2014 Undergraduate Research Forum Poster

1
Matthew Kim A , Kristen Procko* and Stephen F. Martin A = Synthesis and Biological Recognition, * = Research Educator, = Principal Investigator The main goal of this study is to determine the thermodynamics of protein ligand interactions to the stream’s target protein, the mouse major urinary proteinI (MUPI), which functions in the protection, transport, and slow release of pheromones. Studying MUPI can introduce a more clear understanding of the unorthodox nonclassical hydrophobic effect, in which the proteinligand interaction is driven enthalpically as opposed to entropically. This sparked interest in structurally changing various ligands in order to study the thermodynamic behavior arising from their interactions to MUPI. An analogue of a highbinding ligand, 2secbutyldihydrothiazole (SBT), was synthesized. It was predicted that because of the analog’s unique structure, an increase in the enthalpic stabilization could occur, leading to a higher binding afRinity than that of SBT. General characteristics: Functions in the protection, transport, and slow release of pheromones Single αhelix and eight βsheets Forms hydrophobic barrel Active sites hydrated with two water molecules Exhibits hydrophobic effect Important active site characteristics: Hydrogen bond network consists of Phe56, Leu58, and Tyr138 Van der Waals interactions with multiple residues in the active site: Leu72, Val100, Phe108, Leu121, leu123, and Leu134 Ligand is normally introduced incrementally into a solution of MUPI; the heat released upon binding is recorded. Free energy is determined through values derived from the Gibbs free energy equation, ΔG H – TΔS = RT(lnK a ). Change in free energy (ΔG), which is inRluenced by the change in enthalpy (ΔH) and change in entropy (ΔS), reveals the driving forces for a particular ligand’s binding to the active site of MUPI. S N Leu72 Leu134 Phe108 Val100 Ala121 H O H O H O H O H O Leu58 Tyr138 Leu123 NH NH Phe56 Abstract 1 Mouse Major Urinary Protein – I 1,3,4 Observed Trends 4 Isothermal Titration Calorimetry (ITC) 2,3 ITC Data Acknowledgements References: 1 Timm, D.E.; Baker, L.J.; Mueller, H.; Zidek, L.; Novotny, M.V. Structural basis of pheromone binding to mouse major urinary protein (MUPI). Protein Sci. 2001, 10, 9971004. 2 Pierce, M.M.; Raman, C.S.; Nall, B.T. Isothermal Titration Calorimetry of ProteinProtein Interactions. Methods 1999, 19, 213221. 3 Homans, W.S. Water, water everywhere – except where it matters? Drug discovery today 2007, 12, 1314. 4 Sharrow, S.D.; Novotny, M.V.; Stone, M. J. Thermodynamic analysis of binding between mouse major urinary proteinI and the pheromone 2sec butyl4,5dihydrothiazole. Biochemistry 2003, 42, 63026309. 5 Jin, Sarah. The University of Texas, Austin, TX. 4,5Dihydro2phenylthiazole, 2010. 6 Azarm, Kristopher. The University of Texas, Austin, TX. Elucidating the Thermodynamics of Binding of 2(Pyridin3yl)4,5dihydrothiazole, 2011. N S HS H 2 N DBH Reflux, 7 min. 100 o C N S N 4 5 6 Synthetic Route S N S N 1 2 S N N 3 Past Studies 5,6

Transcript of 2014 Undergraduate Research Forum Poster

Page 1: 2014 Undergraduate Research Forum Poster

       

 Matthew  KimA,  Kristen  Procko*  and  Stephen  F.  Martin‡  

A  =  Synthesis  and  Biological  Recognition,  *  =  Research  Educator,  ‡  =  Principal  Investigator          

   The  main  goal  of  this  study  is  to  determine  the  thermodynamics  of  protein-­‐

ligand  interactions  to  the  stream’s  target  protein,  the  mouse  major  urinary  protein-­‐I  (MUP-­‐I),  which  functions  in  the  protection,  transport,  and  slow  release  of  pheromones.  Studying  MUP-­‐I  can  introduce  a  more  clear  understanding  of  the  unorthodox  non-­‐classical  hydrophobic  effect,  in  which  the  protein-­‐ligand  interaction  is  driven  enthalpically  as  opposed  to  entropically.  This  sparked  interest  in  structurally  changing  various  ligands  in  order  to  study  the  thermodynamic  behavior  arising  from  their  interactions  to  MUP-­‐I.  An  analogue  of  a  high-­‐binding  ligand,  2-­‐sec-­‐butyldihydrothiazole  (SBT),  was  synthesized.  It  was  predicted  that  because  of  the  analog’s  unique  structure,  an  increase  in  the  enthalpic  stabilization  could  occur,  leading  to  a  higher  binding  afRinity  than  that  of  SBT.    

General  characteristics:  §  Functions  in  the  protection,  transport,  and  slow  release  of  pheromones  §  Single  α-­‐helix  and  eight  β-­‐sheets  §  Forms  hydrophobic  barrel  §  Active  sites  hydrated  with  two  water  molecules  §  Exhibits  hydrophobic  effect  

Important  active  site  characteristics:  §  Hydrogen  bond  network  consists  of  Phe56,  Leu58,  and  Tyr138  §  Van  der  Waals  interactions  with  multiple  residues  in  the  active  site:  

§  Leu72,  Val100,  Phe108,  Leu121,  leu123,  and  Leu134    

 

•  Ligand  is  normally  introduced  incrementally  into  a  solution  of  MUP-­‐I;  the  heat  released  upon  binding  is  recorded.    

•  Free  energy  is  determined  through  values  derived  from  the  Gibbs  free  energy  equation,  ΔG  =  ΔH  –  TΔS  =  -­‐RT(lnKa).    

•  Change  in  free  energy  (ΔG),  which  is  inRluenced  by  the  change  in  enthalpy  (ΔH)  and  change  in  entropy  (ΔS),  reveals  the  driving  forces  for  a  particular  ligand’s  binding  to  the  active  site  of  MUP-­‐I.  

S

N

Leu72

Leu134

Phe108

Val100

Ala121

HO

HO H O

H

O

H O

Leu58

Tyr138

Leu123

NH

NH

Phe56

Abstract1  

Mouse  Major  Urinary  Protein  –  I1,3,4  

Observed  Trends4   Isothermal  Titration  Calorimetry  (ITC)2,3  

ITC  Data  

Acknowledgements  

References:  1Timm,  D.E.;  Baker,  L.J.;  Mueller,  H.;  Zidek,  L.;  Novotny,  M.V.  Structural  basis  of  pheromone  binding  to  mouse  major  urinary  protein  (MUP-­‐I).  Protein  Sci.  2001,  10,  997-­‐1004.  2Pierce,  M.M.;  Raman,  C.S.;  Nall,  B.T.  Isothermal  Titration  Calorimetry  of  Protein-­‐Protein  Interactions.  Methods  1999,  19,  213-­‐221.  3Homans,  W.S.  Water,  water  everywhere  –  except  where  it  matters?  Drug  discovery  today  2007,  12,  13-­‐14.  4Sharrow,  S.D.;  Novotny,  M.V.;  Stone,  M.  J.  Thermodynamic  analysis  of  binding  between  mouse  major  urinary  protein-­‐I  and  the  pheromone  2-­‐sec-­‐  butyl-­‐4,5-­‐dihydrothiazole.  Biochemistry  2003,  42,  6302-­‐6309.  5Jin,  Sarah.  The  University  of  Texas,  Austin,  TX.  4,5-­‐Dihydro-­‐2-­‐phenylthiazole,  2010.  6Azarm,  Kristopher.  The  University  of  Texas,  Austin,  TX.  Elucidating  the  Thermodynamics  of  Binding  of  2-­‐(Pyridin-­‐3-­‐yl)-­‐4,5-­‐dihydrothiazole,  2011.    

   N S HS

H2N

DBHReflux, 7 min. 100 oC

N S

N

4 5 6

Synthetic  Route  

S

N

S

N

1 2

S

N N

3

Past  Studies5,6