2015 CN3132 II Lecture 02 Mass Transfer Coefficient

download 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

of 17

Transcript of 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    1/17

    2015 Sem 1 CN3132Separation Processes (II)

    Lecture 02:Mass Transfer Coefficient

    Dr. ZHAO Dan

    Department of Chemical and Biomolecular Engineering4 Engineering Drive 4, Blk E5, #02-16

    Tel: (65) 6516 4679

    [email protected]

    Wankat 3rd: 15.4; 15.4.1Treybal: Chapter 3

    mailto:[email protected]:[email protected]
  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    2/17

    2

    Review: Concept

    Equilibrium vs. rate

    Mass transfer

    Model 1: molecular movement

    Model 2: Ficks law Gas diffusivity

    Liquid diffusivity

    Diffusion + convection

    Equimolar Counterdiffusion (EMD)

    Unimolecular Diffusion (UMD)

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    3/17

    3

    Review: Equation

    AAz AB

    dcJ D

    dz

    BBz BA

    dcJ D

    dz

    3/2 1/2

    2

    (1/ )AB

    tot

    T MWD

    p

    16 1/20

    0.6

    1.173 10 [ ( )]B BAB

    B A

    MW TD

    V

    ( )A AA A B ABc dc

    N N N Dc dz ( )B BB A B BA

    c dcN N N Dc dz

    1 2 1 2 1 2

    2 1 2 1 2 1

    ( ) ( ) ( )[EMD]

    ( ) ( ) ( )

    AB A A AB A A AB A AA

    D c c cD x x D p pN

    z z z z RT z z

    1 2 1 2 1 2

    2 1 2 1 2 1

    ( ) ( ) ( )1[UMD]

    ( ) ( ) (1 ) ( ) ( )

    AB A A AB A A AB A AA

    A lm A lm A lm

    D c c cD x x D p pc pN

    z z c c z z x RT z z p p

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    4/17

    Learning Outcomes of Lecture 02

    Derive linear driving-force models for EMD and UMD

    Practice the conversion of mass transfer coefficient

    Describe the expression and physical meaning of Henrys Law

    Practice the conversion of Henrys law constant

    Understand two-film theory Practice the determination of interfacial compositions for

    EMD and UMD

    4

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    5/17

    5

    Models for Mass Transfer:(3) Linear Driving-Force Model

    Flux = (mass-transfer rate)/area= (mass-transfer coefficient) (driving force)

    1 2( )A c A AJ k c c

    1 2( )A x A AJ k x x

    1 2( )

    A y A AJ k y y

    1 2( )

    A p A AJ k p p

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    6/17

    6

    Linear Driving-Force Model:Equimolar Counterdiffusion (EMD)

    Gases:

    Liquids:

    '

    1 2( )A c A AN k c c ' AB

    cDk

    '

    1 2( )A G A AN k p p ' AB

    G

    Dk

    RT

    '

    1 2( )A y A AN k y y ' AB

    y

    cDk

    '1 2( )A L A AN k c c

    ' ABL

    Dk

    '

    1 2( )A x A AN k x x ' AB

    x

    cDk

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    7/17

    7

    Linear Driving-Force Model:Unimolecular Diffusion (UMD)

    Gases:

    Liquids:

    1 2( )A c A AN k c c '

    ( ) ( )

    ABc c

    B lm B lm

    cD ck kc c

    1 2( )A G A AN k p p '

    ( ) ( )

    ABG G

    B lm B lm

    pD pk k

    RT p p

    1 2( )A y A AN k y y ' 1

    ( ) ( )

    ABy y

    B lm B lm

    cDk k

    y y

    1 2( )A L A AN k c c '

    ( ) ( )

    ABL L

    B lm B lm

    cD ck kc c

    1 2( )A x A AN k x x ' 1

    ( ) ( )

    ABx x

    B lm B lm

    cDk k

    x x

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    8/17

    8

    Conversion of Mass Transfer Coefficient

    Gases:

    Liquids:

    ' ' '1

    ( ) ( ) ( )

    AB

    c y G

    B lm B lm B lm

    c y G

    cD

    RTc

    k k k cRT RT

    c y c p

    k k kRT RT p

    ' ' '

    ( ) ( )

    AB

    L L x

    L B lm x B lm

    cD

    k c k k MW

    k c k x

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    9/17

    9

    Comparison of Three Models

    Models Pros Cons

    Molecular Movement Intuitive

    Good for physical

    understanding

    Detailed theory is

    quite complicated

    Hard to apply

    Ficks Law Widely accepted

    Works well for ideal

    systems

    Difficult for non-ideal

    ternary systems

    Linear Driving-Force

    Widely used bychemical engineers

    Weak theoreticalbackground

    May fail where Fickian

    model fails

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    10/17

    10

    Mass Transfer Between Phases

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    11/17

    11

    Henrys Law

    "At a constant temperature, the

    amount of a given gas that dissolves ina given type and volume of liquid is

    directly proportional to the partial

    pressure of that gas in equilibrium with

    that liquid.

    William Henry (1774-1836)

    'BB B B B

    tot tot

    p Hy y x H x

    p p

    B Bp Hx 0exp( )E

    H HRT

    pB: partial pressure of B in the vapor

    (Pa)

    xB: mole fraction of B in the liquid

    yB: mole fraction of B in the vapor

    ptot: total pressure (Pa)

    cB: concentration of B in the liquid

    (mol/L)

    c: total concentration (mol/L)

    H, H, H, H: Henrys law constant

    ''BB B B B

    c Hx p c H c

    c c

    '''BB B B B

    tot tot tot

    cH H Hy x c H c

    p p c p c

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    12/17

    12

    Henrys Law Constants (atm/mole frac.)

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    13/17

    13

    Two-Film Theory

    At the phase interface, cAiandpAiare in equilibrium

    Gas phase Liquid phase

    pAbpAi

    cAi

    cAb

    Gas phase Liquid phase

    pAbpAi

    cAi

    cAb

    G

    L

    ' '( ) ( ) [EMD]A G Ab Ai L Ai AbN k p p k c c

    ( )Ai Aic f p

    ( ) ( ) [UMD]A G Ab Ai L Ai AbN k p p k c c

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    14/17

    14

    Interfacial Compositions (EMD)Gas phase Liquid phase

    pAbpAi

    cAi

    cAbG L

    ' '( ) ( )A G Ab Ai L Ai AbN k p p k c c

    '

    '

    Ab Ai L

    Ab Ai G

    p p k

    c c k

    cA

    pA

    Equilibrium

    curve

    pAb

    pAi

    cAb

    cAi

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    15/17

    15

    Interfacial Compositions (UMD)

    cA

    pA

    Equilibrium

    curve

    pAb

    pAi

    cAb

    cAi

    ( ) ( )A G Ab Ai L Ai AbN k p p k c c

    '

    '

    ( )

    ( )

    Ab Ai B lmL L

    Ab Ai G G B lm

    p p pk k c

    c c k k c p

    ( ) ( )( ) ( )

    ln

    Ai AbB lm A lm

    Ai

    Ab

    c c c cc c c

    c c

    c c

    ( ) ( )( ) ( )

    ln

    Ab AiB lm A lm

    Ab

    Ai

    p p p pp p p

    p p

    p p

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    16/17

    16

    Example Question (1)

    Both vapour A and gas B can be dissolved in water. The

    Henrys law constant for vapour A is 0.5 and for gas B is 1.2

    atm. For an equal molar mixture of A and B under a total

    pressure of 3 atm, which one can reach a higher molar

    concentration in water?a) Vapour A

    b) Gas B

    c) Vapour A equals gas B

    d) Can not be determined

  • 7/23/2019 2015 CN3132 II Lecture 02 Mass Transfer Coefficient

    17/17

    17

    Example Question (2)

    A mixed gas containing 6% volume fraction of solute A gets in

    contact with an aqueous solution containing 0.012 mole

    fraction of solute A. The equilibrium relationship of solute A

    in gas and water follows Y* = 2.25X. Determine the mass

    transfer direction of A.