201408 會訊9 3

126
中華民國骨質疏鬆症學會 The Tawanese Osteoporosis Association 第九屆第三期會訊 103 年會員大會暨學術研討會文章精選 2013 ASBMR 學會綜覽/蔡克嵩 骨質疏鬆藥物對於人工關節置換之後的影響/李炫昇 口服雙磷酸鹽類藥品引起下顎骨壞死之風險:已知與未知 / 林子 傑、高雅慧
  • date post

    02-Apr-2016
  • Category

    Documents

  • view

    264
  • download

    3

description

 

Transcript of 201408 會訊9 3

  • The Tawanese Osteoporosis Association

    103

    2013 ASBMR /

    /

    /

  • O

    03-3281200#8957

    03-3187510

    E m a i l [email protected]

    www.toa1997.org.tw

    2013 ASBMR /

    /

    /

    1 /

    /

    X (DXA) /

    /

    -Capture the Fracture /

    2014 (APBMR) /

    1

    3

    4

    4

    10

    15

    121

    111

    28

    28

    50

    84

    94

    98

    62

  • 1

    714

    IOF Regionals - 5th

    Asia-Pacific Osteoporosis Meeting in Taipei

    2014APBMR

    1

  • 2

    5 24 POST

    ASBMR

    2

  • 3

    review

    BRONJ

    Capture the

    fracture

    ASBMR 2014 2nd APBMR

    IGF-1

    3

  • 4

    2013 ASBMR

    ASBMR

    (Baltimore) webcast

    Wnt

    1. LRP 5/6 Wnt co-receptor frizzled LRP

    Wnt ligand

    2. Wnt 19 Wnt 1Wnt 3 Wnt 1

    osteogenesis inperfecta Wnt16

  • 5

    3. R-spondingWnt

    DKK (

    4 ) sclerostin ( 1 )

    4. sclerostin osteosarcoma

    leukemia

    (OA) sclerostin OA

    5. ER

    Wnt

    6. serotonin

    -blocker SSRI

    serotonin

  • 6

    7. Anti-myostatin ? aged mice

    1.

    2. Denosumab

    Denosumab

    remodeling (mechanical stimulations) bone

    formation periosteum endosteum

    modeling process subcortical porosity

    subcortical porosity

    remodeling

  • 7

    porosity modeling

    formation subcortical porosity

    3. Denosumab teriparatide

    RANKL

    bone formation

    4. zolendronic acid

    Zest study

    Zolendronic acid

    5. Sclerostin Amgen romosozumab

    210 mg

    5% hip 3%

    sclerostin Wnt/beta-catenin RANKL

    sclerostin

  • 8

    6. sclerostin

    DXA QCT (HRQCT)

    finite element analysis (FEA) stiffness

    QCT (vBMD)

    romosozumab DXA

    teriparatide

    7. HRQCT FEA

    microindentation test (MIT) invasive

  • 9

    ()

  • 10

    1960

    2009 30

    6.7

  • 11

    1. Forteo)

  • 12

    18000

    2. bisphosphonate)

    3. prolia) RANKL

  • 13

    4. Evista)SERM

    5. Protos)

  • 14

  • 15

    1 1,2

    1

    2

    (1)

    2003

    (BONJ

    bisphosphonate-associated osteonecrosis of the jaw) (2)

    (:

    zolendronic acid, 4mg)

    (: ) (3-5)

  • 16

    (6, 7)

    0.028% 4.3% (8) 150

    2007

    (AAOMS The American Association of Oral and

    Maxillofacial Surgeons)

    (9)

  • 17

    (population level)

    (referral

    bias) Sedghizadeh

    (10)

    4.3%

    2007

    (ICD-9th CM codes)

    2007 (ICD-9th CM

    codes: 733.45)Solomon

    2010

    (8)

  • 18

    AAOMS (11,

    12) ()

    Lo

    (8, 11)

    Kaiser Permanente of Northern California

    13,946

    AAOMS

    0.07%-0.10%

    (13-15)

    (14, 16)

    2012Tennis

  • 19

    (HealthCore Integrated Research Database)

    (14)

    (adjusted rate ratio,

    0.61; 95 % CI, 0.084.9)

    AAOMS

    (active control)

    2014

    (6, 7)

    (7)

    50 alendronate raloxifene

  • 20

    raloxifene

    6,485 alendronate 1,869 raloxifene

    alendronate

    (adjusted hazard ratio, 7.42; 95%CI, 1.02-54.09) 12

    alendronate 0.55%

    clinical outcome

    (:

    )

    (referral bias)

    lost-follow up

    (raloxifene )

  • 21

    hazard ratio (adjusted hazard ratio, 7.42;

    95%CI, 1.02-54.09) (unmeasured

    confounders)

    2003-2007 50

    (alendronate, raloxifene calcitonin) raloxifene

    calcitonin

    (8)

    8

    8

    (: penicillin, cephalosporin, clindamycin, fluoroquinolone)

    50

    0.07-0.08% alendronate

    (raloxifene/calcitonin)

  • 22

    (propensity score matching) (HR,

    0.86; 95 % CI, 0.441.69)

    on-treatment scenario

    ()

    (misclassification bias)

  • 23

    ( USFDA EMA)

    USFDA denosumab

    (Prolia)

    (17)

    2020

  • 24

    0.07%-0.55%

    (patient registry)

    1. Silverman SL, Landesberg R. Osteonecrosis of the jaw and the role of bisphosphonates: a

    critical review. [Review] [60 refs]. American Journal of Medicine. 2009;122(2

    Suppl):S33-45.

    2. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the

    jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115-7.

    3. Woo SB, Hellstein JW, Kalmar JR. Systematic review: bisphosphonates and osteonecrosis of

    the jaws (vol 144, pg 753, 2006). Annals of Internal Medicine. 2006;145(3):235-.

    4. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL. Osteonecrosis of the jaws associated

    with the use of bisphosphonates: A review of 63 cases. Journal of Oral and Maxillofacial

    Surgery. 2004;62(5):527-34.

    5. Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone

    (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition, prevention, and treatment.

    Journal of Oral and Maxillofacial Surgery. 2005;63(11):1567-75.

    6. Lin TC, Yang CY, Yang YHK, Lin SJ. Incidence and risk of osteonecrosis of the jaw among

    the Taiwan osteoporosis population. Osteoporosis International. 2014;25(5):1503-11.

    7. Chiu WY, Chien JY, Yang WS, Juang JM, Lee JJ, Tsai KS. The risk of osteonecrosis of the

    jaws in Taiwanese osteoporotic patients treated with oral alendronate or raloxifene. J Clin

    Endocrinol Metab. 2014:jc20134119.

  • 25

    8. Solomon DH, Mercer E, Woo SB, Avorn J, Schneeweiss S, Treister N. Defining the

    epidemiology of bisphosphonate-associated osteonecrosis of the jaw: prior work and current

    challenges. Osteoporos Int. 2013;24(1):237-44.

    9. Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws AAoO,

    Maxillofacial S. American Association of Oral and Maxillofacial Surgeons position paper on

    bisphosphonate-related osteonecrosis of the jaws. Journal of Oral & Maxillofacial Surgery.

    2007;65(3):369-76.

    10. Sedghizadeh PP, Stanley K, Caligiuri M, Hofkes S, Lowry B, Shuler CF. Oral

    bisphosphonate use and the prevalence of osteonecrosis of the jaw An institutional inquiry.

    Journal of the American Dental Association. 2009;140(1):61-6.

    11. Lo JC, O'Ryan FS, Gordon NP, Yang J, Hui RL, Martin D, et al. Prevalence of osteonecrosis

    of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg.

    2010;68(2):243-53.

    12. Hong JW, Nam W, Cha IH, Chung SW, Choi HS, Kim KM, et al. Oral

    bisphosphonate-related osteonecrosis of the jaw: the first report in Asia. Osteoporos Int.

    2010;21(5):847-53.

    13. Wilkinson GS, Kuo YF, Freeman JL, Goodwin JS. Intravenous bisphosphonate therapy and

    inflammatory conditions or surgery of the jaw: a population-based analysis.[see comment].

    Journal of the National Cancer Institute. 2007;99(13):1016-24.

    14. Tennis P, Rothman KJ, Bohn RL, Tan H, Zavras A, Laskarides C, et al. Incidence of

    osteonecrosis of the jaw among users of bisphosphonates with selected cancers or

    osteoporosis. Pharmacoepidemiology & Drug Safety. 2012;21(8):810-7.

    15. Zavras AI, Zhu S. Bisphosphonates are associated with increased risk for jaw surgery in

    medical claims data: is it osteonecrosis?[see comment]. Journal of Oral & Maxillofacial

    Surgery. 2006;64(6):917-23.

  • 26

    16. Pazianas M, Blumentals WA, Miller PD. Lack of association between oral bisphosphonates

    and osteonecrosis using jaw surgery as a surrogate marker. Osteoporosis International.

    2008;19(6):773-9.

    17. Xue F, Ma H, Stehman-Breen C, Haller C, Katz L, Wagman RB, et al. Design and methods

    of a postmarketing pharmacoepidemiology study assessing long-term safety of Prolia

    (denosumab) for the treatment of postmenopausal osteoporosis. Pharmacoepidemiology &

    Drug Safety. 2013;22(10):1107-14.

  • 27

  • 28

    1

    1 (IGF-1)

    .?

    IGF-1

    IGF-1

    IGF-1 (insulin-like growth factor 1)

    SM

  • 29

    somatomedins

    IGF-1 IGF-2

    1957 Salmon Daughaday (growth hormone,

    GH )

    35s GH

    GH

    [1]

    1963 Froesh

    NSILAS

    (non-suppressible insulin-like activity)[2]

    1972PiersonTemin

    (multiplication-stimulating activity)

  • 30

    [3, 4]

    1978 Rinderknech Humbel NSILA()

    proinsulin

    (IGF)

    IGF

    [5-8]

    IGFs (IGF-IGF-)

    IGF- 70

    7649Da IGF- 67

    7471Da 0.1%SDS 62%IGF-1

    49%IGF-2

    47%IGFs

    IGF IGF-

    IGF- (-6 ) (Mannose-6-phosphate

    receptorM6PR

    (Insulin receptor, Ir) 22

  • 31

    IGF (Insulin, Ins) IGF

    Ir Ins > IGF-> IGF- IGF-IGF-

    > IGF- > Ins IGF-IGF- > IGF- Ins

    IGF-1

    90%IGF-1

    IGF-1 HGH

    HGH HGH

    IGF-1 20 HGH

    IGF-1

    IGF-1

    IGFs

    (Binding Proteins, BPs)

    8 IGFBP12345678

    50%

    IGF

    IGFBP3 80% IGF

    IGFBP3 150kDa (

  • 32

    IGF )IGFBP2,5,6 IGF-

    IGFBP134 IGF- IGF-IGFBP

    IGF IGF IGF

    IGF IGF/IGFBP

    IGF (1)

    IGF

    (2)IGF IGFBP

    (3) IGFBP

    IGF

  • 33

    IGF- IGF-

    IGFs

  • 34

    IGF- IGF-IGF-

    GH DNA

    IGF- IGF-

    IGFs

    Kniss

    IGFs

    IGFs

    IGF- mRNA IGF- mRNA

    IGF-I mRNA

    IGF-mRNA

  • 35

    IGF-

    IGF- 15

    IGF- IGFBP1

    IGF-IGF-

    IGF- IGF-

    40% IGF- 8%

    10%IGFBP1

    IGF-

    IGF-

    131

    19 40 IGF- IGF-

    IGFs

    [9-13]

    IGF- IGF-

    10.5

    30%IGF- IGF-

    IGF-R IGF-R

    45%

  • 36

    IGF IGF

    [14, 15]

    Daughaday 1988 IGF- IGF-

    (1) IGF-BP3(2) GH

    GH IGF-IGF- GH IGF-I

    IGF- IGF-

    IGF- GH

    IGF- GH

    IGF--GH

    GH IGF-IGF- GH IGF

    IGF- GH

    GH

    IGF- GH

    IGF- IGF-

    IGF-

  • 37

    IGF- mRAN IGF-

    GH IGF-

    IGF-[16]

    Backeljauw, P. F. and L. E. Underwood [16] IGFs

    GH Laron's GH

    Laron's GH GH IGF-

    GH IGF- GH

    GH GH

    GH GH Laron's

    IGF- 2 10cm/

    GH

    GH IGF-

    GH IGF-1

    IGF-1

  • 38

    IGF-1 IGF-1 IGF-1

    12 IGF-1

    IGF-1

    GH IGF-1

    GH IGF-1 IGF-1

    IGF-1

    Environmental cues Brain

    LiverTargettissues

    Pit.

    Growth hormone

    Insuline

    Nutrition/Food

    IGFBPs

    IGF-1

    IGF-1/IGFBPs

    Growth

    -

    +

    +

    +

    +

    +/-

    Environmental cues Brain

    LiverTargettissues

    Pit.

    Growth hormone

    Insuline

    Nutrition/Food

    IGFBPs

    IGF-1

    IGF-1/IGFBPs

    Growth

    -

    +

    +

    +

    +

    +/-

    Insulin

    Environmental cuesEnvironmental cues Brain

    LiverTargettissues

    Pit.

    Growth hormone

    Insuline

    Nutrition/Food

    IGFBPs

    IGF-1

    IGF-1/IGFBPs

    Growth

    -

    +

    +

    +

    +

    +/-

    Environmental cues Brain

    LiverTargettissues

    Pit.

    Growth hormone

    Insuline

    Nutrition/Food

    IGFBPs

    IGF-1

    IGF-1/IGFBPs

    Growth

    -

    +

    +

    +

    +

    +/-

    Insulin

    Environmental cues

  • 39

    IGF-1

    IGF-1

    1. IGF-1

    II

    [17]

    2. IGF-1

    3. IGF-1

    4. IGF-1

    IGF-1

    II

  • 40

    5. IGF-1

    6. IGF-1

    7. IGF-1

    IGF-1

    IGF-1

    IGF-1

    1. IGF-1

    2. IGF-1

    II

    II IGF-1

    45

    3. IGF-1

  • 41

    IGF-1

    IGF-1

    1. IGF-1

    , IGF-1

    IGF-1

    IGF-1 NIH1991

    Because these hormones are digested in the gastro-

    intestinal tract and are not absorbed intact into the bloodstream,

    they are not believed to have biological significance when

    ingested, at least after the newborn period.

    2. IGF-1 10%

    80% 46%

    IGF-1

    IGF-1

    IGF-1

  • 42

    250ml/

    IGF-1

    10%

    IGF-1

    IGF1

    IGF1

    IGF1 IGF

    [18,19]

    IGF-1 ?

    1994 FDA rBGH

    1520

    IGF1

    IFG1

  • 43

    IGF-1

    IGF-1

    IGF-1 IGF-1

    IGF-1

    IGF-1

    IGF-1

    IGF1

    IGF1 5%% IGF1

    IGF1

    IGF1

    [18, 19]

    IGF-1 ?

  • 44

    IGF-1

    [20]

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    IGF-1

    IGF-1 [21]

    IGF-1 IGF-1

    (1)

    (2)

    (3)

    (4)

    (5) LDL(-)

    (6) HDL(-)

    (7)

    (8)

  • 45

    (9)

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16) ()

    IGF-1

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    IGF-1?

    IGF-1 level

    [22- 24] IGF-1

  • 46

    modulation of IGF-1 deposition in the bone matrix

    could potentially be a therapeutic approach to delay or prevent

    osteoporosis.

    1. Salmon, W.D., Jr. and W.H. Daughaday, A hormonally controlled serum factor which

    stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med, 1957. 49(6): p. 825-36.

  • 47

    2. Froesch, E.R., et al., Antibody-Suppressible and Nonsuppressible Insulin-Like Activities in

    Human Serum and Their Physiologic Significance. An Insulin Assay with Adipose Tissue of

    Increased Precision and Specificity. J Clin Invest, 1963. 42: p. 1816-34.

    3. Daughaday, W.H., et al., Somatomedin: proposed designation for sulphation factor. Nature,

    1972. 235(5333): p. 107.

    4. Pierson, R.W., Jr. and H.M. Temin, The partial purification from calf serum of a fraction with

    multiplication-stimulating activity for chicken fibroblasts in cell culture and with

    non-suppressible insulin-like activity. J Cell Physiol, 1972. 79(3): p. 319-30.

    5. Blundell, T.L., et al., Insulin-like growth factor: a model for tertiary structure accounting for

    immunoreactivity and receptor binding. Proc Natl Acad Sci U S A, 1978. 75(1): p. 180-4.

    6. Rinderknecht, E. and R.E. Humbel, Primary structure of human insulin-like growth factor II.

    FEBS Lett, 1978. 89(2): p. 283-6.

    7. Rinderknecht, E. and R.E. Humbel, The amino acid sequence of human insulin-like growth

    factor I and its structural homology with proinsulin. J Biol Chem, 1978. 253(8): p. 2769-76.

    8. Zapf, J., et al., Nonsuppressible insulin-like activity (NSILA) from human serum: recent

    accomplishments and their physiologic implications. Metabolism, 1978. 27(12): p. 1803-28.

    9. Spencer, J.A., et al., Third trimester fetal growth and umbilical venous blood concentrations

    of IGF-1, IGFBP-1, and growth hormone at term. Arch Dis Child Fetal Neonatal Ed, 1995.

    73(2): p. F87-90.

    10. Wang, H.S., J.D. Lee, and Y.K. Soong, Effects of labor on serum levels of insulin and

    insulin-like growth factor-binding proteins at the time of delivery. Acta Obstet Gynecol

    Scand, 1995. 74(3): p. 186-93.

    11. Larsen, T., et al., Growth hormone, insulin-like growth factor I and its binding proteins 1 and

    3 in last trimester intrauterine growth retardation with increased pulsatility index in the

    umbilical artery. Clin Endocrinol (Oxf), 1996. 45(3): p. 315-9.

  • 48

    12. Ostlund, E., M. Tally, and G. Fried, Transforming growth factor-beta1 in fetal serum

    correlates with insulin-like growth factor-I and fetal growth. Obstet Gynecol, 2002. 100(3): p.

    567-73.

    13. Verhaeghe, J., et al., Regulation of insulin-like growth factor-I and insulin-like growth factor

    binding protein-1 concentrations in preterm fetuses. Am J Obstet Gynecol, 2003. 188(2): p.

    485-91.

    14. Baker, J., et al., Role of insulin-like growth factors in embryonic and postnatal growth. Cell,

    1993. 75(1): p. 73-82.

    15. Liu, J.P., et al., Mice carrying null mutations of the genes encoding insulin-like growth factor

    I (Igf-1) and type 1 IGF receptor (Igf1r). Cell, 1993. 75(1): p. 59-72.

    16. Backeljauw, P.F. and L.E. Underwood, Prolonged treatment with recombinant insulin-like

    growth factor-I in children with growth hormone insensitivity syndrome--a clinical research

    center study. GHIS Collaborative Group. J Clin Endocrinol Metab, 1996. 81(9): p. 3312-7.

    17. Aydin, F., et al., IGF-1 Increases with Hyperbaric Oxygen Therapy and Promotes Wound

    Healing in Diabetic Foot Ulcers. J Diabetes Res, 2013. 2013: p. 567834.

    18. Key, T.J., Diet, insulin-like growth factor-1 and cancer risk. Proc Nutr Soc, 2011: p. 1-4.

    19. Genkinger, J.M., et al., Consumption of dairy and meat in relation to breast cancer risk in the

    Black Women's Health Study. Cancer Causes Control, 2013. 24(4): p. 675-84.

    20. Sax, A.T., et al., The insulin-like growth factor axis: A biological mechanism linking physical

    activity to colorectal cancer survival. Cancer Epidemiol, 2014. 38(4): p. 455-9.

    21. Kochanska-Dziurowicz, A.A., et al., The effect of maximal physical exercise on relationships

    between the growth hormone (GH) and insulin growth factor 1 (IGF-1) and transcriptional

    activity of CYP1A2 in young ice hockey players. J Sports Med Phys Fitness, 2014.

    22. Paccou, J., J. Dewailly, and B. Cortet, Reduced levels of serum IGF-1 is related to the

    presence of osteoporotic fractures in male idiopathic osteoporosis. Joint Bone Spine, 2012.

    79(1): p. 78-82.

  • 49

    23. Ohlsson, C., et al., Older men with low serum IGF-1 have an increased risk of incident

    fractures: the MrOS Sweden study. J Bone Miner Res, 2011. 26(4): p. 865-72.

    24. Carney, E.F., Bone: modulation of IGF-1 might prevent osteoporosis. Nat Rev Rheumatol,

    2012. 8(8): p. 440.

  • 50

    Calcitonin

    Alendronate, Ibandronate, Zoledronate(PTH

    1-34) Selective estrogen receptor modulator (SERM) (Raloxi-

    fen)(Bazedoxifene) (Strontium Ranelate) RANKL antibody

    (Denosumab)

    osteoblastogenesis osteoclastogenesis

    osteoblast osteoclast

    osteoclast osteoclast

    demineralization cysteine protease type

    1 collagen matrix Cathepsin K

    (collagen type I) 90%

    Cathepsin K cysteine protease Cathepsin K

  • 51

    matrix degradation bone losscathepsin K L-006235

    Cathepsin K inhibitor

    odanacatib (MK-0822)balicatib (AAE581) relacatib (SB-462795)

    balicatib relacatib cathepsin

    Balicatib Phase II

    relacalib ()

    MSD odanacatib Phase 2

    2010 5 JBMR 2 Phase 2

    odanacatib 25 mg spine, total hip

    BMD resorption marker JBMR

    online first 3 odanacatib 50 mg 2

    spine, total hip BMD resorption marker2012

    11 JBMR 5 Phase 2 50mg

    3 5 50mg5

    spine BMD 11.9% femoral neck BMD 9.8%

    25 mg 50mg BMD

    50mg 3 10 mg

  • 52

    50mg BMD bone marker

    CTX 53bone specific ALP 15PINP 7.2%

    TRAP5b 57 osteoclast type I collagen

    bone formation 50mg

    odanacatib

    UTI

    2 QCT spine trabecular hip

    vBMD femoral neck cortical bone mineral content cortical

    volume L1 Placebo 14.3

    hip Placebo 5.610

    hip

    QCT odanacatib proximal femur cortical,

    subcortical trabecular vBMD BMC radius tibia

    QCT highresolution peripheral (HRp)QCT odanacatib

    radius tibia trabecular vBMD, cortical vBMD, cortical

  • 53

    thickness,cortical area(HRp)QCT odanacatib

    radius tibia strength (failure load) distal radius

    odanacatib trabecular thickness, bone volume/total volume (BV/TV)

    proximal radiusodanacatib cortical porosity distal tibia

    odanacatib trabecular number, separation BV/TV

    2007

    16000 2012 7

    odanacatib

    ONO-5334 Phase II

    (OCEAN study) 50mg 2 100mg

    300mg2 lumbar spine, femoral neck total hip

    BMD 300mg serum urine CTX

    alendronate Resorption marker TRAP5b odanacatib

    Formation marker bALP PINP 6

    baselineformation and resorption marker

    alendronate

  • 54

    osteoclast v3integrin

    v3integrin bone loss2005 JCEM

    v3integrin antagonist (L-000845704) 200mg bid

    spine, total hipfemoral neck total body BMD bone

    formation resorption marker headache, dermatitis,pruritus,

    rash urticaria

    Src tyrosine kinase inhibitors Src tyrosine kinase

    ruffled border Saracatinib

    (AZD0530) Src tyrosine kinase inhibitors 2010 JBMR

    60 to 250 mg Phase I 250mg

    sCTX 88%uNTX/Cr 67

    maker sCTX 75uNTX/Cr 60

    Formation marker

    Glucagon-like peptide 2 (GLP-2) intestinal endocrine cells

    bone resorption bone

    formationphase II 2009 bone

    0.4 mg, 1.6 mg 3.2 mg GLP-2 resorption

    marker CTX formation marker osteocalcin 3.2 mg

  • 55

    trochanter total hip BMD spine BMD

    activin Aactivin A antagonist

    ACE-011 (sotarcept) phase I study 2009 JBMR

    single subcutaneous doses (from 0.01 to 3.0 mg/kg) and intravenous

    doses (from 0.03 to 0.1 mg/kg) bone ALP CTX and

    TRACP-5b

    osteoblastogenesisWnt- -catenin signaling

    Wnt- -catenin signaling bone

    formation Sclerostin Dkk-1 Wnt- -catenin signaling

    monoclonal sclerostin antibody (Romosozu-

    mab(AMG 785) Blosozumab) Wnt- -catenin signaling

    bone formation

    monoclonal Dkk-1 antibody (BHQ880) multiple myeloma

    Phase II trial

    Ronacaleret ca sensor receptor antagonist

    PTH Phase II 200, 300, 400mg

  • 56

    ronacaleret trabecular bone vBMD 400mg

    vBMD alendronate teriparatide

    1/3 cortical BMD placebo

    spine

    BMD hip BMD

    Nitroglycerin 2010

    JAMA double-blindRCTNitroglycerin ointment (15 mg/d)

    spine, hip, femoral neck BMD6.7%, 6.2%, 7%

    radius tibia trabecular vBMD cortical thickness

    increased bone-specific ALP 34.8% urine

    N-telopeptide 54.0% placebo

    PTHestrogen receptor

    modulator PTH(131), US 2009/0010940 Al

    45g spine, total hipfemoral neck BMD

    Forteo 20g BMD

    Phase III trial

    2013 bone PK profiles Cmax

  • 57

    5 mg24 spine BMD 2.2%

    formation marker osteocalcin 23% resorption marker CTx-1

    PTH-related protein 136 (PTHrP[136]) (BA058,formerly

    BIM44058)Phase II trial ClinicalTrial.gov

    (NCT00542425) 80g spine, total hip

    BMD Forteo 20g Phase III trial

    (NCT01343004)

    Delayed-release risedronate bisphosphonate pH

    sensitive enteric coating

    Phase II

    delayed-release risedronate 35mg

    BMD 5 mg risedronate formation

    resorption marker

    Ligand lasofoxifene PEARL study 2010 NEJM

    3 Phase III trial lasofoxifene 0.25 and 0.5 mg

    estrogen receptor breast cancer

  • 58

    lasofoxifene 0.5 mg

    Lasofoxifene 0.5mg breast cancer 79%

    ER-positive invasive breast cancer 83%

    Lilly arzoxifene Generations trial 2009 JCEM

    2 Phase III trial (FOUNDATION study) arzoxifene 20

    mg spine, total hip BMD bone formation

    resorption marker2010 JBMR 3

    Phase III trial arzoxifene 20 mg

    invasive breast cancer

    breast cancer tamoxifen

    Phase III

    Osteologix Strontium malonate

    40 Servier Protos 27 Phase

    II trial0.751 2 g) strontium malonate resorption marker

    BMD

  • 59

    2010 JCEM

    PTH1-34 40g 30

    spine, total hip BMD Forteo 20g bone

    formation resorption markerplacebo2010 J Clin Pharm

    0.8mg calcitonin calcitonin

    resorption marker

    50ml 200ml calcitonin

    calcitonin trial (ORACAL) Phase III 2012 JBMR

    calcitonin spine BMD calcitonin placebo

    trochanteric and total proximal femur BMDresorption markers

    80%

    10%

    1. Bone. 2013;53: 160166.

    2. N Engl J Med 2010;362:686-96.

    3. JAMA. 2011;305(8):800-807

  • 60

    4. J Bone Miner Res. 2012; 27(2): 255262.

    5. J Bone Miner Res. 2012; 27(11):2251-8.

    6. J Clin Endocrinol Metab. 2013;98(2):571-80.

    7. J Bone Miner Res. 2014; 29(8):1786-94.

    8. J Bone Miner Res. 2014 Jun 4. doi: 10.1002/jbmr.2292.

    9. Bone 67 (2014) 104108

    10. J Bone Miner Res. 2014; 29(2):458-66.

    11. Osteoporos Int. 2013; 24(1):301-10.

    12. J Bone Miner Res. 2010; 25: 463-71.

    13. Bone 45 (2009) 833842

    14. J Bone Miner Res 2009;24:744752.

    15. J Natl Cancer Inst.102(22)(2010): 17061715.

  • 61

  • 62

    X (DXA)

    9

    [1-5]

    20%[6-7] 50

    [8][9]

    50

    20%

    40-50 2050

    [2]

    (1)(low

    bone mass) (2) (microarchitectural

    deterioration of bone tissue)

    [10] X

  • 63

    (DXA) DXA

    DXA [11]

    DXA (bone mineral density, BMD)

    DXA /(osteopenia/ low bone mass)

    ()

    (High-resolution peripheral

    quantitative computed tomography, HRpQCT)

    (Flat-panel volume CT)(Magnetic resonance imaging,

    MRI)

  • 64

    X

    2D 3D

    DXA DXA

    X DXA

    X

    (finite element analysis of X-ray images, FEXI)

    2D [12-14]

    (densitometric evaluation) DXA

    [15]

    DXA2D

    2DDXA

    (trabecular bone score, TBS)

    (TBS) 2D

    3D ( Fourier

    conversion, fractal analysis, run-length analysis) 3D

  • 65

    3D

    (Trabecular Bone Score, TBS)?

    2D

    DXA

    (variogram)

    2D 3D

    2D -

    (log-log transform)

    ()

  • 66

    2D

    2D

    TBS

    DXA

    (

    )

    DXA

    (

    )

    L1-L4

    TBS 1.35TBS 1.2-1.35

  • 67

    TBS

  • 68

    model index, SMI)

    DXA 3D

    Silva

    (HRpQCT)

    (trabecular stiffness)

    Silva 115

    (QCT)

    QCT

    HRpQCT

  • 69

    45-85 L1-L4 14.5%

    (65 8.5%)[18] Simonelli

    46-90 L1-L4

    16% 65

    -0.004 -0.006[19] 29,407

    [20]

    (Precision)

    BMD TBS

    BMD 1.1% 1.35% TBS 1.9%

    1.5% [21] OPUS TBS 1.44%BMD

    1.18% [22]Popp TBS 1.12%BMD

    0.9% [23]TBS 1.12-1.9%BMD

    0.9-1.35%

  • 70

    [24-29]

    (BMD) T

    (TBS)

    [30, 31]

    TBS 1.8-3.81

    1.71 1.3-2.46

    (Odds ratios) 95%Y

  • 71

    () TBS 1.45-1.54

    1.46 1.34-1.62

    OPUS(the Osteoporosis and Ultrasound Study)[22]

    (Odds ratios) 95%Y

  • 72

    (antiresorptive

    therapy)

    Teriparatide

    (

    )X *Antiresorptives: Bisphosphonates(86%),

    Raloxifene(10%) Calcitonin(4%)

  • 73

    [39][40,41]

    [42][43][44]

    [45][46][47]

    (Vertebral osteoarthritis)

    Dufour [18]

    (r=0.503, p

  • 74

    FRAX

    ( fracture risk assessment tool,

    FRAX) 10

    FRAX

    [48,49]

    (p

  • 75

    15-35kg/m2

    GE Lunar Hologic

    DXA

    DXA

    DXA

    DXA

    DXA (

    2013 ISCD )

  • 76

    (histomorphometry) HRqQCT

    [50,51] GE-Lunar DXA

    TBS

    TBS

    BMI 15 35kg/m2

    CT

    DXA

  • 77

    DXA

    TBS iNsight

    medimaps group

    1. Barbara C Silva,1 William D Leslie,2 Heinrich Resch, et al. Trabecular bone score: a

    noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014 Mar;

    29(3):518-30.

    2. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated

    with osteoporotic fractures. Osteoporos Int. 2006 Dec;17(12):172633.

  • 78

    3. Kanis J. on behalf of the World Health Organization Scientific Group. Assessment of

    osteoporosis at the primary health care level [Internet]. Sheffield, UK: WHO Scientific

    Group Technical Report; 2007.

    4. Kanis JA, McCloskey EV, Johansson H, et al. European guidance for the diagnosis and

    management of osteoporosis in postmenopausal women. Osteoporos Int. 2013

    Jan;24(1):2357.

    5. Oden A, McCloskey EV, Johansson H, Kanis JA. Assessing the impact of osteoporosis on

    the burden of hip fractures. Calcif Tissue Int. 2013 Jan;92(1):429.

    6. Browner WS, Pressman AR, Nevitt MC, Cummings SR. Mortality following fractures in

    older women. The study of osteoporotic fractures. Arch Intern Med. 1996 Jul

    22;156(14):15215.

    7. Hannan EL, Magaziner J, Wang JJ, et al. Mortality,locomotion 6 months after

    hospitalization for hip fracture: risk factors, riskadjusted hospital outcomes. JAMA. 2001

    Jun 6;285(21): 273642.

    8. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin

    Endocrinol Metab. 2008 Oct;22(5):67185.

    9. Burge R, DawsonHughes B, Solomon DH, et al. Incidence and economic burden of

    osteoporosisrelated fractures in the United States, 20052025. J Bone Miner Res. 2007

    Mar;22(3):46575.

    10. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis.

    Am J Med. 1993 Jun;94(6):64650.

    11. Assessment of fracture risk and its application to screening for postmenopausal

    osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser.

    1994;843:1129.

    12. Langton CM, Pisharody S, Keyak JH. Comparison of 3D finite element analysis derived

    stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng

    Phys. 2009 Jul;31(6):66872.

  • 79

    13. Naylor KE, McCloskey EV, Eastell R, Yang L. Use of DXAbased finite element analysis of

    the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res. 2013

    May;28(5):101421.

    14. Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R. Use of DXAbased structural

    engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res.

    2009 Jan;24(1):3342.

    15. Boehm HF, Vogel T, Panteleon A, et al. Differentiation between postmenopausal women

    with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis

    of the mineral distribution in the scan images. Osteoporos Int. 2007 Jun;18(6): 77987.

    16. Winzenrieth R, Michelet F, Hans D. Threedimensional (3D) microarchitecture correlations

    with 2d projection image graylevel variations assessed by trabecular bone score using high

    resolution computed tomographic acquisitions: effects of resolution and noise. J Clin

    Densitom. 2013 Jun 29;16(3):28796.

    17. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured

    using anteroposterior dualenergy Xray absorptiometry acquisition, and 3dimensional

    parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J

    Clin Densitom. 2011 JulSep;14(3):30212.

    18. Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N. Generation and validation of a

    normative, agespecific reference curve for lumbar spine trabecular bone score (TBS) in

    French women. Osteoporos Int. 2013 Nov;24(11):283746.

    19. Simonelli C, Leib E, McClung M, Winzenrieth R, Hans D. Creation of the agerelated TBS

    curve at lumbar spine in US Caucasian women derived from DXA. J Clin Densitom.

    2013;16(Suppl):272 (abstract).

    20. Leslie WD, Krieg MA, Hans D, Manitoba Bone Density P. Clinical factors associated with

    trabecular bone score. J Clin Densitom. 2013 Feb 26;16(3):3749.

  • 80

    21. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS

    predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone

    Miner Res. 2011 Nov;26(11): 27629.

    22. Briot K, Paternotte S, Kolta S, et al. Added value of trabecular bone score to bone mineral

    density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study.

    Bone. 2013 Nov;57(1): 2326.

    23. Popp AW, Guler S, Lamy O, et al. Effects of zoledronate versus placebo on spine bone

    mineral density and microarchitecture assessed by the trabecular bone score in

    postmenopausal women with osteoporosis: a threeyear study. J Bone Miner Res. 2013

    Mar;28(3):44954.

    24. Pothuaud L, Barthe N, Krieg MA, et al. Evaluation of the potential use of trabecular bone

    score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary

    spine BMDmatched, casecontrol study. J Clin Densitom. 2009 AprJun;12(2):1706.

    25. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective casecontrol study assessing

    the role of trabecular bone score in postmenopausal Caucasian women with osteopenia:

    analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010 Feb;86(2):1049.

    26. Rabier B, Heraud A, GrandLenoir C, Winzenrieth R, Hans D. A multicentre, retrospective

    casecontrol study assessing the role of trabecular bone score (TBS) in menopausal

    Caucasian women with low areal bone mineral density (BMDa): analysing the odds of

    vertebral fracture. Bone. 2010 Jan;46(1):17681.

    27. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of

    the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish casecontrol

    study. Osteoporos Int. 2013 Mar;24(3):9918.

    28. Krueger D, Fidler E, Libber J, et al. Spine trabecular bone score subsequent to bone mineral

    density improves fracture discrimination in women. J Clin Densitom. 2013 Jun 14. [Epub

    ahead of print].

  • 81

    29. Lamy O, Krieg MA, Stoll D, et al. The OsteoLaus Cohort Study: bone mineral density,

    microarchitecture score and vertebral fracture assessment extracted from a single DXA

    device in combination with clinical risk factors improve significantly the identification of

    women at high risk of fracture. Osteologie. 2012;21:7782.

    30. Leib E, AubryRozier B, Winzenrieth R, Hans D. Vertebral microarchitecture and fragility

    fracture in men: a TBS study. J Bone Miner Res. 2012;27(Suppl 1):S435 (abstract).

    31. Lorenc R, HorstSikorska W. TBS as a predictor of vertebral fracture in Polish men.

    ASBMR 2012. J Bone Miner Res. 2012;27(Suppl 1):S487 (abstract).

    32. Boutroy S, Hans D, SornayRendu E, et al. Trabecular bone score improves fracture risk

    prediction in non osteoporotic women: the OFELY study. Osteoporos Int. 2013

    Jan;24(1):7785.

    33. Iki M, Tamaki J, Kadowaki E, et al. Trabecular bone score (TBS) predicts vertebral

    fractures in Japanese women over 10 years independently of bone density and prevalent

    vertebral deformity: the Japanese populationbased osteoporosis (JPOS) cohort study. J

    Bone Miner Res. 2014 Feb;29(2):399407.

    34. Krieg MA, AubryRozier B, Hans D, Leslie WD. Effects of antiresorptive agents on

    trabecular bone score (TBS) in older women. Osteoporos Int. 2013 Mar;24(3):10738.

    35. Kalder M, Hans D, Kyvernitakis I, et al. Effects of exemestane and tamoxifen treatment on

    bone texture analysis assessed by TBS in comparison with bone mineral density assessed by

    DXA in women with breast cancer. J Clin Densitom. 2013 Apr 5. [Epub ahead of print].

    36. Hans D, Krieg M, Lamy O, Felsenberg D. Beneficial effects of strontium ranelate compared

    to alendronate on trabecular bone score in post menopausal osteoporotic women. A 2year

    study. Osteoporos Int. 2012;23(Suppl 2):S265S7 (abstract).

    37. Gnther B, Popp A, Stoll D, et al. Beneficial effect of PTH on spine BMD and

    microarchitecture (TBS) parameters in postmenopausal women with osteoporosis. A 2year

    study. Osteoporos Int. 2012;23(Suppl 2): S332S3 (abstract).

  • 82

    38. McClung M, Lippuner K, Brandi M, et al. Denosumab significantly improved trabecular

    bone score (TBS), an index of trabecular microarchitecture, in postmenopausal women with

    osteoporosis. J Bone Miner Res. 2012;27(Suppl 1):S589 (abstract).

    39. Kanis JA, Johansson H, Oden A, et al. A metaanalysis of prior corticosteroid use and

    fracture risk. J Bone Miner Res. 2004 Jun;19(6): 8939.

    40. de Liefde II, van der Klift M, de Laet CE, et al. Bone mineral density and fracture risk in

    type2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005 Dec;16(12):171320.

    41. Strotmeyer ES, Cauley JA, Schwartz AV, et al. Nontraumatic fracture risk with diabetes

    mellitus and impaired fasting glucose in older white and black adults: the health, aging, and

    body composition study. Arch Intern Med. 2005 Jul 25;165(14):16127.

    42. Leslie WD, AubryRozier B, Lamy O, Hans D. TBS (trabecular bone score) and diabetes

    related fracture risk. J Clin Endocrinol Metab. 2013 Feb;98(2):6029.

    43. Breban S, Briot K, Kolta S, et al. Identification of rheumatoid arthritis patients with

    vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom.

    2012 JulSep;15(3):2606.

    44. Romagnoli E, Cipriani C, Nofroni I, et al. Trabecular bone score (TBS): an indirect measure

    of bone microarchitecture in postmenopausal patients with primary hyperparathyroidism.

    Bone. 2013 Mar;53(1): 1549.

    45. EllerVainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular

    bone score in patients with adrenal incidentalomas with and without subclinical

    hypercortisolism. J Bone Miner Res. 2012 Oct;27(10):222330.

    46. Colson F, Picard A, Rabier B, Piperno M, Vignon E. Trabecular bone microarchitecture

    alteration in glucocorticoids treated women in clinical routine? A TBS evaluation. J Bone

    Miner Res. 2009;24(Suppl 1): Abstract.

    47. Leib E, Stoll D, Winzenrieth R, Hans D. Lumbar spine microarchitecture impairment

    evaluation in chronic kidney disease: a TBS study. J Clin Densitom. 2013;16(Suppl):266

    (abstract).

  • 83

    48. Leslie W, Kanis J, Lamy O, et al. Adjustment of FRAX probability according to lumbar

    spine trabecular bone score (TBS): The Manitoba BMD Cohort. J Clin Densitom.

    2013;16(Suppl):2678 (abstract).

    49. Lamy O, Krieg M, Stoll D, et al. What is the performance in vertebral fracture

    discrimination by bone mineral density (BMD), microarchitecture estimation (TBS), and

    FRAX in standalone, combined or adjusted approaches: the OsteoLaus Study. Presented at:

    ECTS 2013; May 1821, 2013; Lisbon, Portugal.

    50. Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal

    aging men and women. Clin Orthop Relat Res. 1987 Feb (215):26071.

    51. Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the

    ultradistal radius: a populationbased noninvasive in vivo assessment. J Bone Miner Res.

    2006 Jan;21(1):12431.

  • 84

    2013

    (IOF 2013 The Asia-Pacific regional audit)()

    160 95

    74%

    392

    (Capture the fracture)

  • 85

    ISCD

  • 86

    FDA

    SERM

    SERM

  • 87

    (BRONJ) 0.01%~0.04%

    FDA 18

  • 88

    0.09%~0.34%

    X

    AAOMS BRONJ 1.

    2. 3.

    BRONJ

    AAOMS

  • 89

    Atypical Fractures of the

    Femoral Shaft(AFFs)

    AFFs

    AFFs AFFs

    2011 NEJM

    AFFs 5/10000 /

    2014

    50%

  • 90

    50%

    50%

    aspirinMajor

    bleeding 6%

    0.01%

    Aspirin 6%

    0.01%

    ( Drug holiday) 3

  • 91

    1. --

    2.

    3-5

    (Anabolic agent)

    3.

    2012 NEJM

    1.

    2. ( BMD

    ) 3-5

    3. (BMD

    T-score

  • 92

    ISCD Dr. E.Michael Leweiki

    1

    (T-score >-2.0) 3-5

    10

    2

    3

    6

    1-2 ()

    ( BMD < -2.5)

  • 93

  • 94

    -Capture the Fracture

    50

    (1-4)

    50%

    320 200

    .(International Osteoporosis Foundation)

  • 95

    2012 (Capture the Fracture)

    .

    50 60

    70

    (5,6)

    .

    (7) 30-50%.

    .

  • 96

    :

    .

    Capture the Fracture

    1. Strom O, Borgstrom F, Kanis JA, Compston J, Cooper C, McCloskey EV et al (2011)

    Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared

    in collaboration with the International Osteoporosis Foundation(IOF) and the European

    Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 6:59-155

    2. van Staa TP, Dennison EM, Leufkens HG, Cooper C(2001) Epidemiology of fractures in

    England and Wales. Bone 29:517-522

    3. U.S. Department of Health and Human Service (2004) Bone health and osteoporosis: a

    report of the Surgeon General. U.S. Department of Health and Human Services, Office of

    the Surgeon General, Rockville, MD

    4. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, on behalf of

    the Scientific Advisory Board of the European Society for Clinical and Economic Aspects

    of Osteoporosis and Osteoarthritis (ESCEO) and Committee of Scientific Advisors of the

  • 97

    International Osteoporosis Foundation (IOF)(2013) European guidance for the diagnosis

    and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23-57

    5. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, 3rd, Berger M, Patients with prior

    fractures have and increased risk of futhre fractures: a summary of the literature and

    statistical synthesis. J Bone Miner Res. Apr 2000;15(4)721-739

    6. Kanis JA, Johnell O, De Laet C, et al. A meta-analysis of previous fracture and subsequent

    fracture risk. Bone. Aug 2004;35(2)375-382

    7. Carnney A, Guyatt G, Griffith L, et al. Meta-analyses of therapies for postmenopausal

    osteoporosis. IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis.

    Endocro Rev. Aug 2002;23(4):570-578

  • 98

    2014 (APBMR)

    (TOPTEAM)

    2014 5 30

    (Asia-Pacific Bone & Mineral Research, APBMR)

    (Korean Society for Bone and Mineral Research, KSBMR)

    Catholic University of Korea, St. Mary's

    Lecture Hall Seoul Palace Hotel

    05300601

    track

    250-300 APBMR

  • 99

    Plenary lecture Gary S Stein

    "Architecturally dynamic epigenetic landscape of skeletal biology and

    pathology " State of Art lecture John Kanis "FRAX and

    intervention threshold for osteoporosis" meet the professor

    workshop Symposium

    Sarcopenia and Bone

    Calcium supplement and CVD in Asia

    Epidemiology of Osteoporosis in Asia

    Osteoblast and regeneration

    Emerging therapies in osteoporosis

    Bone maintenance and remodeling

    Drug holidays in bisphosphonate therapy

    Genetics of skeletal disorders

    Bone resorption and metabolic bone disease

    Prevention of secondary fracture (FLS)

    0530

    Epidemiological Implication of ISCD/IOF

    FRAX Consensus of Official Position in Asia-Pacific Region

  • 100

    FRAX threshold

    4.0%-20.0% 1.6% to 3.0%

    Drug holidayEgo Seeman

    Ego drug holiday

    drug holiday?Ego ridiculous

    concept dosage adjustment bone maker

    Kanis FRAX

    cost-benefit

    FRAX

    teriparatideraloxifene strontium ranelate

    FRAX clodronatebazedoxifene

    denosumab FRAX

    Natalie A Sims IL-6

    (osteocyte, osteoclast, osteoblast)

    fracture liaison service (FLS)

  • 101

    Hiroshi Hagino ( )(

    ) Joon Kiong Lee (,)

    ( Ha Yong-Chan)

    Hiroshi Hagino Joon Kiong

    Lee IOF FLS

  • 102

    () St. Mary's Lecture Hall,

    Catholic University, Seoul 2016

    APBMR faculty

    ( Ha Yong-Chan)(

    ) APBMR faculty

    faculty

    2016 7

    ASBMR

  • 103

    faculty

    (Ho-Yeon Chung)()

    faculty

    Ha

    Yong-Chan()Joog Kiong Lee ()Qing

    Jiang ()Timothy C.Y. Kwok()Toshi Yoneda

    ()Ho Yeon Chung ()Toshio Matsumoto()Yong

    Taik Lim (KSBMR )Tuan V. Nguyen(

    )Yong-Ki Min(KSBMR )

  • 104

    Faculty of Asia-Pacific Bone & Mineral Research (APBMR)

    No Nationality Name Affiliation

    1 Australia Ming Hao Zheng

    Centre for Orthopaedic Research, School of Surgery, University of Western

    Australia

    2 Korea Ho-Yeon Chung

    Department of Endocrinology and Metabolism, Kyung Hee University

    School of Medicine

    3 Korea Zang Hee Lee

    Department of Cell and Developmental Biology Seoul National University

    School of Dentistry

    4 Japan Toshio Matsumoto

    Department of Medicine and Bioregulatory Sciences

    University of Tokushima Graduate School of Medical Sciences

    5 Japan Toshi Yoneda

    Division of Hematology and Oncology, Indiana University School of Medi-

    cine

    6 Japan Seiji Fukumoto

    Division of Nephrology and Endocrinology, Department of Medicine, Uni-

    versity of Tokyo Hospital

    7 Hong Kong Timothy Kwok

    Department of Medicine and Therapeutics, Prince of Wales Hospital, The

    Chinese University of Hong Kong

    8 Vietnam Lan T Ho-Phrm Department of Internal Medicine Pham Ngoc Thach University of Medicine

    9 Malaysia Joon Kiong Lee

    ANOC Neuroscience & Orthopaedic Centre, Assunta Hospital, Petaling Ja-

    ya, Hospital Pantai Kuala Lumpur

    10 China Jiang Qing

    Department of Orthopaedics, Drum Tower Hospital, Nanjing University

    Medical School

    11 India Ambrish Mithal

    Division of Endocrinology and Diabetes, Medanta the Medicity, Gurgaon,

    Haryana, India

    12 Thailand Khunying Kobchitt

    Limpaphayom

    Department of Obstetrics & Gynaecology, Faculty of Medicine,

    Chulalongkorn University

    13 Singapore Lau Tang Ching

    Division of Rheumatology, Department of Medicine, National University

    Health System

  • 105

    KSBMR

    "Increased Risk of Fracture and Postfracture Adverse Events in

    Patients With Diabetes: Two Nationwide Population-Based Retrospective

    Cohort Studies" 2000-2003 32471

    1:2 2000-2008

    1.66( 95%CI 1.60-1.72) 2004-2010

    17002 '

    1.34(96%CI 1.06-1.71) 1.42(95%CI 1.23-1.64)

    1.27( 95%CI 1.02-1.60) Diabetes Care May 7

    online

  • 106

    () Lim

    Yong-Taik

    ()

    Deog-Yoon Kim (Department of Nuclear Medi-

    cine, Kyung Hee University) Chan Soo Shin

    (Department of Internal medicine, Seoul National University

    ) ISCD AP Panelist

    Chan Soo Shin

  • 107

    IOF Calcium, vitamin D

    and antiepileptic drugs calcium CVD

    ( Ha Yong-Chan)()

    8:00

    "Go home! Why don't you go home? Have a good

    sleep and see you tomorrow meeting."

    second run

  • 108

    Joon Kiong Lee ()

    Shin

    four knights of osteoporotic prevention

  • 109

  • 110

  • 111

    ()

    PINP as a biological response marker during teriparatide treatment

    for osteoporosis

    J. H. Krege, N. E. Lane, J. M. Harris, P. D. Miller

    Osteoporosis International (Epub ahead print): DOI

    10.1007/s00198-014-2646-0

    teriparatide (BMD)

    BMD

    IOF

    [1]

    BMD

    teriparatide

  • 112

    (bone formation) (osteocalcin)

    (bone-specific alkaline phosphatase, bone ALP)procollagen

    type 1 N propeptide (P1NP) procollagen type 1 C propeptide (P1CP)

    P1NP (osteoblast)

    P1NP

    teriparatide

    P1NP P1NP

    P1NP

    teriparatide P1NP

    10 mcg/L ()

    teriparatide P1NP

    10 mcg/L P1NP

    ()

  • 113

    P1NP BMD

    antiresorptive

    P1NP BMD [2]

    P1NP a BMD b

    Teriparatide 95% 94%

    3% 20%

    P1NP 1-3 10 mcg/L BMD 12 3% P1NP teriparatide

  • 114

    1. International Osteoporosis Foundation. The adherence gap: why osteoporosis patients dont

    continue with treatment.

    http://www.iofbonehealth.org/sites/default/files/PDFs/adherence_gap_report_2005.pdf.

    2. Tsujimoto M, Chen P, Miyauchi A, Sowa H, Krege JH (2011) PINP as an aid for monitoring

    patients treatedwith teriparatide. Bone 48(4):798803

  • 115

    ()

    Vitamin D status in non-supplemented postmenopausal Taiwanese

    women with osteoporosis and fragility fracture

    Jawl-Shan Hwang, Keh-Sung Tsai, Yuh-Min Cheng, Wen-Jer Chen,

    Shih-Te Tu, Ko-Hsiu Lu, Sheng-Mou Hou, Shu-Hua Yang, Henrich

    Cheng, Hung Jen Lai, Sharon Lei and Jung-Fu Chen

    BMC Musculoskeletal Disorders 2014, 15:257

    D D (deficiency)

    fragility fracture D (inadequacy)

    low-trauma

    D [ D 25 (OH) D 30

    ng/mL]

  • 116

    199 8 194

    113 58.2% 81 41.8%

    25 (OH) D 21.1 9.3

    ng/mL D 86.6%

    D

  • 117

  • 118

    ()

    Long-term fracture rates seen with continued ibandronate treatment:

    pooled analysis of DIVA and MOBILE long-term extension stud-

    ies.

    Miller PD, Recker RR, Harris S, Silverman S, Felsenberg D,

    Reginster J, Day BM, Barr C, Masanauskaite D.

    Osteoporos Int. 2014 Jan;25(1):349-57.

    ibandronate

    ibandronate 5

    2-3

    ibandronate

    ACE10.8

    ibandronate 2 MOBILE

    ibandronate 2 DIVA

  • 119

    3 LTEs ibandronate

    5

    ibandronate 150 N=176 2

    ibandronate 2 N=253 3

    ibandronate 3 N=263 3

    N=1,924/ ibandronate

    Kaplan-Meier

    log-rank test

  • 120

    ibandronate

    ACE10.8

    P = 0.005 5 ibandronate

    ibandronate 5

  • 121

    20140531

    ~~

  • 122

    20140717

  • 123

    20140719

  • 124

    20140812 expert meeting

    Advisory Board

    Osteoporosis in Patient with Breast Cancer