Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 ·...

103
저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약 ( Legal Code) 을 이해하기 쉽게 요약한 것입니다. Disclaimer 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

Transcript of Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 ·...

Page 1: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

저 시-비 리- 경 지 20 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제 포 전송 전시 공연 송할 수 습니다

다 과 같 조건 라야 합니다

l 하는 저 물 나 포 경 저 물에 적 된 허락조건 명확하게 나타내어야 합니다

l 저 터 허가를 면 러한 조건들 적 되지 않습니다

저 에 른 리는 내 에 하여 향 지 않습니다

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다

Disclaimer

저 시 하는 원저 를 시하여야 합니다

비 리 하는 저 물 리 목적 할 수 없습니다

경 지 하는 저 물 개 형 또는 가공할 수 없습니다

學碩士學位論文

포물

반사경용

피드

설계

어덩토야

바상재랜

2012年8月

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

忠 北 大 學 校 大 學 院

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

2012年 8月

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

指 敎授 安 炳 哲

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

이 論文을 工學碩士學位 論文으로 提出함

2012年 8月

本 論文을 金岐祿의 工學碩士學位 論文으로 認定함

審 査 委 員 長 안 재 형

審 査 委 員 안 병 철

審 査 委 員 방 재 훈

忠 北 大 學 校 大 學 院

2012年 8月

-i-

Contents

Abstract middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ii

List of figures middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot iv

List of tables middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ix

Ⅰ Indtroduction middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 1

Ⅱ Analysis of Circular and Square Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

21 Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

22 Square Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

23 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

24 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Ⅲ Design of Compact Circular Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

31 Narrow-Band Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

32 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod middotmiddotmiddotmiddotmiddotmiddot 40

41 Design of dielectric rod feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

V Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

51 Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

52 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Ⅳ Conclusion middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 85

REFERENCES middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 88

ACKNOWLEDGEMENT middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 89

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 2: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

學碩士學位論文

포물

반사경용

피드

설계

어덩토야

바상재랜

2012年8月

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

忠 北 大 學 校 大 學 院

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

2012年 8月

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

指 敎授 安 炳 哲

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

이 論文을 工學碩士學位 論文으로 提出함

2012年 8月

本 論文을 金岐祿의 工學碩士學位 論文으로 認定함

審 査 委 員 長 안 재 형

審 査 委 員 안 병 철

審 査 委 員 방 재 훈

忠 北 大 學 校 大 學 院

2012年 8月

-i-

Contents

Abstract middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ii

List of figures middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot iv

List of tables middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ix

Ⅰ Indtroduction middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 1

Ⅱ Analysis of Circular and Square Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

21 Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

22 Square Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

23 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

24 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Ⅲ Design of Compact Circular Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

31 Narrow-Band Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

32 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod middotmiddotmiddotmiddotmiddotmiddot 40

41 Design of dielectric rod feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

V Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

51 Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

52 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Ⅳ Conclusion middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 85

REFERENCES middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 88

ACKNOWLEDGEMENT middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 89

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 3: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

忠 北 大 學 校 大 學 院

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

2012年 8月

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

指 敎授 安 炳 哲

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

이 論文을 工學碩士學位 論文으로 提出함

2012年 8月

本 論文을 金岐祿의 工學碩士學位 論文으로 認定함

審 査 委 員 長 안 재 형

審 査 委 員 안 병 철

審 査 委 員 방 재 훈

忠 北 大 學 校 大 學 院

2012年 8月

-i-

Contents

Abstract middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ii

List of figures middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot iv

List of tables middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ix

Ⅰ Indtroduction middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 1

Ⅱ Analysis of Circular and Square Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

21 Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

22 Square Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

23 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

24 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Ⅲ Design of Compact Circular Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

31 Narrow-Band Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

32 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod middotmiddotmiddotmiddotmiddotmiddot 40

41 Design of dielectric rod feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

V Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

51 Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

52 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Ⅳ Conclusion middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 85

REFERENCES middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 88

ACKNOWLEDGEMENT middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 89

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 4: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

工學碩士學位論文

포물 반사경용 역 피드 설계

DesignofaBroadbandFeedforParabolic

ReflectorApplication

指 敎授 安 炳 哲

電波工學科 電波通信工學 攻

어덩토야 바상재랜 (OdontuyaBaasantseren)

이 論文을 工學碩士學位 論文으로 提出함

2012年 8月

本 論文을 金岐祿의 工學碩士學位 論文으로 認定함

審 査 委 員 長 안 재 형

審 査 委 員 안 병 철

審 査 委 員 방 재 훈

忠 北 大 學 校 大 學 院

2012年 8月

-i-

Contents

Abstract middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ii

List of figures middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot iv

List of tables middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ix

Ⅰ Indtroduction middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 1

Ⅱ Analysis of Circular and Square Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

21 Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

22 Square Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

23 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

24 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Ⅲ Design of Compact Circular Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

31 Narrow-Band Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

32 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod middotmiddotmiddotmiddotmiddotmiddot 40

41 Design of dielectric rod feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

V Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

51 Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

52 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Ⅳ Conclusion middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 85

REFERENCES middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 88

ACKNOWLEDGEMENT middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 89

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 5: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

本 論文을 金岐祿의 工學碩士學位 論文으로 認定함

審 査 委 員 長 안 재 형

審 査 委 員 안 병 철

審 査 委 員 방 재 훈

忠 北 大 學 校 大 學 院

2012年 8月

-i-

Contents

Abstract middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ii

List of figures middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot iv

List of tables middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ix

Ⅰ Indtroduction middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 1

Ⅱ Analysis of Circular and Square Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

21 Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

22 Square Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

23 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

24 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Ⅲ Design of Compact Circular Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

31 Narrow-Band Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

32 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod middotmiddotmiddotmiddotmiddotmiddot 40

41 Design of dielectric rod feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

V Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

51 Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

52 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Ⅳ Conclusion middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 85

REFERENCES middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 88

ACKNOWLEDGEMENT middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 89

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 6: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-i-

Contents

Abstract middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ii

List of figures middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot iv

List of tables middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ix

Ⅰ Indtroduction middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 1

Ⅱ Analysis of Circular and Square Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

21 Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 4

22 Square Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

23 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

24 Probe-Fed Circular Waveguide Radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Ⅲ Design of Compact Circular Waveguide Feeds middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

31 Narrow-Band Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 25

32 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod middotmiddotmiddotmiddotmiddotmiddot 40

41 Design of dielectric rod feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

V Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

51 Design of Broadband Circular Waveguide Feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 50

52 Fabrication and Measurement middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Ⅳ Conclusion middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 85

REFERENCES middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 88

ACKNOWLEDGEMENT middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 89

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 7: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-ii-

DesignofaBroadbandFeedforParabolic

ReflectorApplications

Odontuya Baasantseren

Department of Radio and Communications Engineering

Graduate School Chungbuk National University

Cheongju City South Korea

Supervised by Professor Bierng-Chearl Ahn Ph D

Abstract

In this thesis the design of a broadband feed for application in prime-focus

parabolic reflector antenna is described A feed for parabolic reflector antenna

requires radiation pattern with a good circular symmetry low back radiation

and low cross polarization This thesis proposes two feed designs one is a

dielectric ring-loaded circular waveguide operating over 171-197GHz and

fed by a coaxial probe The other is a choked and corrugated circular

waveguide fed by a probe-fed rectangular waveguide Before designing two

A thesis for the degree of Master in August 2012

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 8: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-iii-

feeds performances of simple circular and square waveguide open ends are

investigated The improvement in the performance of the circular waveguide

open end by dielectric loading is also investigated The study shows that only

a narrow-band performance is possible with simple feeds

Based on this study the first feed is designed with the monocast(MC)

nylon as the dielectric-ring material for beamwidth equalization and a

quarter-wave choke around the aperture wall for back-radiation reduction A

coaxial probe is used to excite the feed The designed feed shows a good

performance over 171-197GHz

The second feed uses more complicated structures For broadband operation

the circular waveguide is fed by a probe-excited rectangular waveguide Four

quarter-wave chokes are used around the aperture wall for beamwidth

equalization and four corrugations are employed on the feeds outer surface

for further reduction in the back radiation

Prototypes of both feeds are fabricated and tested Test results are in good

agreement with the design objectives verifying the excellent performances of

the designed feeds

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 9: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-iv-

List of Figures

Fig 21 Geometry of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 6

Fig 22 Reflection coefficient of a circular waveguide open end radiator middotmiddot 6

Fig 23 2D radiation pattern of a circular waveguide open end radiator middotmiddotmiddot 7

Fig 24 E-plane and H-plane patterns of a circular waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 9

Fig 25 Geometry of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 11

Fig 26 Reflection coefficient of a square waveguide open end radiator middot 12

Fig 27 2D radiation patterns of a square waveguide open end radiator middot 12

Fig 28 E-plane and H-plane patterns of square waveguide open end

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 14

Fig 29 Probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 16

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 211 2D radiation patterns of the probe-fed circular waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 17

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 19

Fig 213 Probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Fig 214 2D radiation pattern of the probe-fed square waveguide radiator 21

Fig 215 E- and H-plane pattern of the probe-fed square waveguide radiator

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 23

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator 24

Fig 31 Narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 26

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 10: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-v-

Fig 32 Effect of the (a) the probe length lp (b) the probe distance sp on

the reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 27

Fig 33 Feed performance versus the choke depth (a) E-plane pattern (b)

H- plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 29

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 31

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern (b) H-plane pattern (c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 32

Fig 37 2D gain patterns of the narrow-band circular waveguide feed middotmiddotmiddot 34

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide

feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 30

Fig 39 Photograph of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Fig 310 Reflection coefficient of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 38

Fig 311 Gain patterns of the fabricated feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 39

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 40

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 41

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 42

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 43

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 11: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-vi-

dielectric rod with εr = 50 and L = 05λ0 at 18GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 44

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with

a uniform dielectric rod with εr = 25 and L = 10λ0 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 45

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 46

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz middotmiddotmiddotmiddotmiddotmiddotmiddot 47

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 48

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at

10GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 49

Fig 51 Structure of the proposed broadband circular waveguide feed middotmiddotmiddotmiddotmiddot 51

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 52

Fig 53 Structure of the rectangular-to-circular waveguide transition middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 53

Fig 54 Field distribution inside the mode converter middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 54

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 55

Fig 56 E-plane and H-plane patternsof the broadband circular waveguide

feed without chokes and corrugationsz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 56

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 58

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 61

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 12: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-vii-

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 63

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 66

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and

(c) reflection coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 67

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 69

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 70

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection

coefficient middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 71

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 72

Fig 516 Reflection coefficient of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 75

Fig 517 2D radiation patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 76

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 79

Fig 519 Phase center variation of the designed broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 81

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 13: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-viii-

Fig 520 Photograph of the fabricated broadband circular waveguide feed 82

Fig 521 Reflection coefficient of the fabricated broadband circular

waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 82

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 84

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 14: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-ix-

List of Tables

Table 21 Properties of a circular waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 10

Table 22 Properties of a square waveguide open end radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15

Table 23 Properties of the probe-fed circular waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 20

Table 24 Properties of the probe-fed square waveguide radiator middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 24

Table 31 Dimensions of the designed narrow-band circular feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 33

Table 32 Performance of the narrow-band circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 37

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 60

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 73

Table 53 Optimum dimensions of the broadband circular waveguide feed 74

Table 54 Performance of the designed broadband circular waveguide feed 81

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 15: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-1-

I Introduction

The horns and waveguides are known for their high efficiency and

structural simplicity They are popular choices for feeding for reflectors in

high-gain antenna applications such as satellite and point-to-point microwave

communication links The theory of reflector antenna was developed in the

1940s and has been used to calculate the radiation patterns of various

reflector structures[1]

The basic structure of a prime-focus reflector antenna consists of a

parabolic reflecting surface a feed and its support The placement of the feed

is such that its phase center is at the focal point of the parabolic reflecting

surface The feed is often a circular waveguide because of its symmetric

radiation pattern with low back radiation and low cross polarization The

circular waveguide feed must have a small diameter to reduce the aperture

blockage of the reflector antenna[3]

A radiation pattern with a good circular symmetry in the main beam can

be found from circular waveguide feeds with dominant TE11 mode excitation

The radiation patterns depends on the diameter and wall thickness of the

waveguide[4] A coaxial probe can be inserted into a short-circuited circular

waveguide in the form of a coaxial-to-waveguide transition The diameter of

the circular waveguide is chosen such that only the dominant mode

propagates

When the waveguide dimension does not provide a circular symmteric

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 16: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-2-

pattern a choke or multiple chokes around the aperture wall can be

employed to equalize radiation patterns and keep the back radiation in low

level If chokes are not enough for the suppression of the back radiation

corrugations on the outer surface of the feed is one way to reduce the back

radiation

In this thesis a broadband circular waveguide feed is developed for

prime-focus reflector antenna application After investigating the radiation

properties of simple circular and square waveguides methods are investigated

for bandwidth enhancement back radiation suppression and beamwidth

equalization in the circular waveguide feed

The first type of the circular waveguide feed consists of a probe-fed

circular waveguide a single quarter-wave choke on the aperture wall and a

dielectric-ring beamwidth equalizer Due to the simple feeding method the

first feed operates over 171-197GHz(141) which is not broadband in the

strict sense of the word

The second feed consists of a coaxial-to-rectangular waveguide transition a

rectangular-to-circular waveguide transition a circular waveguide section four

quarter-wave chokes on the aperture wall and four quarter-wave corrugations

on the feeds outer surface Due to the complicated feeding method the

second feed operates over 10-18GHz(571)

This thesis is arranged as follows Chapter I gives an introduction to the

thesis related works and objectives are stated Chapter II describes the

structure and excitation of the circular and square waveguide and the

operation of the coaxial-to-waveguide transitions Chapter III describes a

compact feed horn design and its fabrication and measurement Chapter IV

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 17: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-3-

presents dielectric rod feed and its simulated performances Chapter V gives

design and optimization of feed for parabolic reflector antenna In this

chapter includes the detailed information of design procedures and operating

principle also the simulated and measured performances are provided Finally

conclusion is given in the Chapter VI

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 18: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-4-

II Analysis of Circular and Square Waveguide Feeds

21 Circular Waveguide Radiator

Before design a complicated circular waveguide feed it is helpful to

investigate the impedance and radiation properties of a circular waveguide

open end

The circular waveguide is a cylindrical hollow metallic pipe with a uniform

circular section of radius a Circular waveguides are normally designed to

operate only with the dominant mode The dominant mode in a waveguide is

the mode having the lowest cutoff frequency given by equation (21)

(21)

where

(22)

and a is the waveguide radius The following chart[2] and table show the

cutoff frequencies of various modes in a circular waveguide

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 19: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-5-

Modes c al11TEc cf f

TE11 341259 100000

TM01 261274 130613

TE21 205720 165885TE01 163979 208111

TM11 163979 208111TE31 149557 228180

TM21 122345 278932TE41 118159 288813

TE12 117852 289566

TM02 113824 299813TE02 0897986 380027

The recommended frequency range of the commercial circular waveguide is

given by the following equation This assumes that the TM01 mode is not

generated or suppressed if generated

11 21 11TE TE TE115 095 158 32 bandwidthc c cf f f fpound pound = reg (23)

Fig 21 shows the geometry of a circular waveguide with a diameter of 2a

When 2a is 2053mm the cutoff frequency of the TE11 mode is 857GHz

According to (23) the useful operating frequency range is from

986-1354GHz

Fig 22 shows the reflection of this waveguide excited with the dominant

TE11 mode The waveguide length l is 60mm The reflection occurs at the

open end of the circular waveguide The reflection coefficient is less than

-15dB over 10-18GHz

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 20: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-6-

Fig 21 Geometry of a circular waveguide open end radiator

Fig 23 shows a 2D gain pattern of this waveguide antenna The

waveguide antenna has a gain of 80dB 99dB and 115dB at 10GHz

14GHz and 18GHz respectively Fig 24 shows the E- and H-plane patterns

of the circular waveguide antenna Table 21 summarizes the properties of a

circular waveguide antenna

Fig 22 Reflection coefficient of a circular waveguide open end radiator

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 21: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-7-

(a)

(b)

Fig 23 2D radiation pattern of the circular waveguide open end radiator

at (a)10GHz (b) 14GHz and (c) 18GHz

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 22: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-8-

(c)

Fig 23 continued

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 23: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-9-

(a)

(b)

(c)

Fig 24 E-plane and H-plane patterns of the circular waveguide open end

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 24: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-10-

Table 21 Properties of a circular waveguide open end radiator of diameter

2053mm

Frequency(GHz)-10dB Beamwith(deg) Front-to-Back

Ratio(dB)E plane H plane

10 67 73 12

14 58 60 18

18 41 50 21

In a circular waveguide radiatoλr a good pattern symmetry and low back

radiation is obtained at 14GHz where 2aλ = 096

22 Square Waveguide Radiator

A square waveguide is often used as a dual-polarized feed To operate the

cutoff frequency of the dominant mode a square-waveguide wall width a

must be greater than one half of a wavelength The modes with cutoff

frequencies equal to or smaller than the operational frequency can exist inside

the waveguide wall The lower cutoff frequency and cutoff wavelength for

square waveguide is determined by the following equations

TE

(24)

TE

(25)

The next higher-order mode is TE11 mode with the cutoff wavelength

given by

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 25: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-11-

TE

(26)

Similar to the circular waveguide the recommended operating frequency range

of a square waveguide is given by

TEleleTE

TErarr bandwidth (27)

Fig 25 shows the geometry of a square waveguide with a dimension of a

When a is 157mm the cutoff frequency is 95GHz The recommended

operating frequency of this waveguide is from 109GHz to 155GHz

Fig 26 shows the reflection of this waveguide excited with the dominant

TE10 mode The reflection coefficient is less than -15dB over 10-20GHz

Fig 25 Geometry of a square waveguide open end radiator

Fig 27 and shows the 2D radiation pattern of a square waveguide antenna

excited with the dominant TE10 mode The antenna has a gain of 73dB

85dB and 102dB at 10GHz 14GHz and 18GHz respectively Fig 28

shows the E- and H-plane radiation patterns of a square waveguide radiator

Table 22 summarizes the properties of a square waveguide open end radiator

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 26: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-12-

Fig 26 Reflection coefficient of a square waveguide open end radiator

(a)

Fig 27 2D radiation patterns of a square waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 27: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-13-

(b)

(c)

Fig 27 continued

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 28: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-14-

(a)

(b)

(c)

Fig 28 E-plane and H-plane patterns of square waveguide open radiator

at (a) 10GHz(b) 14GHz and (c) 18GHz

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 29: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-15-

Table 22 Properties of a square waveguide open end radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 69 71 11

14 47 60 25

18 58 62 16

The radiation pattern symmetry and back radiation performance of the

square waveguide are inferior to those of a circular waveguide

23 Probe-Fed Circular Waveguide Radiator

In Section 21 the radiation properties of a TE11-mode excited waveguide

is investigated In this section a circular waveguide fed by a coaxial probe

shown in Fig 29 is studied

The coaxial probes diameter is 127mm With the Teflon dielectric the

50-ohm coaxial lines outer conductor has a diameter of 41mm For a

circular waveguide the wave impedance of the TE11 mode is given by

∙ (28)

where λg is the guided wavelength given by

(29)

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 30: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-16-

(a) (b)

Fig 29 Probe-fed circular waveguide radiator (a) Front view and (b) side

view

The combination of the probe length and the probe position from the

shorted wall enables a good impedance matching The probe distance sp from

the back short is close to a quarter wavelength at the design frequency

The designed feed has the following dimension d = 2053mm lp = 42

mm sp = 534mm wall thickness = 05mm and feed length = 400mm

Fig 210 shows the reflection coefficient of the designed probe-fed

circular waveguide radiator The reflection coefficient is less than -10dB over

138-187GHz Fig 211 and 212 shows the E-plane and H-plane radiation

patterns and 2D radiation patterns of the coaxial-to-circular waveguide

transition The radiation patterns symmetry distorted because of the high order

modes The coaxial-to-circular waveguide transition has 73dB 84dB and

79dB gain at 10GHz 14GHz and 18GHz frequencies respectively Table 23

shows the properties of the coaxial-to-circular waveguide transition

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 31: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-17-

Fig 210 Reflection coefficient of the probe-fed circular waveguide radiator

(a)

Fig 211 2D radiation pattern of the probe-fed circular waveguide radiator

at (a) 10GHz (b) 14GHz and (c) 18GHz

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 32: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-18-

(b)

(c)

Fig 211 continued

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 33: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-19-

(a)

(b)

(c)

Fig 212 E- and H-plane patterns of the probe-fed circular waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 34: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-20-

Table 23 Properties of the probe-fed circular waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 70 1414 83 57 17

18 60 52 30

When a circular waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes

Therefore a probe-fed circular waveguide radiator can be used as a feed only

over a narrow frequency range

24 Probe-Fed Square Waveguide Radiator

In this section a probe-fed square waveguide radiator is investigated Fig

213 shows a coaxial probe-fed square waveguide radiator The designed

radiator has the following dimension a = b = 157mm lp = 35 mm sp =

50 mm wall thickness = 05mm and feed length = 40mm

(a) (b)

Fig 213 Probe-fed square waveguide radiator (a) Front view and (b) side

view

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 35: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-21-

Fig 214 shows the 2D radiation patterns of the radiator at 10GHz

14GHz and 18GHz Fig 215 shows E- and H-plane patterns of the radiator

Fig 216 shows the reflection coefficient of the probe-fed square waveguide

radiator The reflection coefficient is less than -10dB over 13-20GHz Table

24 summarizes the properties of the probe-fed square waveguide radiator

(a)

Fig 214 2D radiation patterns of the probe-fed square waveguide radiator at

(a) 10GHz (b) 14GHz and (c) 18GHz

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 36: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-22-

(b)

(c)

Fig 214 continued

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 37: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-23-

(a)

(b)

(c)

Fig 216 E-plane and H-plane patterns of the probe-fed square waveguide

radiator at (a) 10GHz (b) 14GHz and (c) 18GHz

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 38: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-24-

Fig 216 Reflection coefficient of the probe-fed square waveguide radiator

Table 24 Properties of the probe-fed square waveguide radiator

Frequency(GHz)-10dB beamwidth(deg) Front-to-back

ratio(dB)E plane H plane

10 73 71 12

14 85 63 1418 27 65 28

When a square waveguide radiator is fed by a coaxial probe its radiation

properties are not good due to the excitation of higher-order modes as in the

case of the probe-fed circular waveguide radiator A probe-fed square

waveguide radiator can be used as a feed only over a narrow frequency

range

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 39: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-25-

III Design of Compact Circular Waveguide Feeds

In this chapter the feed design is presented for a prime-focus reflector

antenna The prime-focus paraboloid reflector is one of the most commonly

used high-gain antenna It has been used in earth-station antennas and radio

telescopes It consists of a paraboloid reflector with a feed system at its focal

point

The feed should radiate a low level of cross-polar power over the

operating frequency These conditions not easy to achieve and most prime

focus feeds are compromises The shape and characteristic of the radiation

pattern of the feed are the most important parameter because these will

directly influence the fields which are directed at a reflector[6] Other

electrical factors which relevant to the choice of a feed are the cross-polar

level the gain efficiency the bandwidth and impedance matching

31 Narrow-Band Circular Waveguide Feed

Fig 31 shows the proposed narrow-band circular waveguide feed and its

design variables The feed consists of a circular waveguide open end excited

by a TE11 dominant mode A quarter wave choke is applied along the

circular aperture of the waveguide to equalize E- and H-plane radiation

patterns and to suppress the back radiation A dielectric ring is used to

control the radiation pattern and change the power distribution over the

aperture The control of the amplitude over the aperture are essential to the

design of symmetric radiation pattern The material used for dielectric loading

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 40: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-26-

is the monocast(MC) nylon with a dielectric constant of 30 The feed is

designed to operate over 171-197GHz

(a)

(b)

Fig 31 Narrow-band circular waveguide feed (a) CAD model and (b) a

cross sectional view

The impedance matching is achieved by a proper combination of the probe

height lp and its distance sp from the waveguide shorted end Here the

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 41: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-27-

circular waveguide is terminated with an open end with a wall thickness of

2mm radiating into the free space

Fig 32 shows the effect of the probe length lp and the probe distance sp

on the reflection coefficient The best performance is obtained when lp =

363mm and sp = 616mm The feeds reflection coefficient is less than -10dB

over 170-195GHz

(a)

(b)

Fig 32 Effect of the (a) the probe length lp and (b) the probe

distance sp on the reflection coefficient

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 42: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-28-

Fig 33 shows the effect of the choke depth The E-plane pattern is more

sensitive to the choke depth than the H-plane pattern The choke depth has a

strong influence on the reflection coefficient when it is 360mm By properly

choosing the choke depth we can equalize the E- and H-plane patterns The

optimum value of the choke depth is 410mm which is 0249λ0 at 1825GHz

The choke slot width tch in the range of 06-12mm has almost no effect

on the H-plane pattern and the reflection coefficient For the E-plane pattern

tch of 12mm has some effect on the E-plane radiation pattern as shown in

Fig 34

Fig 35 shows the feed performance versus the dielectric ring length We

observe in Fig 35 that the dielectric length ld has an optimum value of

1168mm which does no effect on the H-plane pattern and tha the value of

1048mm has some effect on the E-plane pattern and the reflection

coefficient

Fig 36 shows E-plane and H-plane patterns and the reflection coefficient

versus the dielectric thickness With the optimum value of the dielectric

thickness t obtained from the Fig 36 is 155mm The larger values of td has

much stronger effects on the E-plane pattern and the reflection coefficient

The H-plane pattern is not sensitive to the dielectric ring thickness

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 43: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-29-

(a)

(b)

(c)

Fig 33 Feed performance versus the choke depth (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 44: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-30-

(a)

(b)

(c)

Fig 34 Feed performance versus the choke slot width (a) E-plane pattern

(b) H-plane pattern and (c) reflection coefficient

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 45: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-31-

(a)

(b)

(c)

Fig 35 Feed performance versus the dielectric ring length (a) E-plane

pattern (b) H-plane pattern and (c) reflection coefficient

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 46: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-32-

(a)

(b)

(c)

Fig 36 Feed performance versus the dielectric ring thickness (a) E-plane

pattern(b) H-plane pattern and (c) reflection coefficient

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 47: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-33-

From the above parametric analysis an optimum feed design is obtained

The result is shown in Table 31 Fig 37 shows the 2D gain patterns of

designed feed The antenna has a gain of 903dB 933dB and 956dB at

171GHz 1825GHz and 19GHz respectively

Fig 38 shows E- and H-plane radiation patterns of the designed feed The

feed has E- and H-plane 10-dB beamwidths of 60 and 59 degrees at 17GHz

The feed has a front-to-back ration of 1900dB 2490dB and 2200dB at

171GHz 1825GHz and 19GHz respectively Table 32 summarizes the

performance of the designed narrow-band circular waveguide feed

The designed feed has a greatly improved performance over that of a

simple coax-fed feed described in Section 23

Table 31 Dimensions of the designed narrow-band circular feed

Parameter Designation Value(mm)

a Waveguide inside radius 640

l Feed length 2890

lp Probe length 363

sp Probe position from the back short 616

din Probe diameter 127

dout Diameter of coaxial cables outer conductor 400

t Thickness of choked wall 050

tch Choke slot width 100

lch Choke depth 410

ld Dielectric ring length 1168

td Dielectric ring thickness 155

d1 Waveguide outside diameter 1680

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 48: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-34-

(a)

(b)

Fig 37 2D gain patterns of the narrow-band circular waveguide feed at

(a) 17GHz (b) 1825GHz and (c) 19GHz

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 49: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-35-

(c)

Fig 37 continued

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 50: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-36-

(a)

(b)

(c)

Fig 38 E- and H-plane patterns of the narrow-band circular waveguide feed

at (a) 10GHz (b) 1825GHz and (c) 195GHz

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 51: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-37-

Frequency(GHz)

Gain(dB)

E-H-plane10-dB beamwidths

(deg)

Front-to-back ratio(dB)

Phase centerlocation

(From feeds aperture plane

toward reflector)

(mm)

1700 903 6059 20 062

1825 933 6060 25 004

1900 956 5759 22 007

Table 32 Performance of the narrow-band circular waveguide feed

The designed narrow-band feed is fabricated and its performance is

measured and compared with the simulation results The designed feed is

fabricated in a numerically-controlled machining center The fabricated antenna

is shown in Fig 39

Fig 39 Photograph of the fabricated feed

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 52: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-38-

Fig 310 shows a comparison of the measured and simulated reflection

coefficients The measured reflection coefficient is less than -10dB over

171-197GHz The agreement between simulated and measured results are

good

Fig 311 shows the E- and H-plane patterns of the fabricated feed at

187GHz The feed has 90dB gain simulation and measurement results are in

good agreement

The fabricated antennarsquos 10dB beamwidth is 60 degrees in both E and H

planes at 187GHz The front-to-back ratio is 21dB

Fig 310 Reflection coefficient of the fabricated feed

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 53: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-39-

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Fee

d H

orn

Gain

- d

B

Angle - degree

(a)

-180 -135 -90 -45 0 45 90 135 180-20

-15

-10

-5

0

5

10

Simulation Measurement

Feed H

orn

Gain

- d

B

Angle - degree

(b)

Fig 311 Gain patterns of the fabricated feed at 187 GHz (a) E-plane and

(b) H-plane

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 54: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-40-

IV Design of Circular Waveguide Feeds Loaded with a

Dielectric Rod

In this section circular waveguide feeds loaded with a dielectric rod feed

are investigated A comprehensive discussion of the circular waveguide loaded

with a dielectric rod is given by Kumar[7] Inserting a dielectric material

inside the circular waveguide improves the E- and H-plane pattern symmetry

In general dielectric-loaded circular waveguide feeds show good performance

only over a narrow bandwidth

Fig 41 shows the geometry of a circular waveguide loaded with a

dielectric rod The waveguide length is 400mm and the wall thickness is

05mm The dielectric rods diameter is 207mm The dielectric rod is

extended 05 wavelength beyond the waveguide open end The dielectric

constant εr is changed and the feeds performance is observed

Fig 41 Geometry of a circular waveguide loaded with a uniform dielectric

rod

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 55: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-41-

Fig 42 is the radiation pattern of the feed with εr = 25 and L = 05λ0 at

9GHz E- and H-plane 10-dB beamwidths are 810 and 807 degrees

respectively The front-to-back ratio is 18dB The antenna gain is 71dB

(a)

(b)

Fig 42 Radiation pattern at 9GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 05λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 56: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-42-

Fig 43 shows the radiation pattern of the feed with εr = 21 at 10GHz

E- and H-plane 10-dB beamwidths are 70 and 71 degrees respectively The

front-to-back ratio is 19dB The antenna gain is 83dB

(a)

(b)

Fig 43 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 21 and L = 05λ0 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 57: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-43-

Fig 44 shows the radiation pattern of the feed with εr = 30 at 8GHz

E- and H-plane 10-dB beamwidths are 83 and 824 degrees respectively The

front-to-back ratio is 17dB The antenna gain is 73dB

(a)

(b)

Fig 44 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 30 and L = 05λ0 at 8GHz (a) 2D radiation pattern

and (b) E- and H-plane patterns

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 58: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-44-

Fig 45 shows the radiation pattern of the feed with εr = 50 at 18GHz

E- and H-plane 10-dB beamwidths are 56 and 54 degrees respectively The

front-to-back ratio is 27dB The antenna gain is 105dB The feed has a good

pattern symmetry and low back radiation

(a)

(b)

Fig 45 Radiation pattern of the circular waveguide loaded with a uniform

dielectric rod with εr = 50 and L = 05λ0 at 18GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 59: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-45-

Fig 46 is the radiation pattern of the feed with εr = 25 and L = 10λ0 at

10GHz E- and H-plane 10-dB beamwidths are 50 and 48 degrees

respectively The front-to-back ratio is 16dB The antenna gain is 105dB

(a)

(b)

Fig 46 Radiation pattern at 10GHz of the circular waveguide loaded with a

uniform dielectric rod with εr = 25 and L = 10λ0 (a) 2D radiation pattern

and (b) E- and H-plane patterns

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 60: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-46-

Fig 47 shows the geometry of a circular waveguide with a tapered

dielectric rod The designed feed has the following dimension L = 1λ0 d =

1λ0 and εr =25 at 10GHz The waveguide length is 40mm and the wall

thickness is 05mm

L

Dielectricd3

Fig 47 Geometry of a circular waveguide loaded with a tapered dielectric

rod

Fig 48 shows the radiatio pattern of the designed feed E- and H-plane

10-dB beamwidths are 575 and 564 degrees respectively The front-to-back

ratio is 377dB The antenna gain is 94dB The designed feed has an

excellent beamwidth symmetry and a very low back radiation

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 61: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-47-

(a)

(b)

Fig 48 Radiation pattern of a circular waveguide loaded with a tapered

dielectric rod with L = 1λ0 d = 1λ0 and εr =25 at 10GHz (a) 2D radiation

pattern and (b) E- and H-plane patterns

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 62: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-48-

Fig 49 shows the geometry of a spherical ended dielectric rod feed

diameter of 06λ0 at 10GHz with a dielectric constant of 25 and L= 03λ0

Fig 410 shows the radiation patterns of the designed feed E- and H-plane

10-dB beamwidths are both 63 degrees The front-to-back ratio is 24dB The

antenna gain is 864dB

Fig 49 Geometry of a circular waveguide loaded with a spherical ended

dielectric rod

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 63: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-49-

(a)

(b)

Fig 410 Radiation pattern of a circular waveguide loaded wht a spherical

ended dielectric rod with d = 06λ0 L = 03λ0 and εr =25 at 10GHz (a) 3D

radiation pattern and (b) E- and H-plane patterns

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 64: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-50-

V Design of a Broadband Circular Waveguide Feed

In this chapter the design of a broadband circular waveguide feed is

presented At microwave frequencies the feed is often a circular waveguide

with chokes and corrugations around the aperture Chokes and corrugations

equalize E- and H-plane patterns and reduce the back radiation

The proposed feed is designed to operate over 10-18GHz The design starts

with the optimization of the coaxial-to-rectangular waveguide adapter

employed for good mode purity over a broad frequency range Next a

rectangular-to-circular waveguide transition is optimized Finally chokes and

corrugations are designed for improved pattern symmetry and low back

radiation

The proposed feed structure is shown in Fig 51 The feed consist of the

following parts a coaxial-to-rectangular waveguide adapter a rectangular-to-

circular waveguide transition a circular waveguide section four quarter-wave

chokes around the feeds aperture and four corrugations on the feeds outer

surface

The computer simulation shows the above arrangement offers good radiation

patterns over a broad frequency range The broadband operation is obtained

by exciting the TE11 mode in the circular waveguide using the TE10 mode of

the rectangular waveguide which is in turn excited by a coaxial probe

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 65: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-51-

Chokes

Coaxial-to-waveguide transition

Circular wavguide

Corrugations

Mode transition

(a)

(b)

Fig 51 Structure of the proposed broadband circular waveguide feed

(a) CAD model and (b) cross-sectional view

For the coaxial-to-rectangular waveguide adapter an SMA connector with

the probe diameter of 127 mm is employed The coaxial probe inserted into

the waveguide energizes the feed and excites the dominant TE10 mode in

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 66: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-52-

the rectangular waveguide The impedance matching is achieved by adjusting

the probe distance sp from the back short and the probe length lp

(a)

(b)

Fig 52 Reflection coefficient of the coaxial-to-rectangular adapter versus

(a) probe length lp and (b) the probe position sp

Fig 52 shows the reflection coefficient versus the various values of probe

lengths lp and probe positions sp The probe length lp is adjusted to obtain

antenna impedance matching and the probe distance sp is adjusted to obtain a

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 67: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-53-

desired resonant frequency

Next a transition between rectangular and circular waveguide is designed

The transition section converts the TE10 mode in the rectangular waveguide to

TE11 mode in the circular waveguide and vice versa The transition is built

in a form of a taper for easy fabrication[22]

(a)

(b)

Fig 53 Structure of the rectangular-to-circular waveguide transition

(a) 3D view and (b) cross sectional view

The dimensions of the final optimized transition are as follows The length

of the rectangular waveguide section is 143mm The rectangular waveguides

width a and height b are 207mm and 857mm respectively The length of

the circular waveguide section is 143mm The inside diameter of the circular

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 68: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-54-

waveguide is 207mm(097 wavelength at 14GHz) The length of transition

region ltr is 4465mm(approximately equal to 2λ0 at 14GHz) Fig 54 shows

the field distribution inside the mode converter

(a)

(b)

Fig 54 Field distribution inside the mode converter at

(a) 10GHz (b) 14GHz and (c) 18GHz

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 69: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-55-

(c)

Fig 54 continued

Finally multiple chokes are investigated Figs 55 56 and 57 show the

feed performance without chokes The reflection coefficient is less than -10dB

over 10-19GHz The antenna has a gain of 921dB to 1189dB over

10-19GHz

Fig 55 Reflection coefficient of the broadband circular waveguide feed

without chokes and corrugations

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 70: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-56-

(a)

(b)

(c)

Fig 56 E- and H-plane patterns of the broadband circular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 71: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-57-

(d)

(e)

Fig 56 continued

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 72: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-58-

(a)

(b)

Fig 57 2D radiation patterns of the broadband cicular waveguide feed

without chokes and corrugations at (a) 10GHz (b) 12GHz

(c) 14GHz (d) 16GHz and (e) 18GHz

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 73: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-59-

(c)

(d)

Fig 57 continued

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 74: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-60-

(e)

Fig 57 continued

To achieve equal beamwidths in E and H planes over a wide frequency

range chokes and corrugations are employed Table51 summarizes the

performance of a feed without chokes and corrugations

Table 51 Performance of the broadband circular waveguide feed without

chokes and corrugations

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

1000 940 6061 15

1200 972 6159 17

1400 920 5957 21

1600 1070 4751 29

1800 1188 5352 21

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 75: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-61-

Four quarter-wavelength chokes are introduced in the feed design which

has a slot depth of 75mm and slot width of 09mm The choke slot spacing

is 18mm The choke design is investigated by applying the choke one by

one and the effect on the E- and H-plane patterns are observed as illustrated

in Figs 58 and 59 The use of chokes makes the E-plane pattern narrower

The H-plane pattern is not affected Chokes increase the gain slightly and

reduce back radiation

(a)

(b)

Fig 58 Effect of chokes on the E-plane pattern of the broadband circular

waveguide feed at (a) 10GHz(b) 12GHz (c) 14GHz (d) 16GHz and (e)

18GHz

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 76: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-62-

(c)

(d)

(e)

Fig 58 continued

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 77: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-63-

(a)

(b)

(c)

Fig 59 Effect of chokes on the H-plane pattern of the broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 78: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-64-

(d)

(e)

Fig 59 continued

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 79: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-65-

Fig 510 shows the feed performance versus the choke depth When the

choke depth is varied from 535mm to 95mm the E- and H-plane patterns

are strongly affected The optimum value of choke depth is 75mm(035λ0 at

14GHz) which gives equal E- and H-plane radiation patterns and leads to

low back radiation

Fig 511 shows the feed performance versus the choke slot width tch The

choke slot width is varied from 09mm to 21mm Radiation patterns and

reflection coefficients are not sensitive to the choke slot width The final

choke slot width is selected to be 09mm considering the feed diameter

minimization and the manufacturability The overall diameter of the proposed

feed is 369mm which is increased from the 207mm of the waveguide

inside diameter due to the use of four chokes

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 80: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-66-

(a)

(b)

(c)

Fig 510 Effect of the choke depth in the broadband circular waveguide

feed on (a) E-plane pattern (b) H-plane pattern and (c) reflection coefficient

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 81: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-67-

(a)

(b)

(c)

Fig 511 Effect of the choke slot width of the broadband circular

waveguide feed on (a) E-plane pattern (b) H-plane pattern and (c)

reflection coefficient

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 82: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-68-

Next we investigated corrugations placed on the outer wall of the feed

Four corrugations applied to the outer surface of the circular waveguide The

corrugation depth is 465mm(0215λ0 at 14GHz) The primary purpose of

using corrugations is to further reduce the back radiation Increasing the

number of corrugations beyond four has little effect in reducing the back

radiation

Figs 512 and 513 show the effect of corrugations on the E- and H-plane

patterns Fig 514 shows the parametric study of the corrugation depth lcor

The corrugation depth is varied from 40mm and 645mm The optimum

value of the corrugation depth is found to be 465mm

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 83: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-69-

(a)

(b)

Fig 512 Effect of the number of corrugations of the wideband circular

waveguide feed on the E-plane pattern at (a) 12GHz and (b) 14GHz

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 84: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-70-

(a)

(b)

Fig 513 Effect of the number of corrugations of the broadband circular

waveguide feed on the H-plane pattern at (a) 12GHz and (b) 14GHz

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 85: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-71-

(a)

(b)

(c)

Fig 514 Effect of the corrugation depth of the broadband circular

waveguide feed on (a) E-plane (b) H-plane and (c) reflection coefficient

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 86: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-72-

The phase center location is important in placing the feed in a reflector

antenna[8] The phase center variation with frequency should be small Fig

515 shows the effect of chokes and corrugations on the phase center The

curve with circle corresponds to the case without chokes and corrugations

The phase center varies from -326mm and -190mm away from the feeds

aperture plane It means the phase center is located inside the waveguide

The curve with triangles corresponds to the case with chokes The curve with

squares to the case with chokes and corrugations The phase center varies

from 0mm to -302mm

From Fig 515 we can observed that phase center variation reduced by the

corrugation and three cases phase center calculated in φ=450 plane

parameter sweep values are given in Table 52

10 12 14 16 181

0

-1

-2

-3

-4

-5

-6

Pha

se c

ente

r (m

m)

Frequency (GHz)

choke+corrugatuion without choke corrugation with choke

Fig 515 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 87: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-73-

Frequency

(GHz)

Phase center from the aperture plane

(mm)

Without

chokes and

corrugations

With

chokes

With chokes

and

corrugations

1000 -326 062 000

1100 -187 030 -002

1200 -563 -208 -065

1300 -296 -154 -202

1400 -319 -314 -302

1500 -201 -203 -241

1600 -242 -233 -207

1700 -208 -208 -186

1800 -190 -157 -132

Table 52 Effect of chokes and corrugations on the phase center of the

broadband circular waveguide feed

Based on the foregoing parametric studies optimum dimensions of the

broadband circular waveguide feed are obtained as shown in Table 53

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 88: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-74-

Table 53 Optimum dimensions of the broadband circular waveguide feed

Parameter Designation Value (mm)

2a Waveguide inside diameter 2070

d Waveguide outside diameter 3690

lcrLength of the circular waveguide section 1430

m Distance between the aperture plane and the first corrugation 950

xDistance from the last corrugation to the end of the cylindrical outer surface

550

ltrLength of the rectangular-to-circularwaveguide transition 4465

lrcLength of the rectangular waveguide section 1430

tch Choke slot width 090

lch Choke depth 750

t Choke metal width 090

lcor Corrugation depth 465

tcor Corrugation metal width 100

s Corrugation slot width 10

lp Probe length 530

sp Probe position from the back short 530

din Probe diameter 127

b Inside height of the rectangular waveguide 857

tw Waveguide wall thickness 500

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 89: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-75-

Fig 516 shows the reflection coefficient of the designed feed The

reflection coefficient is less than -10dB over 10-18GHz Figs 517 and 518

show 2D radiation patterns and E- and H-plane patterns The feed has a gain

of 9036dB 1056dB and 119dB at 10GHz 14GHz and 18GHz

respectively The antennas 10-dB beamwidth varies from 63deg and 48deg over

10-18GHz

Fig 516 Reflection coefficient of the designed broadband circular waveguide

feed

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 90: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-76-

(a)

(b)

Fig 517 2D radiation patterns of the designed broadband circular waveguide

feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and (e) 18GHz

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 91: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-77-

(c)

(d)

Fig 517 continued

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 92: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-78-

(e)

Fig 517 continued

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 93: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-79-

(a)

(b)

(c)

Fig 518 E- and H-plane patterns of the designed broadband circular

waveguide feed at (a) 10GHz (b) 12GHz (c) 14GHz (d) 16GHz and

(e) 18GHz

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 94: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-80-

(d)

(e)

Fig 518 continued

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 95: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-81-

Fig 519 shows the phase center variation of the designed feed The phase

center is calculated in φ= 45deg plane At 10GHz the phase center is located

in the aperture plane As the frequency increases the phase center is shifted

gradually into the waveguide from the aperture plane The performances of

the designed feed are summarized in Table 55

10 12 14 16 1800

-05

-10

-15

-20

-25

-30

-35

Pha

se c

ente

r (m

m)

Frequency (GHz)

Fig 519 Phase center variation of the designed broadband circular

waveguide feed

Table 54 Performance of the designed broadband circular waveguide feed

Frequency(GHz)

Gain(dB)

E-H-plane10-dB

beamwidths(deg)

Front-to-back ratio

(dB)

Phase center (mm)

1000 9036 63306300 313 000

1200 1037 53675562 394 -065

1400 1059 51475330 381 -302

1600 1102 49285020 404 -207

1800 1190 42744650 376 -132

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 96: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-82-

The designed broadband circular waveguide feed is fabricated The choked

part is separately fabricated using electric discharge machining and assembled

to the remaining part Corrugations and the waveguide body including the

rectangular-to-circular waveguide transition are fabricated using a standard

milling machine The back short is separately fabricated and attached to the

end of the waveguide Fig 520 shows the fabricated feed

Fig 520 Photograph of the fabricated broadband circular waveguide feed

10 11 12 13 14 15 16 17 18 19 20-30

-25

-20

-15

-10

-5

0

S1

1 (

dB

)

Frequency (GHz)

Simulation Measurement

Fig 521 Reflection coefficient of the fabricated broadband circular waveguide

feed

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 97: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-83-

Fig 521 shows the reflection coefficient of the fabricated feed The

measured reflection coefficient is less than -95dB over 10-18GHz There are

some differences between the measured and simulated reflection coefficients

which are believed to be due to fabrication tolerances

Figs 522 and 523 show the E- and H-plane patterns of the fabricated

feed at 14GHz Radiation patterns are obtained using a network analyzer and

a manual antenna rotator With a standard gain horn antenna used as a

transmitting antenna the transmission coefficient between the horn and the

feed is measured while the feed is manually rotated Due to limitations in the

pattern measurement setup it can be said that measured patterns are not

highly accurate Measured patterns show 10-dB beamwidths slightly smaller

than the simulated values General shapes of the measured patterns agree

fairly well with the simulation Patterns of the fabricated feed at other

frequencies are not measured but expected to be in good agreement with the

simulation

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 98: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-84-

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-d

B

Angle-degree

Measurement Simulation

Fig 522 E-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Gai

n-dB

Angle-degree

Simulation Measurement

Fig 523 H-plane pattern of the fabricated broadband circular waveguide

feed at 14GHz

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 99: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-85-

Conclusion

In this thesis the design of a broadband circular waveguide feed for

parabolic reflector application is investigated Primary requirements for a feed

in a prime-focus reflector antenna are a good pattern symmetry in E and H

planes a low cross polarization a low back radiation and the bandwidth

broad enough to meet the specifications The reduction of the feeds back

radiation is important in the design of low-sidelobe reflector antennas

Before arriving at the final design a preliminary study is carried out on

the performances of common waveguide feeds such as the circular waveguide

open end the square waveguide open end and the circular waveguide open

end loaded with dielectric materials of various shapes The study shows that

with these feeds one can obtain a good feed performance only at a narrow

frequency band

With a view toward developing broadband high-performance feeds for

prime-focus reflector applications two types of the feed are designed The

first one is a compact feed operating at 171-197GHz for use in a reflector

antenna in back-haul applications The feed is basically a coaxial probe-fed

cicular waveguide open end loaded with a dielectric ring and a quarter-wave

choke at the aperture The dielectric ring is utilized to equalize the E- and

H-plane beamwidths while a quarter-wave choke around the aperture

waveguide wall is used to reduce the back radiation

The designed feed has a diameter of 164mm and a length of 289mm The

designed feed is fabricated and its performance is measured The fabricated

feed has a reflection coefficient less than -10dB over 171-197GHz The

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 100: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-86-

feed has a good beamwidth symmetry Its 10-dB beamwidth ranges from

57deg to 60deg The front-to-back ratio ranges from 20dB to 25dB

The second feed is designed to have a good performance over 10-18GHz

Based on the structure of the first feed the broadband property is obtained

by feeding the circular waveguide via a rectangular waveguides TE10 mode

The TE10 mode of the rectangular waveguide is converted into the TE11

mode of the circular waveguide by a rectangular-to-circular waveguide

transition The rectangular waveguide is fed by a coaxial probe

Four quarter-wave chokes are formed around the circular waveguides

aperture wall to equalized the E- and H-plane beamwidths over a broad

frequency range and to reduce the back radiation For further reduction of

the back radiation four corrugations are formed on the outer wall of the

circular waveguide

The designed broadband feed has a diameter of 369mm and a length of

7325mm The designed feed has a reflection coefficient less than -10dB over

10-19GHz Its E- and H-plane beamwidths are in good symmetry over

10-18GHz The feeds -10-dB beamwdith ranges from 427deg to 630deg over

10-18GHz while its front-to-back ratio is in the range of 313-404dB

The designed feed is fabricated and its performance is measured The

agreement between the measurement and the simulation is fairly good proving

the validity of the feed design In conclusion this thesis presents a new

broadband circular waveguide feed with an excellent performance over

10-18GHz for use in prime-focus reflector antennas Further areas of the

research may include the application of the designed feed to actual broadband

prime-focus reflector antennas the reduction of the feed diameter and the

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 101: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-87-

reduction of the phase center variation

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 102: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-88-

REFERENCES

[1] C A Balanis Antenna Theory John Wiley amp Sons 2005

[2] D M Pozar Microwave Engineering 3rd Edition John Wiley amp Sons

2005

[3] A D Olver P J Clarricoats and A A Kishk Microwave Horns and

Feeds IEE Electromagnetic Waves Series 39 IEEE Press 1994

[4] G L James and K L Greene ldquoEffect of wall thickness of radiation

from circular waveguiderdquo Electron Lett vol 14 pp 90-91 Feb 1978

[5] S B Cohn ldquoDesign of simple waveguide to coaxial transitionrdquo Proc

IRE vol 35 issue 9 pp 920-926 Sept1947

[6] K Raghavan A D Olver and P J B Clarricoats ldquoCompact dielectric

feeds for prime focus reflector antennasrdquo Antennas and Propagation

Society International Symposium vol 1 pp350-353 Jun1988

[7] A Kumar ldquoExperimental study of a dielectric rod enclosed by a

waveguide for use as a feedrdquo Electron Lett  vol 12 issue 25

pp666-668 Dec1976

[8] L Shafai and A A Kishk ldquoPhase center of small primary feeds and its

effects on the feed performancerdquo Proc Inst Elect Eng Microwaves and

Propag vol 13 pp207-214 1985

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt
Page 103: Disclaimerael.cbnu.ac.kr/AEL-results/theses/... · 2015-09-19 · 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여

-89-

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to supervisor Prof Bierng-

Chearl Ahn for his supervision valuable guidance helpful suggestions and

tolerance I also have to thank committee members of the my thesis Prof

Jae-Hyung Ahn Dr Jae-Hoon Bang for their guidance support and

suggestions I also thank the Applied Electromagnetic Laboratory members for

their help and friendship

I would like to acknowledge the financial support of the BK21

Reasearch-Oriented Consortium of Chungbuk National University

I am most grateful to Ononchimeg Sodnomtseren and Bayanmunkh

Enhbayar who were senior members of Applied Electromagnetic Laboratory

They told me lot of things about the antennas and their designs simulation

software CST Microwave Studio

I would like to thank my family my mother Serjkhuu father Baasantseren

older brothers Gan-Od and Ganbat and older sister Gansuren for supporting

and encouraging me to pursue this degree Without their encouragement I

would not have finished the degree

Finally I thank my friends and Mongolian students in Chungbuk National

University especially my roommate and labmate Tsek and Otgoo They are so

thoughtful always trying to make the difficult parts of lab life run more

smoothly and cheerfully

Odontuya Baasantseren

AEL CBNU Cheongju Korea August 2012

  • Ⅰ Indtroduction
  • Ⅱ Analysis of Circular and Square Waveguide Feeds
    • 21 Circular Waveguide Radiator
    • 22 Square Waveguide Radiator
    • 23 Probe-Fed Circular Waveguide Radiator
    • 24 Probe-Fed Circular Waveguide Radiator
      • Ⅲ Design of Compact Circular Waveguide Feeds
        • 31 Narrow-Band Circular Waveguide Feed
        • 32 Fabrication and Measurement
          • IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod
            • 41 Design of dielectric rod feed
              • V Design of Broadband Circular Waveguide Feed
                • 51 Design of Broadband Circular Waveguide Feed
                • 52 Fabrication and Measurement
                  • Ⅳ Conclusion
                  • REFERENCES
                    • ltstartpagegt15
                      yendeg Indtroduction 1
                      yenplusmn Analysis of Circular and Square Waveguide Feeds 4
                      21 Circular Waveguide Radiator 4
                      22 Square Waveguide Radiator 10
                      23 Probe-Fed Circular Waveguide Radiator 15
                      24 Probe-Fed Circular Waveguide Radiator 20
                      yensup2 Design of Compact Circular Waveguide Feeds 25
                      31 Narrow-Band Circular Waveguide Feed 25
                      32 Fabrication and Measurement 38
                      IV Design of Circular Waveguide Feeds Loaded with a Dielectric Rod 40
                      41 Design of dielectric rod feed 40
                      V Design of Broadband Circular Waveguide Feed 50
                      51 Design of Broadband Circular Waveguide Feed 50
                      52 Fabrication and Measurement 82
                      yensup3 Conclusion 85
                      REFERENCES 88
                      ltbodygt