previous studies (Li and Lu 2006; Liuet al. 2007; McKeown et al. 2012; Zhang and Zhang 2012;Zhang et al. 2012). Instead, these previous studies inferredan alternative topology showing sect. Peranema as sister tosect. Nothoperanema + Diacalpe + Acrophorus. However, withthe exception of Zhang et al. (2012), these relationshipsreceived only weak support in earlier studies. This latterrelationship may have resulted from including rbcL sequencesin phylogenetic reconstruction as rbcL sequences usually con-tain higher levels of homoplasy (Kuo et al. 2011; Shinoharaet al. 2013).Our phylogeny resolved the phylogenetic positions of

Stenolepia (i.e. Dryopteris hypolepioides) and two Dryopsismembers (i.e. D. maximowicziana and D. manipurensis) withinthe Nothoperanema clade. This is the first phylogenetic anal-ysis in which D. hypolepioides and D. manipurensis have beenincluded. In previous studies, D. maximowicziana was shownto be related to sect. Nothoperanema or Acrophorus (Ebihara

2011; McKeown et al. 2012). Our phylogeny is consistent withthis result; it further shows D. maximowicziana resolved withanother Dryopsis member (D. manipurensis) that is also nestedin the Nothoperanema clade (Fig. 2). Zhang et al. (2012)inferred the unexpected position of D. maximowicziana nestedwithin the Nephrocystis clade instead of Nothoperanema.This seems to have resulted from the inclusion of DNAsequences from misidentified samples, and, indeed, conflictsin phylogenetic positions were found between the phylogenyreconstructed by their rbcL sequence (found nested in theNothoperanema clade; Ebihara 2011) and those reconstructedby their trnL-L-F or rps4-trnS sequences (found nested in theNephrocystis clade; data not shown).Morphology of the Nothoperanema Clade—Like other

species in the Nothoperanema clade, Dryopteris hypolepioides,D. maximowicziana and D. manipurensis have the followingcharacter states: 3-pinnatifid to 5-pinnatifid frond in ovate-triangular shape, stipe scales in broadly lanceolate or subu-late shape, and hair-like scales on the adaxial lamina surfaces

Fig. 2. The ML phylogeny of the subg. Nothoperanema and its relatives. ML bootstrap support (MLBS) values, the posterior probabilities of Bayesianphylogenetic inference (PP), and MP bootstrap support (MPBS) values are indicated on each branch, as MLBS/PP/MPBS. The plus (+) sign representsMLBS = 100, PP = 1.00, or MPBS = 100. The thickened branch indicates MLBS ≥ 70 and PP ≥ 0.95. The gray blocks indicate the section status identifiedin this study.

SYSTEMATIC BOTANY [Volume 41

Page 5: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

(Fig. 1A). This combination of character states does notappear in other Dryopteris species, and thus, can provide themorphological basis to distinguish the Nothoperanema cladefrom the other clades in Dryopteris. In addition, perispores inthe Nothoperanema clade are folded and are morphologicallydifferent from the spiny perispores of the Dryopsis clade(Fig. 3; Holttum and Edwards 1986; Tryon and Lugardon1991; Chen 2007; Lu et al. 2007; Wang and Dai 2010; Dinget al. 2013). Among Dryopteris species, the inferior indusiumin the Nothoperanema clade is unique and appears only insect. Acrophorus, Diacalpe, and Peranema. Our phylogenyrevealed the monophyly of the clade comprising these threesections (Fig. 2), and further implies a single evolutionarytransition from superior to inferior indusia in the genusDryopteris. A similar transition in indusium position alsooccurred in Tectariaceae (Moran et al. 2014). Except for sect.Nothoperanema, the members in the Nothoperanema cladehave a non-confluent groove at each axis-junction (Fig. 1D).However, this character is homoplastic in Dryopteris, as it alsoappears in subg. Erythrovariae sect. Dryopsis (Zhang 2012).

Morphological comparisons for other informative charactersdistinguishing sections are shown in Table 2.

Taxonomic Treatment

Using current phylogenetic and morphological evidence,we established two new sections in subgenus Nothoperanemato accommodate certain Dryopsis species and Stenolepia, andthis revised framework treats subgenus Nothoperanema as anatural lineage. In addition to Dryopteris maximowicziana andD. sphaeropteroides, we recognized an additional four speciesfrom subg. Erythrovariae sect. Dryopsis (total 21 species sensuZhang 2012) and transferred them to the new section undersubg. Nothoperanema based on their diagnostic morphologicalcharacteristics. Like D. maximowicziana and D. manipurensis,they all have characteristics, such as 2-pinnate-pinnatifid to tri-pinnate fronds in ovate-triangular shape, less densely scaledcostae, and much broader scales on basal stipes, differing fromthe remaining Dryopsismembers which have bipinnate, lanceo-late fronds [except for Dryopteris ×holttumii (= Dryopsis

Fig. 3. Perispore morphology of Dryopteris peranema (A, sect. Peranema), D. pseudocaenopteris (B, sect. Diacalpe), D. paleolata (C, sect. Acrophorus),D. squamiseta (D, sect. Nothoperanema), D. hypolepioides (E), D. maximowicziana (F), D. scabrosa (G), D. manipurensis (H), and D. apiciflora (I, sect. Dryopsis).Scale bars = 5 μm.

2016] KUO ET AL.: REVISION OF SUBG. NOTHOPERANEMA

Page 6: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

Table2.

Morph

olog

ical

compa

risons

amon

gsections

under

subg

.Nothoperanema.

Section/

Cha

racters

Nothoperanema

Shiehia

Stenolepia

Acrophrous

Diacalpe

Peranem

a

Morph

olog

yof

scales

onba

salstipe

Subu

late

tolanc

eolate,

brow

nto

darkbrow

n,en

tire

Lan

ceolateto

ovate-lanc

eolate,

light

brow

nto

reddish

brow

n,en

tire

Lan

ceolateto

broa

dly

lanc

eolate,b

rownto

darkbrow

n,en

tire

Ova

te-lan

ceolateto

ovate,

reddishbrow

nor

castan

eous

,entire,

undulate,

ortoothe

d

Lan

ceolateto

broa

dly

lanc

eolate,c

astane

ous

todarkred,

entire

Subu

late

toov

ate-lanc

eolate,

light

brow

nto

darkbrow

n,margins

entire

orwith

someclav

ate,

shortha

irs

Patterns

ofscales

relative

toax

issu

rfaces

Patent

Patent

orne

arly

soat

least

onha

lflower

portions

ofstipes

App

ressed

,ascen

ding

orsometim

esreflexed

App

ressed

,ascen

dingor

sometim

esrefle

xed

App

ressed

,ascen

dingor

sometim

esreflexed

Patent

orne

arly

so

Fron

dou

tline

Ova

teor

ovate-triang

ular

Ova

teor

ovate-triang

ular

Ova

teor

ovate-triang

ular

Ova

teor

ovate-triang

ular

Ova

teor

oblong

-ova

teOva

teor

oblong

-ova

teFron

ddissection

3-pinn

ateto

4-pinn

atifid

3-pinn

atifid

to4-pinn

atifid

3-pinn

ateto

5-pinn

atifid

3-pinn

atifid

to4-pinn

ate

3-pinn

ateto

4-pinn

atifid

3-pinn

ateto

4-pinn

atifid

Axisdromy

Catad

romou

sexcept

themostprox

imal

pairsof

pinn

a(ana

dromou

s)

Catad

romou

sexcept

the

mostprox

imal

pairsof

pinn

a(ana

dromou

s)

Poecilo

dromou

s;an

adromy,

catadromy

orisod

romy

Catad

romou

sor

nearly

isod

romou

sexcept

themostprox

imal

pairsof

pinn

a(ana

dromou

s)

Catad

romou

sexcept

themostprox

imal

pairsof

pinn

a(ana

dromou

s)

Catad

romou

sexcept

the

mostprox

imal

pairsof

pinn

a(ana

dromou

s)

Fron

dindum

ent

Subu

late

tolanc

eolate

scales,s

ubulate

cten

itis

hairs,

and

shortconicalsetae

Lan

ceolatescales,c

ontorted

subu

late

cten

itis

hairs,

andslightly

long

ersetaeor

hair-likescales

Linear-lanc

eolate

small

scales,c

ontorted

subu

late

cten

itis

hairs,

andshortconical

setae

Subu

late

cten

itis

hairs

andshortconicalsetae;

oftenwithacordate,

brow

nlargescaleat

base

ofeach

junc

tion

ofpinn

aan

dpinn

ule

Lan

ceolatesm

allscales,

contortedsu

bulate

cten

itis

hairs,

short

conicalsetae

Subu

late

tolanc

eolate

scales,

subu

late

cten

itis

hairs,

andshortconicalsetae

Groov

eson

the

adax

ialsurfaces

ofrach

is,costae

andcostules

Mostof

axis-ju

nction

sclearlyconfluen

tNot

confluen

tat

each

axis-ju

nction

sNot

confluen

tat

each

axis-ju

nction

sNot

confluen

tat

each

axis-ju

nction

sNot

confluen

tat

each

axis-ju

nction

sNot

confluen

tat

each

axis-ju

nction

s

Sori

Orbicular;s

ubterm

inal

onve

inlets

Orbicular;s

ubterm

inal

onve

inlets

Semi-glob

ose;

dorsal

onve

inlets

Semi-glob

ose;

subterminal

onve

inlets

Globo

se;d

orsalon

med

ium

orba

sal

portionof

veinlets

Globo

se,w

ithlong

thin

stalk;

dorsalon

veinlets

Indus

iaOrbicular-ren

iform,

supe

rior,a

ttache

dby

sinu

s,en

tire;

rarely

exindus

iate

Orbicular-ren

iform,

supe

rior,a

ttache

dby

sinu

s,en

tire

orerod

ed

Spathu

late-ligulateto

nearly

orbicu

lar,lateral,

attach

edby

agrad

ually

narrow

edba

seon

the

elev

ated

receptacles

under

thesori

Semi-circular

orcu

p-shap

ed,

inferior,a

ttache

dby

broa

dba

se,e

nclosing

sori

whe

nyo

ung;

receptacle

elev

ated

Globo

se,inferior,

attach

edby

broa

dba

se,e

nclosing

sori

whe

nyo

ung,

2or

3va

lves

from

top

whe

nmature

Globo

se,inferior,term

inal

onthin

stalk,

enve

loping

sori

whe

nyo

ung,

2or

3va

lves

from

top

whe

nmature

Perisp

ore

Bearing

reticu

late

folds

Bearing

non-reticu

late

folds

Bearing

retic

ulatefolds

Bearing

reticu

late

folds

Bearing

reticu

late

folds

Bearing

reticu

late

folds

SYSTEMATIC BOTANY [Volume 41

Page 7: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

×fauriei)] and narrow scales at the stipe bases (Holttum andEdwards 1986). In addition, the evidence from the perisporemorphology supports D. scabrosa and D. obtusiloba as distinctfrom species in sect. Dryopsis (Fig. 3G–I; Holttum and Edwards1986; Tryon and Lugardon 1991).Dryopteris Adans. subgenus Nothoperanema Tagawa section

Shiehia L. Y. Kuo et Y. H. Chang, sect. nov—TYPE:Dryopteris maximowicziana (Miq.) C. Chr.

Diagnosis—Most similar to and easily confused withDryopteris subg. Nothoperanema sect. Nothoperanema, but dif-fers by having lanceolate to ovate-lanceolate scales on stipesand rachises (vs. subulate to linear-lanceolate scales), scalessomewhat patent usually restricted to the lower half of stipes(vs. scales often patent throughout stipes and rachises), andnon-confluent junctions of the adaxial lamina axis grooves(vs. all axial junctions confluent). In addition, they are mor-phologically different from Dryopteris subg. Erythrovariae sect.Dryopsis by 2-pinnate-pinnatifid to tripinnate fronds in ovate-triangular shape, subulate to broadly lanceolate and some-what patent scales on stipe bases (vs. narrowly lanceolate andnon-patent scales), less densely scaly costae (vs. densely scalycostae, especially on abaxial surface), short, conical, multi-seriate setae persistent on both sides (or at least the adaxialside) of the laminae (vs. without such setae), and perisporewith non-reticulate folds (vs. with spiny perispore).Morphology—Medium- to large-sized terrestrial ferns.

Rhizome stout and short, erect, prostrate or obliquely ascend-ing. Fronds tufted; stipe covered with scales; scales somewhatwhitish-brown or pale-brown to brown, sometimes trans-lucent, lanceolate to ovate-lanceolate, apex acuminate, thin,entire, gradually shortened and attenuate distally. Laminaelarge, broadly ovate to ovate-triangular, 2-pinnate-pinnatifidto tripinnate, usually herbaceous or chartaceous; all pinnaecatadromous except the most proximal pair, which is anadro-mous; the most proximal pinnae usually largest, elliptic orsubtriangular; stipes and rachises grooved adaxially, costaeand costules with shallow grooves on the adaxial surfaces,most axial junctions tending to be closed near their bases (i.e.adaxial sulci on rachis-costa, costa-costa and costa-costulejunctions not open to receive one another); catenate hairs(ctenitis hairs) abundant on stalks of pinnae and margins ofgrooves but absent inside the grooves, often mixed with avariable number of small, subulate or narrow-lanceolatescales; 2- or 3-cell wide hair-like scales present on both sidesor only adaxial side of junctions of costae, costules and vein-lets; short erect glands, if present (only found in D. scabrosa),located between veins on abaxial surface of pinnae. Venationfree, veins not reaching margin. Sori orbicular, dorsal on theveins, one row on both sides of the costae; indusia superior,orbicular-reniform, light brown to dark brown, persistent orfugacious. Spores bilateral, monolete, ellipsoid to spheroidal,perispore folded without reticulation.Chromosome Number—The haploid count is n = 41 (for

D. maximowicziana; Hirabayashi 1969; Iwatsuki 1995).Distribution Range—The new section of ca. six species

occurs in S and SW China, India, Japan, Nepal, Papua NewGuinea, the Philippines, Sri Lanka, and Taiwan (cf. Holttumand Edwards 1986; Zhang et al. 2013).Note—This new section is named after Prof. Wang-

Chueng Shieh, a retired pteridologist at National ChungHsing Universtiy, for his dedication to promoting the knowl-edge of native ferns and lycophytes of Taiwan.

Included Species—At least six species belong to this section.1.Dryopteris manipurensis (Bedd.) C. Chr., Index Fil. [C. Chr.] 276.

1905. Phegopteris manipurensis Bedd., Suppl. Ferns Brit. Ind.83. 1892. Ctenitis manipurensis (Bedd.) Ching, Bull. FanMem. Inst. Biol. Bot. 8: 297. 1938. Dryopsis manipurensis(Bedd.) Holttum et P. J. Edwards, Kew Bull. 41(1): 200. 1986.Polypodiummanipurense (Bedd.) Bedd., J. Bot. 26: 235. 1888.

Dryopteris copelandii Christ, Philipp. J. Sci., ser. C. 2: 216. 1907.Ctenitis copelandii (Christ) Copel., Gen. Fil. [Copel.] 124. 1947.

Distribution—This species is mainly distributed in India(Assam), Nepal, Papua New Guinea, and the Philippines (Luzon).2. Dryopteris maximowicziana (Miq.) C. Chr., Acta Horti

Gothob. 1: 63. 1924. Aspidium maximowiczianum Miq.,Ann. Mus. Bot. Lugduno-Batavi 3(6): 178. 1867. Ctenitismaximowicziana (Miq.) Ching, Bull. Fan Mem. Inst. Biol.Bot. 8(5): 294. 1938. Dryopsis maximowicziana (Miq.)Holttum et P. J. Edwards, Kew Bull. 41(1): 197. 1986.

Dryopteris aureovestita Rosenst., Hedwigia 56(5): 343. 1915.Ctenitis aureovestita (Rosenst.) Ching, Bull. Fan Mem.Inst. Biol. Bot. 8(5): 295. 1938.

Nephrodium matsumurae Makino, Bot. Mag. Tokyo 13(147):63. 1899. Dryopteris matsumurae (Makino) C. Chr., IndexFil. [C. Chr.] 5: 277. 1905.

Ctenitis whankanshanensis Ching et C. H. Wang, ActaPhytotax. Sin. 19(1): 123. 1981.

Distribution—This species has a restricted distributionin S and SW China, Japan, and Taiwan.3. Dryopteris obtusiloba (Baker) Kuntze, Revis. Gen. Pl. 2: 813.

1891. Nephrodium obtusilobum Baker, Syn. Fil. [Hook. &Baker] 284. 1867. Aspidium obtusilobum Prantl, Verh.Zool. Bot. Ges. 31. 119. 1882, non Fée 1857. Ctenitisferruginea (Bedd.) Ching var. obtusiloba (Baker) Sledge,Kew Bull. 27: 409. 1972. Ctenitis obtusiloba (Baker) Ching,Bull. Fan Mem. Inst. Biol. Bot. 8: 296. 1938. Dryopsisobtusiloba (Baker) Holttum et P. J. Edwards, Kew Bull.41(1): 202. 1986. Dryopteris peranemiformis C. Chr. subsp.obtusiloba (Baker) C. Chr., Index Fil. [C. Chr.] 284. 1905.Dryopteris zeylanica Alderw., Malayan Ferns 203. 1909,nom. superfl. Lastrea obtusiloba (Baker) Bedd., Ferns Brit.Ind. t. 296. 1868, non (Fée) T. Moore 1858.

Distribution—This species is endemic to Sri Lanka.4. Dryopteris peranemiformis C. Chr., Index Fil. [C. Chr.] 284.

1905. Lastrea ferruginea Bedd., Ferns S. India t. 100. 1863,nom. inval., non (Fée) T. Moore 1858. Nephrodiumferrugineum (Bedd.) Baker, Syn. Fil. [Hook. & Baker] 283.1867, nom. inval. Ctenitis ferruginea (Bedd.) Ching, Bull.Fan Mem. Inst. Biol. Bot. 8: 296. 1938, nom. inval.Dryopsis ferruginea (Baker) Holttum et P. J. Edwards, KewBull. 41(1): 201. 1986, nom. inval. Dryopteris ferruginea(Baker) Kuntze, Revis. Gen. Pl. 2: 812. 1891, nom. inval.

Distribution—This species is endemic to S India.5. Dryopteris scabrosa (Kunze) Kuntze, Revis. Gen. Pl. 2: 813.

1891. Aspidium scabrosum Kunze, Linnaea 24: 286. 1851.Ctenitis scabrosa (Kunze) Ching, Bull. Fan Mem. Inst.Biol. Bot. 8: 292. 1938. Dryopsis scabrosa (Kunze) Holttumet P. J. Edwards, Kew Bull. 41(1): 199. 1986. Lastreascabrosa T. Moore, Index Fil. [T. Moore] 103. 1858.

Polypodium nigrescens Bedd., Ferns S. India t. 169. 1864, nonBlume 1828.

2016] KUO ET AL.: REVISION OF SUBG. NOTHOPERANEMA

Page 8: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

Distribution—This species is endemic to S India.6. Dryopteris sphaeropteroides (Baker) C. Chr., Index Fil. [C. Chr.]

5: 293. 1905. Polypodium sphaeropteroides Baker, Bull. Misc.Inform. Kew 1895(99): 55. 1895. Aspidium sphaeropteroides(Baker) Christ, Bull. Acad. Int. Géogr. Bot. 16: 119. 1906.Athyrium sphaeropteroides (Baker) C. Chr., Acta HortiGothob. 1(2): 77. 1924. Ctenitis sphaeropteroides (Baker)Ching, Bull. Fan Mem. Inst. Biol. Bot. 8(5): 295. 1938.Dryopsis sphaeropteroides (Baker) Holttum et P. J. Edwards,Kew Bull. 41(1): 199. 1986. Phegopteris sphaeropterodes(Baker) Christ, Bull. Herb. Boissier 7(1): 14. 1899.

Distribution—This species is endemic to SW China.Dryopteris Adans. subgenus Nothoperanema Tagawa sec-

tion Stenolepia (Alderw.) L.Y. Kuo et Y. H. Chang, comb.et stat. nov.; Stenolepia Alderw. Bull. Dép. Agric. IndesNéerl. 27: 45. 1909-TYPE: Dryopteris hypolepioides Rosenst.

Diagnosis—Somewhat resembling Dryopteris subg.Nothoperanema sect. Diacalpe, but differing by its indusia.Sect. Stenolepia has spathulate-ligulate to nearly orbicular,and laterally attached indusia, while sect. Diacalpe has globoseand inferior indusia (Table 2).Morphology—Small to somewhat large terrestrial ferns.

Rhizomes scaly, ascending to erect. Fronds clustered; stipesdensely covered by broad lanceolate scales but graduallythinning to smaller, lanceolate, linear or filiform trichomesdistally; larger scales often inserted on dark warts and thusthe leaf axes usually dark-verrucate; laminae decompound,usually tri- to quadripinnate, rarely pentapinnatifid in largerindividuals; the dromy (dissection pattern) of pinnae poecilo-dromous (viz. anadromy, catadromy or even isodromy couldbe found in all pinnae of the same frond; cf. Kramer 1987);adaxial surface of rachises, costae and costules grooved butnot confluent at most junctions; uniseriate ctenitis hairs andmultiseriate hair-like scales present on both sides of laminaaxes (Fig. 1D), but much more plentiful on the adaxial sides;short, conical, reddish-brown setae present on the adaxial sideof junctions of veinlets; small oval glandular hairs present orabsent — if present, persistent on abaxial surface of costaeand veins; terminal segments of lateral pinnae usually obtuseto subacute, sinuate to pinnatifid. Venation abaxially dark,clearly visible; veins free, pinnately branching, simple or onceto twice forked, veinlet tips almost reaching the margin. Sorisemi-globose, dorsal on a vein or veinlet or at the forking of avein; receptacles elevated; indusiium is attached by a gradu-ally narrowed base on the elevated receptacle under thesorus, spathulate-ligulate to approximately orbicular, usuallyfugacious. Spores bilateral, monolete, ellipsoid, the surfacewith prominent, coarse folds.Distribution Range—This species occurs in central, eastern

and northern Malesia [incl. Borneo, Indonesia, New Guinea(incl. Papua New Guinea), and the Philippines] (cf. Krameret al. 1990; Chang et al. 2013).Note—Sect. Stenolepia is a monotypic taxon, and only the

type species (Aspidium triste Blume) is recognized (cf. Krameret al. 1990). When the type species was transferred to the genus

Dryopteris, the new combination based on A. triste Blume wasblocked by D. tristis (Kunze) Kuntze (Revis. Gen. Pl. 2: 814.1891). Thus, D. hypolepioides Rosenst. (Repert. Spec. Nov.Regni Veg. 12: 175. 1913), which is one of the two earliestpublished taxa and recently regarded as a synonym of A. triste(Chang et al. 2013), was chosen to be the replacement name.However, judging from the somewhat variable characters,such as plant size (from 13 cm to 100 cm tall), lamina shape(from subtriangular-triangular to ovate-lanceolate), lamina dis-section (ranging from tripinnatilobate to pentapinnatifid),shape and texture of indusia (broad-ovate to orbicular withmembranaceous texture for the Philippine materials vs. small,narrow, spathulate-ligulate with rigid texture according to thedescription of type protolog), occurrence of glandular hairson abaxial surface of fronds (cf. Johns et al. 2006), types ofsubstrate on which they grow (from loam to limestone), andhabitat ecology (from the grounds under the forest canopiesat middle elevations to the exposed summit areas at high alti-tudes), some cryptic species might possibly be includedtherein. Hence, intensive sampling from the whole range ofthe species is necessary for further phylogenetic analyses.Included Species—Only one species, Dryopteris hypolepioides

Rosenst., is recognized currently. However, two uncertain taxadocumented in Johns et al. (2006) are also listed below.1. Dryopteris hypolepioides Rosenst., Repert. Spec. Nov. Regni

Veg. 12: 175. 1913.

Aspidium triste Blume, Enum. Pl. Javae 2: 169. 1828. Alsophilatristis (Blume) Blume ex T. Moore, Index Fil. 58. 1857.Cystopteris tristis (Blume) Mett., Ann. Mus. Bot.Lugduno-Batavi. 1: 241. 1864. Cyathea tristis (Blume)Domin, Pteridophyta 263. 1929. Davallia tristis (Blume)Racib., Pterid. Buit. 1: 131. 1898. Lastrea tristis (Blume) T.Moore, Index Fil. 107. 1858. Stenolepia tristis (Blume)Alderw., Bull. Dep. Agric. Indes Neerl. 27: 46, t. 7. 1909.

Dryopteris alpina Rosenst., Repert. Spec. Nov. Regni Veg. 12:173. 1913.

Athyrium atropurpureum Copel., Philipp. J. Sci. 12: 59. 1917.

Distribution—It is the same as the distribution range ofthis section.Uncertain Taxa—

1. Dryopteris speciosissima Copel., Univ. Calif. Publ. Bot. 18:219. 1942; Ctenitis speciosissima (Copel.) Copel., Gen. Fil.[Copeland] 125. 1947; Stenolepia speciosissima (Copel.)Holttum ex P. J. Edwards, Guide Alpine Subalpine Fl.Mount Jaya [R. J. Johns & al.] 88. 2006.

Distribution—This taxon is currently only known fromIndonesia (Prov. Papua; type locality).2. “Stenolepia” sp. 1, R. J. Johns & P. J. Edwards in R. J. Johns

et al. Guide Alpine Subalpine Fl. Mount Jaya [R. J. Johnset al.] 86, f. 12.3.2. 2006.

Distribution—This taxon is currently only known fromIndonesia (Prov. Papua).

Key to Sections of Subg. NOTHOPERANEMA

1. Indusia superior (above sori), flat, reniform; scales on stipes, at least the basal portion, often patent or not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. Scales on stipes and rachises lanceolate to ovate-lanceolate, patent on basal portion of stipes or not;

grooves of rachis, costae and costules not confluent at junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sect. Shiehia2. Scales on stipes and rachises subulate to linear lanceolate, usually patent throughout;

grooves of rachis, costae and costules confluent at junctions (Fig. 1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sect. Nothoperanema

SYSTEMATIC BOTANY [Volume 41

Page 9: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

1. Indusia lateral (spathulate-ligulate to approximately orbicular) or inferior(beneath sori; globose or semi-globose); scales on stipes and rachises appressed,ascending or sometimes reflexed, except sect. Peranema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Indusia lateral (attached by a gradually narrowed base on the elevated receptacle under sorus),spathulate-ligulate to approximately orbicular, often fugacious; scales on stipes mostly appressed . . . . . . . . . . . . . . . . . . . . . . sect. Stenolepia

3. Indusia inferior (beneath sori), globose or semi-globose;the positions of scales on stipes relative to stipe surface in various ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Sori stalked; indusia globose (Fig. 1F); scales on stipes and rachises mostly patent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sect. Peranema4. Sori sessile; indusia globose or semi-globose; scales on stipes and

rachises appressed, ascending or sometimes reflexed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55. A large, membranaceous, cordate or ovate-lanceolate, often persistent scale

usually present at each junction of pinna and pinnule on abaxial surface (Fig. 1B);indusia membranaceous, semi-globose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sect. Acrophorus

5. Leaf axes of every order without a large cordate or ovate-lanceolate scale;indusia leathery, globose (Fig. 1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sect. Diacalpe

Acknowledgments. The authors thank Wan-Yu Zhang for help withthe initial work on Dryopteridaceae matK; Atsushi Ebihara, Carl Rothfels,Cheng-Wei Chen, Fay-Wei Li, Tian-Chuan Hsu, and Yea-Chen Liu forproviding materials; Pi-Fong Lu for providing photos; Mark P. Simmonsand two anonymous reviewers for providing comments and suggestionson the manuscript. This research is supported by the Taiwan Ministry ofScience and Technology for WLC (100-2923-B-054-001-MY3) and theDepartment of Science and Technology of Philippines for VBA.

Literature Cited

Akaike, H. 1974. A new look at the statistical model identification. IEEETransactions on Automatic Control 19: 716–723.

Chang, Y.-H., L.-Y. Kuo, W.-L. Chiou, C.-W. Chen, H.-M. Chang, and V. B.Amoroso. 2013. Stenolepia Alderw. (Dryopteridaceae), a fern genusnew to the Philippines. Philippine Journal of Science 142: 83–88.

Chen, N.-C. 2007. Scanning electron microscopic studies on the spores ofDryopteridoideae from Taiwan. Master Thesis. Kaohsiung: NationalSun Yat-sen University.

Chen, C.-W., Y.-M. Huang, L.-Y. Kuo, Y.-H. Chang, Y.-C. Liu, and W.-L.Chiou. 2013. A new vittarioid fern species, Haplopteris heterophylla(Pteridaceae). Systematic Botany 38: 901–909.

Ching, R.-C. 1940. On natural classification of the family Polypodiaceae.Sunyatsenia 5: 201–268.

Ching, R.-C. 1966. Three new fern genera. Zhiwu Fenlei Xuebao 11: 17–19.Ding, H.-H., P. Wang, and S.-Y. Dong. 2013. Dryopsis (Dryopteridaceae),

a fern genus new to Vietnam. Taiwania 58: 80–84.Ebihara, A. 2011. RbcL phylogeny of Japanese pteridophyte flora and

implications on infrafamilial systematics. Bulletin of the NationalMuseum of Nature and Science. Series B. Botany 37: 63–74.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approachusing the bootstrap. Evolution 39: 783–791.

Geiger, J. M. O. and T. A. Ranker. 2005. Molecular phylogenetics andhistorical biogeography of Hawaiian Dryopteris (Dryopteridaceae).Molecular Phylogenetics and Evolution 34: 392–407.

Hall, T. 1999. BioEdit: A user-friendly biological sequence alignmenteditor and analysis program for Windows 95/98/NT. Nucleic AcidsSymposium Series 41: 95–98.

Hirabayashi, H. 1969. Chromosome numbers in several species of theAspidiaceae. Shokubutsu Kenkyu Zasshi 44: 113–119.

Holttum, R. and P. J. Edwards. 1986. Studies in the fern-genera allied toTectaria II. Dryopsis, a new genus. Kew Bulletin 41: 171–204.

Iwatsuki, K. 1995. Dryopteridaceae. Pp. 120–173 in Flora of Japan, Volume1, Pteridophyta and Gymnospermae. Tokyo: Kodansha.

Johns, R. J., P. J. Edwards, T. M. A. Utteridge, and H. C. F. Hopkins. 2006.Genus Stenolepia. Pp. 86–88 in A guide to the alpine and dubalpine Floraof Mount Jaya. London: Kew Publishing.

Kramer, K. U. 1987. A brief survey of the dromy in fern leaves, with anexpanded terminology. Botanica Helvetica 97: 219–228.

Kramer, K. U., R. E. Holttum, R. C. Moran, and A. R. Smith. 1990.Dryopteridaceae. Pp. 101–144 in The families and genera of vascularplants, volume 1, ed. K. Kubitzki. Berlin, Heidelberg: SpringerBerlin Heidelberg.

Kuo, L.-Y., F.-W. Li, W.-L. Chiou, and C.-N. Wang. 2011. First insights intofern matK phylogeny. Molecular Phylogenetics and Evolution 59: 556–566.

Li, C.-X. and S.-G. Lu. 2006. Phylogenetic analysis of Dryopteridaceaebased on chloroplast rbcL sequences. Zhiwu Fenlei Xuebao 44: 503–515.

Li, F.-W., L.-Y. Kuo, Y.-M. Huang, W.-L. Chiou, and C.-N. Wang. 2010.Tissue-direct PCR, a rapid and extraction-free method for barcodingof ferns. Molecular Ecology Resources 10: 92–95.

Liu, H.-M., X.-C. Zhang, W. Wang, Y.-L. Qiu, and Z.-D. Chen. 2007.Molecular phylogeny of the fern family Dryopteridaceae inferredfrom chloroplast rbcL and atpB genes. International Journal of PlantSciences 168: 1311–1323.

Lu, J.-M., D.-Z. Li, and D. Wu. 2007. Spore morphology of the familyDryopteridaceae. Acta Botanica Yunnanica 29: 397–408.

McKeown, M., M. Sundue, and D. Barrington. 2012. Phylogenetic analysesplace the Australian monotypic Revwattsia in Dryopteris (Dryopteridaceae).PhytoKeys 14: 43–56.

Moran, R. C., P. H. Labiak, J. G. Hanks, and J. Prado. 2014. The phylo-genetic relationship of Tectaria brauniana and Tectaria nicotianifolia,and the recognition of Hypoderris (Tectariaceae). Systematic Botany39: 384–395.

Posada, D. 2008. jModelTest: Phylogenetic model averaging. MolecularBiology and Evolution 25: 1253–1256.

Rambaut, A. and A. J. Drummond. 2013. Tracer v1.6. Available fromhttp://tree.bio.ed.ac.uk/software/tracer/.

Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylo-genetic inference under mixed models. Bioinformatics 19: 1572–1574.

Rothfels, C. J., A. Larsson, L.-Y. Kuo, P. Korall, W.-L. Chiou, and K. M.Pryer. 2012. Overcoming deep roots, fast rates, and short internodesto resolve the ancient rapid radiation of eupolypod II ferns. System-atic Biology 61: 490–509.

Sessa, E. B., E. A. Zimmer, and T. J. Givnish. 2012. Unraveling reticulateevolution in North American Dryopteris (Dryopteridaceae). BMCEvolutionary Biology 12: 104.

Shinohara, W., N. Nakato, Y. Yatabe-Kakugawa, T. Oka, J. K. Kim, N.Murakami, H. Noda, and N. Sahashi. 2013. The use of matK inOphioglossaceae phylogeny and the determination of Mankyuachromosome number shed light on chromosome number evolutionin Ophioglossaceae. Systematic Botany 38: 564–570.

Swofford, D. L. 2003. PAUP*. Phylogenetic analysis using parsimony(* and other methods). Version 4.0b10. Sunderland: Sinauer Associates.

Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primersfor amplification of three non-coding regions of chloroplast DNA.Plant Molecular Biology 17: 1105–1109.

Tagawa, M. 1938. Nothoperanema Tagawa, a new subgenus of DryopterisAdans. Acta Phytotaxonomica et Geobotanica 7: 198–200.

Tryon, A. F. and B. Lugardon. 1991. Dryopteridaceae. Pp. 416–501 inSpores of the Pteridophyta. New York: Springer-Verlag Press.

Wang, C.-N., M. Möller, and Q. C. B. Cronk. 2004. Phylogenetic positionof Titanotrichum oldhamii (Gesneriaceae) inferred from four differentgene regions. Systematic Botany 29: 407–418.

Wang, Q.-X. and X.-L. Dai. 2010. Spores of Polypodiales (Filicales) fromChina. Beijing: Science Press.

Widén, C.-J., C. R. Fraser-Jenkins, T. Reichstein, and J. Sarvela. 2001. Asurvey of phenolic compounds in Dryopteris and related genera.Part III. Annales Botanici Fennici 38: 99–138.

Wu, S.-H. and R.-C. Ching. 1991. Peranemaceae and Dryopteridaceae.Pp. 403–439 in Fern families and genera of China. Beijing: Science Press.

Yang, Z. and B. Rannala. 1997. Bayesian phylogenetic inference usingDNA sequences: A Markov Chain Monte Carlo method. MolecularBiology and Evolution 14: 717–724.

Zhang, L.-B. 2012. Reducing the fern genus Dryopsis to Dryopteris and thesystematics and nomenclature of Dryopteris subgenus Erythrovariaesection Dryopsis (Dryopteridaceae). Phytotaxa 27: 17–27.

2016] KUO ET AL.: REVISION OF SUBG. NOTHOPERANEMA

Page 10: (2016), 41(3) Date of publication July 28, 2016 A Revised ... · the appropriate nucleotide substitution model of each cpDNA region for phylogenetic analyses, jModelTest v. 0.1.1

Zhang, L.-B. and H.-M. Liu. 2014. Dryopteris damingshanensis(Dryopteridaceae): A new fern in subgenus Nothoperanema fromGuangxi, China. Novon 23: 119–122.

Zhang, L.-B. and L. Zhang. 2012. The inclusion of Acrophorus, Diacalpe,Nothoperanema, and Peranema in Dryopteris: The molecular phylogeny,systematics, and nomenclature of Dryopteris subg Nothoperanema. Taxon61: 1199–1216.

Zhang, L.-B., L. Zhang, S.-Y. Dong, E. B. Sessa, X.-F. Gao, andA. Ebihara. 2012.Molecular circumscription and major evolutionary lineages of the ferngenus Dryopteris (Dryopteridaceae). BMC Evolutionary Biology 12: 180.

Zhang, L.-B., S.-G. Wu, J.-Y. Xiang, F.-W. Xing, H. He, F.-G. Wang, S.-G.Lu, S.-Y. Dong, D. S. Barrington, K. Iwatsuki, M. J. M. Christenhusz,J. T. Mickel, M. Kato, and M. G. Gilbert. 2013. Dryopteridaceae.Pp. 541–724 in Flora of China, Vol. 2–3 (Pteridophytes). Beijing: SciencePress; St. Louis: Missouri Botanical Garden Press.

Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysisof large biological sequence datasets under the maximum likelihood crite-rion. Ph. D. Thesis. Austin: The University of Texas.

Appendix 1. Voucher specimens and GenBank accession numbers forcpDNA sequences used in this study. Information is presented in thefollowing order: taxon name, collection number (deposited herbarium), locality,chlL, ndhF, ndhF-trnN IGS, matK, rps16-matK IGS, trnL-L-F.

Arachniodes quadripinnata (Hayata) Seriz., Kuo484 (TAIF), Nantou(Taiwan), KU500274, KU500299, KU500197, KU500249, KU500223,KU500172. Dryopteris aemula (Ait.) Kuntze, M. Gibby & A. M. Paul 26(BM), unknown, KU500291, KU500316, KU500214, KU500266, KU500240,KU500189. Dryopteris annamensis (Tagawa) Li-Bing Zhang, Wade1048(TAIF), Tam Dao (Vietnam), KU500285, KU500310, KU500208, KU500260,KU500234, KU500183. Dryopteris apiciflora (Wall.) Kuntze, Dong 843(IBSC), Yunnan (China), -, -, -, KJ196541, KJ196541, KJ196641. Dryopterischristensenae (Ching) Li-Bing Zhang, Liu9365 (TAIF), Yunnan (China),KU500287, KU500312, KU500210, KU500262, KU500236, KU500185.Dryopteris erythrosora (D. C. Eaton) Kuntze, LJM178, unknown, -, -, -, -, -,DQ514496; Kuo709 (TAIF), Hunan (China), -, -, -, KU500248, KU500222, -.Dryopteris expansa (C. Presl) Fraser-Jenk. & Jermy, Kuo467 (TAIF), Nantou(Taiwan), KU500298, KU500323, KU500221, KU500273, KU500247,KU500196. Dryopteris filix-mas (L.) Schott, EBS32 (WIS), unknown, -, -, -,JN189075, -, JQ941611. Dryopteris fragrans (L.) Schott, EBS47 (WIS),unknown, -, -, -, JQ941603, -, JN189080. Dryopteris glabra var. glabra (Brack.)Kuntze, Geiger35 (COLO), Hawaii (U. S. A.), KU500292, KU500317,KU500215, KU500267, KU500241, KU500190. Dryopteris hawaiiensis (Hillebr.)W. J. Rob., Geiger7 (COLO), Hawaii (U. S. A.), KU500293, KU500318,KU500216, KU500268, KU500242, KU500191. Dryopteris hendersonii (Bedd.)C. Chr., TNS: 763159 (TNS), Kagoshima Pref. (Japan), KU500276, KU500301,KU500199, KU500251, KU500225, KU500174. Dryopteris heterolaena C. Chr.,Dong3684 (IBSC), Guangdong (China), -, -, -, KJ196553, KJ196553, KJ196623.Dryopteris holttumii Li-Bing Zhang, Hsu5840 (TAIF), Taitong (Taiwan),KU500296, KU500321, KU500219, KU500271, KU500245, KU500194. Dryopterishypolepioides Rosenst., Kuo2701 (TAIF), Mindanao (the Philippines),

KU500288, KU500313, KU500211, KU500263, KU500237, KU500186.Dryopteris labordei (Christ) C. Chr., ZWY44 (TAIF), Taipei (Taiwan),KU500295, KU500320, KU500218, KU500270, KU500244, KU500193.Dryopteris leiboensis Li-Bing Zhang, Dong3748 (IBSC), Sichuan (China), -, -, -,KJ196610, KJ196610, KJ196687. Dryopteris manipurensis (Bedd.) C. Chr.,Liu9544 (TAIF), Luzon (the Philippines), KU500289, KU500314, KU500212,KU500264, KU500238, KU500187. Dryopteris mariformis Rosenst., Dong3768(IBSC), Sichuan (China), -, -, -, KJ196604, KJ196604, KJ196686. Dryopterismaximowicziana Koidz., Kuo2406 (TAIF), Miaoli (Taiwan), KU500290,KU500315, KU500213, KU500265, KU500239, KU500188. Dryopterisnodosa (C. Presl) Li-Bing Zhang, Kuo2703 (TAIF), Mindanao (the Philippines),KU500281, KU500306, KU500204, KU500256, KU500230, KU500179.Dryopteris pallida Fomin, Raesaenen (H), Epirus (Greece), -, -, -, -, -, FR731988;AFSSE, unknown, -, -, -, JQ941649, -, -. Dryopteris paleolata (Pic. Serm.) Li-BingZhang, Kuo806 (TAIF), Hunan (China), KU500282, KU500307, KU500205,KU500257, KU500231, KU500180. Dryopteris peranema Li-Bing Zhang,Kuo2401 (TAIF), Chiai (Taiwan), KU500283, KU500308, KU500206,KU500258, KU500232, KU500181. Dryopteris polita Rosenst., Dong718(IBSC, PE), Hainan (China), -, -, -, KJ196593, KJ196593, KJ196700.Dryopteris pseudocaenopteris (Kunze) Li-Bing Zhang, Wade1800 (TAIF), Java(Indonesia), KU500286, KU500311, KU500209, KU500261, KU500235,KU500184. Dryopteris rubiginosa (Brack.) Kuntze, Ranker1883 (COLO),Hawaii (U. S. A.), KU500278, KU500303, KU500201, KU500253,KU500227, KU500176. Dryopteris shikokiana (Makino) C. Chr., TNS: 762596(TNS), Kagoshima Pref. (Japan), KU500277, KU500302, KU500200,KU500252, KU500226, KU500175. Dryopteris sparsa (D. Don) Kuntze,LJM179, unknown, -, -, -, -, -, DQ514499; Liu481 (TAIF), Taipei (Taiwan),-, -, -, JF303946, -, -. Dryopteris squamiseta (Hook.) Kuntze, Janssen2714 (P),Le Maido (Reunion), KU500279, KU500304, KU500202, KU500254,KU500228, KU500177. Dryopteris transmorrisonensis Hayata, FWL945(TAIF), Nantou (Taiwan), KU500297, KU500322, KU500220, KU500272,KU500246, KU500195. Dryopteris varia (L.) Kuntze, ZWY39 (TAIF), Taipei(Taiwan), KU500294, KU500319, KU500217, KU500269, KU500243,KU500192. Dryopteris wuzhaohongii Li-Bing Zhang, Lu28385 (TAIF),Taoyaun (Taiwan), KU500280, KU500305, KU500203, KU500255,KU500229, KU500178. Dryopteris zhuweimingii Li-Bing Zhang, FWL967(TAIF), Luzon (the Philippines), KU500284, KU500309, KU500207,KU500259, KU500233, KU500182. Polystichum fraxinellum (Christ) Diels,Kuo429 (TAIF), Hualien (Taiwan), KU500275, KU500300, KU500198,KU500250, KU500224, KU500173.

Appendix 2. Thematerials used in perisporemorphology examination.

Dryopteris maximowicziana (Miq.) C. Chr., TAIF168096 (TAIF).Dryopteris pseudocaenopteris (Kunze) Li-Bing Zhang, TAIF413562 (TAIF).Dryopteris squamiseta (Hook.) Kuntze, TAIF371738 (TAIF). Dryopterispaleolata (Pic. Serm.) Li-Bing Zhang, TAIF152938 (TAIF). Dryopterismanipurensis (Bedd.) C. Chr., TAIF303278 (TAIF). Dryopteris scabrosa(Kunze) Kuntze, TAIF288655 (TAIF). Dryopteris hypolepioides Rosenst.,CHY20121216-017 (TAIF). Dryopteris apiciflora (Wall.) Kuntze, TAIF279875(TAIF). Dryopteris peranema Li-Bing Zhang, TAIF180482 (TAIF).

SYSTEMATIC BOTANY [Volume 41