2014 Topic 1: Moving About

156
Preliminary Physics 2014 Topic 1: Moving About Initially compiled by CM and AD Nov 2007 Amended AD Jan 2010/2012/2014

Transcript of 2014 Topic 1: Moving About

Page 1: 2014 Topic 1: Moving About

Preliminary  Physics  2014  

     

Topic  1:  Moving  About  Initially compiled by CM and AD Nov 2007 Amended AD Jan 2010/2012/2014

Page 2: 2014 Topic 1: Moving About

Icons  •  Prac*cal  Ac*vity  

•  Teacher  Demonstra*on  

•  Text  ques*ons  to  do  

•  Another  document  to  reference.  

Pg:

Q:

Prac

Demo

Doc

Page 3: 2014 Topic 1: Moving About

Context  -­‐  Transport  

•  Physics  is  all  about  being  able  to  apply  general  rules,  theories  and  laws  to  a  wide  variety  of  situa*ons.  

•  Imagine  the  number  of  situa*ons  you  could  think  of  that  would  involve  transport…  that’s  what  you  need  to  be  able  to  understand!!!  

Page 4: 2014 Topic 1: Moving About

Things  we  will  learn  about  in  this  topic:  

•  1.  Describing  Mo*on  •  2.  Forces  and  Newton’s  Laws  •  3.  Work  and  Energy  •  4.  Collisions  •  5.  Safety  devices  in  cars  –  Assessment  here!  •  6.  Forces  in  2-­‐dimensions  

Page 5: 2014 Topic 1: Moving About

The  assessment  this  term….  

…is  not  un*l  week  9!  •  So  don’t  worry  about  it  yet.  •  It  is  going  to  be  a  project  on  vehicle  safety.  You  will  do  some  of  it  in  class  and  some  at  home.  

•  You  will  undertake  an  experiment  on  crashing  cars  in  the  lab,  do  some  research  and  also  get  a  chance  to  sit  in  and  look  at  some  very  cool  (and  some  very  old)  cars…  

Page 6: 2014 Topic 1: Moving About

So  let’s  start,  shall  we?  

Page 7: 2014 Topic 1: Moving About

Transport  and  accidents  

Page 8: 2014 Topic 1: Moving About

The  pracDcal  use  of  physics  -­‐  safety  devices  in  cars  

Why  has  this  occurred?    What  sort  of  things  will  have  increased  the  likelihood  of  fatali*es,  What  would  have  decreased  the  likelihood  of  road  fatali*es?    

Page 9: 2014 Topic 1: Moving About

The  physics  of  vehicles  Part  1:  Describing  MoDon  ‘Vehicles  do  not  typically  travel  at  a  constant  speed’  

Read Chapter 9

P173-188

Page 10: 2014 Topic 1: Moving About

Scalar  and  Vector  QuanDDes  •  Scalar  quan**es  are  those  that  only  have  a  

magnitude  (value  indica*ng  a  measurement).  •  Eg.    

–  A  distance  measurement  is  given  in  metres  -­‐  I  walked  2km  to  school.  

–  A  mass  measurement  is  given  in  kilograms  –  The  car  has  a  mass  of  1500kg.  

•  Think  of  some  more  example  of  scalar  quan**es…  

Pg:189

Q:1

Page 11: 2014 Topic 1: Moving About

Vectors  •  Vector  quan**es  have  both  a  magnitude  and  a  DIRECTION.  

•  Examples  of  Vector  QuanDDes:  –  Displacement  (Δr)  –  think  of  a  change  in  posi*on.    This  must  have  both  magnitude  and  direc*on.  

–  Velocity  (v)  –  same  units  as  speed  but  also  has  a  direc*on.    Uses  displacement  rather  than  distance  to  calculate  velocity.  

Page 12: 2014 Topic 1: Moving About

Speed  and  Velocity  •  Speed  and  velocity  both  measure  how  fast  something  is  

going.  So  what’s  the  difference?    •  To  calculate  average  velocity  we  need:  

d(1) the displacement, , of an object. It is a straight line distance from a reference position in a given direction. - IT HAS DIRECTION Distance does not have a direction.

(2) the time taken, t, for this displacement to occur. The AVERAGE VELOCITY is the displacement undergone by the object per unit time

ie it is the rate of change of displacement.

So.. What do you think the difference is between speed and velocity?

Page 13: 2014 Topic 1: Moving About

takentimentdisplacemevelocityAverage =

tdvave =

!

Direction is important when we talk about velocity.

takentimedistancespeedAverage =

Direction is not important when we talk about speed. Speed does not have a direction. Think of an example of when the difference between speed and velocity would be important.

tdvave =

Expt: Speed of

cars

Page 14: 2014 Topic 1: Moving About

Average  and  instantaneous  speed    

•  Watch  the  video  of  the  400m  sprint  from  the  Olympics.  Calculate  the  Cathy  Freeman’s  average  speed  over  the  distance.  

•  Ques6on  –  can  your  maximum  running  speed  exceed  her  average  speed  over  the  distance?????  

http://www.youtube.com/watch?v=JElsXXQqaUU

Page 15: 2014 Topic 1: Moving About

There  is  a  difference  between  DISTANCE  &  DISPLACEMENT    

•  Distance  is  how  far  you  travelled.  •  Displacement  is  how  far  you  are  from  some  reference  posi*on  and  in  what  direc4on.  

•  Speed  is  the  distance  travelled  per  unit  *me.  •  Velocity  is  the  displacement  travelled  per  unit  *me.  

Page 16: 2014 Topic 1: Moving About

DIRECTION IS IMPORTANT Displacement and Velocity Versus Distance and Speed

A car travels 500 m to the right, turns around and travels another 1000 m to the left. The car travelled with a uniform speed and the time taken was 150s. Find

(a) the total distance travelled (b) the total displacement (c) the average speed (d) the average velocity

500m 1000m

500m

Page 17: 2014 Topic 1: Moving About

Back  to  Cathy  Freeman’s  400m  sprint…  

•  Cathy  Freeman  runs  the  400m  in  about  56  seconds.      

                                                                                                                                                                                           •  The  distance  is  400m  around  the  track.    However  between  the  start  and  finish  line  

there  is  no  displacement  (they  are  at  the  same  place).  Why  is  it  so?  

•  Because  velocity  needs  direc4on  as  well  as  magnitude,  on  any  part  of  the  track  her  velocity  will  have  an  opposite  pair  with  the  same  magnitude  but  opposite  direc4on.    Although  the  average  magnitude  of  all  her  instantaneous  veloci4es  is  7.1  ms-­‐1  in  magnitude,  the  direc4ons  cancel  each  other  out.    Therefore  the  average  velocity  is  zero.  

Start/Finish 11.7

56400

−=

=

=

mssm

tdSpeedav

10560

−=

=

Δ

Δ=

mssm

trVav

Page 18: 2014 Topic 1: Moving About

In some problems we will need to CONVERT units., usually m/s to km/h or the other way. How do we do this?

Question: is 100km/h faster or slower than 100m/s? think about it logically and then make a decision.

Answer: a football field is almost 100m long. If 100km/h was more than 100m/s, think about how far you would be travelling every second on the freeway! WOW it would be fast!

So… 100km/h must be LESS than 100m/s

Converting Units

Page 19: 2014 Topic 1: Moving About

So… how do we go from km/h to m/s?

Example: Change 20 km/hr to a value in m/s.

== m/hrkm/hr110002020 x

=m/min60100020x

m/s6060100020xx

(a) The Concorde flies at an average speed of 1440 km/hr. How long will it take to fly 100 km(in secs)?

(b) How far will the Concorde fly in 1 minute?

Converting Units Pg:189

Q:2-6

Page 20: 2014 Topic 1: Moving About

Displacement  and  Velocity  

Quantity Vector or Scalar?

Displacement

Speed

Velocity

Distance

Complete the table below:

Page 21: 2014 Topic 1: Moving About

AcceleraDon  •  Another  Vector!  •  Accelera*on  is  the  rate  of  change  of  velocity.  (how  much  the  velocity  changes  every  second).  

–  a  =  accelera*on  (ms-­‐2)  –  Δv  =  change  in  velocity  (ms-­‐1)  –  Δt  =  change  in  *me  (s)Units  =  ms-­‐2  

–  u  =  ini*al  velocity  (ms-­‐1)  –  v  =  final  velocity  (ms-­‐1)  

tuv

tvaav Δ

−=

Δ

Δ=

Describe the acceleration of

this ball….

Pg:190

Q:8-11

Page 22: 2014 Topic 1: Moving About

AcceleraDon  quesDon:  •  A  car  starts  at  rest  and  increases  its  speed  to  100  kmh-­‐1  in  only  4.5s  when  

driving  straight  in  a  northerly  direc*on.    What  is  its  accelera*on?  •  Data:  •  Ini*al  velocity  (vi)  =  0  ms-­‐1  North  •  Final  velocity  (vf)=  100kmh-­‐1North  =  28  ms-­‐1  (do  conversion  first!)  •  Δv  =  vf  –  vi  =  28  –  0  ms-­‐1  North  •  Δt  =  4.5  s    

2

1

2.65.4

28

=

=

ΔΔ

=

msas

msa

tva

av

av

av

In other words, every second, the car increases its velocity by 6.2ms-1

P195 acceleration

Page 23: 2014 Topic 1: Moving About

How  do  I  show  direcDon?    1D  

•  When  dealing  with  objects  that  are  travelling  in  straight  lines,  we  use  posi*ve  and  nega*ve  signs  to  signify  the  two  opposite  direc*ons.  

•  E.g.  Jess  and  Mark  run  towards  each  other,  Jess  at  4ms-­‐1  Mark  at  5ms-­‐1.  Because  their  direc*ons  are  opposite  we  can  define  one  direc*on  as  posi*ve.    

•  They  take  0.5  seconds  to  stop  when  they  meet  each  other.  •  Calculate  the  accelera*on  of  both  people.  •  Discuss  the  meaning  of  the  signs  in  the  answers.  

Page 24: 2014 Topic 1: Moving About

How  do  I  show  direcDon?    2D  

•  Bearing  =  Clockwise  from  North  (E.g.  Bearing  250°T)  

•  Rela*ve  Direc*on  =  direc*on  with  respect  to  another.          (E.g.  S32°W  –  meaning  from  South,  go  32  degrees  toward  the  West.  

Bearing Relative 325 °

N25°W 167 °

!  Complete the table using the compass above.

Page 25: 2014 Topic 1: Moving About

QuesDon  -­‐  Wenona  to  Thredbo  •  Total  distance  by  car  =  500km  •  Total  *me  by  car  =  5  hours  40  mins  •  Total  magnitude  of  displacement  =  

300km    •  Total  *me  by  Helicopter  =  1hour  30  

mins  (assume  helicopter  travels  in  a  straight  line)  

!  Draw in a vector that shows the displacement between the start and finish.

!  Use a protractor to determine the bearing of this vector. !  Calculate the average speed of the car. !  Calculate the average velocity of the car. !  Determine the average speed of the helicopter. !  Determine the average velocity of the helicopter.

Expt

p 194 Going Home

Page 26: 2014 Topic 1: Moving About

EquaDons  of  uniformly  accelerated  moDon  from  the  HSC  Data  Sheet  

•  When  can  these  be  used?  

1.  When  the  accelera*on  is  constant  

2.  When  you  know  3  things  –  each  of  these  equa*ons  has  4  unknown  quan**es  

22

22

2

221

xx

xx

x

yyy

yy

yyy

uv

uvtux

yauv

tatuy

tauv

=

=

Δ+=

+=Δ

+=

Page 27: 2014 Topic 1: Moving About

Uniform  acceleraDon  quesDon:  

•  A  ball  rolls  from  rest  down  an  incline  with  a  uniform  accelera*on  of  4.0m/s/s.  

a)  What  is  its  speed  aier  8  seconds?  b)  How  long  will  it  take  to  reach  a  speed  of  36m/s?  c)  How  long  does  it  take  to  travel  a  distance  of  200m,  

and  how  fast  is  it  going  at  that  *me?  d)  How  far  does  it  travel  in  its  third  second  of  mo*on?  A:  32m/s  B:  9.0s  C:  10s;  40m/s  D:  10m  

Page 28: 2014 Topic 1: Moving About

Gravity  •  We  already  know  a  likle  bit  about  this…  

•  The  value  of  gravita*onal  accelera*on  is  9.8ms-­‐2  on  the  earth’s  surface  but  this  does  vary  depending  on  your  distance  from  the  centre  of  the  earth.  

•  As  you  get  further  from  the  centre  of  the  Earth,  the  accelera*on  decreases.  

Expt: heavy vs light

Page 29: 2014 Topic 1: Moving About

Problems  with  gravity  –  what  happens  in  these  situaDons  with  ‘a’  and  ‘v’?  

1. Toward the trampoline.

2. Just before reaching highest point.

3. In contact with the trampoline moving downwards.

1. Just after jumping out of the plane.

2. After reaching terminal velocity.

3. As the parachute is opened.

1. Just leaving the ground.

2. Just before clearing the bar.

3. On the way down.

4. In contact with the mat, still moving downwards.

Page 30: 2014 Topic 1: Moving About

Expt  –  measuring  ‘g’  

•  Method  1  –  using  a  pendulum  

•  Method  2  –  using  a  mo*on  sensor  or  *cker  *mer  

Prac: measuring

‘g’

Page 31: 2014 Topic 1: Moving About

So  ‘g’  is  9.8m/s/s…  

•  How  fast  is  that?  •  Here’s  something  to  think  about:  •  hkps://www.youtube.com/watch?v=9YUtFpLpGn  

Page 32: 2014 Topic 1: Moving About

Uniform slow motion

Uniform faster motion

Ticker  Dmer  tapes  The ticker timer is used to measure displacement and time for objects moving in a straight line. A dot is made every 1/50th of a second. The distance between dots tells you how far the object moved in that time interval. It is often best to use a group of adjacent spaces between dots to give the distance and time, for example 10 spaces equates to the distance moved in 1/10th of a second.

Page 33: 2014 Topic 1: Moving About

Air  resistance  and  falling  objects  Prac: air

resistance

Hammer and

feather

Page 34: 2014 Topic 1: Moving About

Graphs  of  MoDon  •  Graphs  are  really  useful  things  •  They  allow  us  to  see  trends  in  data  much  more  easily  than  data  in  tables  

•  These  trends  tell  us  how  the  x  and  y  axes  are  related  

Page 35: 2014 Topic 1: Moving About

Graphs  of  MoDon  •  Review  of  Cartesian  Graphs  

–  For  a  graph  with  an  x  and  y  axis,  the    

–  Therefore  if  I  had  a  value  that  was  given  by  the  formula  P  =  xy,  this  could  be  obtained  from  the  graph  by  finding  the  area  under  the  graph  (P  =  area  under  the  graph).  

–  If  I  had  a  value  that  was  give  the  formula  Q  =  Δy/Δx,  I  could  calculate  this  using  the  graph  by  finding  the  gradient  of  the  line  (Q  =  gradient  of  the  line)  

Cartesian Graph

0246810121416

0 10 20 30 40 50

x (units)y

(uni

ts)

ΔxΔy

runriseGradient ==

xycurve under the area =

Page 36: 2014 Topic 1: Moving About

DISPLACEMENT  TIME  GRAPHS  

•  Plots  the  displacement  of  an  object  against  *me.  

•  The  slope  of  a  displacement-­‐*me  graph  is  equal  to  the  velocity.    

 

SlopeRiseRun

DisplacementTime

Velocity= = =Δ

Δ

Motion game using

dat.log.

Page 37: 2014 Topic 1: Moving About

Displacement

Time(s)

5

10

15

20

25

30

35

40

1 2 4 5 6 7

(m)

Rise displacement= Δ

Run = timeΔ

smtsv /5

420

+=+

Δ=!

!

Page 38: 2014 Topic 1: Moving About

Displacement (m)

Time (s)

Page 39: 2014 Topic 1: Moving About

Displacement (m)

Time (s)

Page 40: 2014 Topic 1: Moving About

Displacement (m)

Time (s)

Page 41: 2014 Topic 1: Moving About

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Displacement/*me  graphs  for  accelerated  mo*on  

Displacement

Time (s)

Page 42: 2014 Topic 1: Moving About

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

ACCELERATED MOTION

Displacement

Time (s)

The instantaneous velocity of an

object is the slope of the tangent to the displacement time curve at that

time

Page 43: 2014 Topic 1: Moving About

VELOCITY  TIME  GRAPHS  

•  Plots  the  velocity  of  an  object  at  each  instant  of  *me  

•  The  slope  of  a  velocity  *me  graph  represents  the  accelera*on.  Some*mes  these  graphs  are  called  speed/*me  graphs  

!!

avt

riserun

= = = −Δ

Δslope of v t graph

• The area between the graph and the time-axis represents the displacement of the object

Page 44: 2014 Topic 1: Moving About

Velocity Time (s)

+4

+2

-2

-4

+6

2 4 6 8 10 12 14

+8 Velocity/time graph

Describe what is happening to the object in this time interval. Calculate the accelerations of each section

Page 45: 2014 Topic 1: Moving About

Velocity Time (s)

+4

+2

-2

-4

+6

2 4 6 8 10 12 14

+8 The area above the t axis is

positive displacement

The area below the t axis is

negative displacement

The slope of a v-t graph gives the acceleration

Page 46: 2014 Topic 1: Moving About

Velocity Time (s)

+4

+2

-2

-4

+6

2 4 6 8 10 12 14

+8

2/5.146 sm

runrisea +=

+==

+1.5

0

-2.0

0

+4.0

ariserun

m s= = =03

0 2/ariserun

m s= =−

= −63

2 2/ariserun

m s= = =02

0 2/ariserun

m s= =+

= +41

4 2/

A bh=

= =

12

12 4 6 12.

A lb=

= =3 6 18.

A bh=

= =

12

12 3 6 9.

A ==

12 2 4

4.A ==

2 48.

A = 2

Total distance=12+18+9+4+8+2=53 m

Total displacement=12+18+9-4-8-2=+25 m

Page 47: 2014 Topic 1: Moving About

Accelera*on  *me  graphs  

tvaΔΔ

= tav Δ=Δ

!  Plots the acceleration of an object relative to a stationary reference point over a period of time.

!  For straight line motion, a negative acceleration would be when the object is experiencing a change in velocity in the opposite direction to that which was defined as positive.

y-axis = acceleration, x-axis = time Remember therefore . By finding the area under a velocity vs time graph, we can find the change in velocity. Describe the motion of the object in the graph below.

t (s)

a (ms-2)

Page 48: 2014 Topic 1: Moving About

Check  your  understanding  -­‐    Graphs  of  constant  accelera*on  

Pg:189

Q:12-15

Pg:191

Q:23-24

Page 49: 2014 Topic 1: Moving About

Review:  Graphing  MoDon  of  a  Ball    Thrown  into  the  Air  

t (s)

r (m)

t (s)

v (ms-1)

t (s)

a (ms-2) Use these axis to sketch a graph of the motion of a ball thrown into the air vertically and returns to the original position.

Accel. using

dat.log.

Accel. Down slope

tick.timer

Page 50: 2014 Topic 1: Moving About

Graphs  Summary  

Displacement vs Time

Velocity vs Time

Acceleration vs Time

Pg:190-192

Q:16-22

Page 51: 2014 Topic 1: Moving About

Moving  About  Part  2:  Forces  and  Newton’s  Laws  of  Mo6on  

Read Chapter 10 p197-217

(2d vectors covered

later)

Page 52: 2014 Topic 1: Moving About

Newton’s  First  Law  -­‐  Iner*a  •  Iner*a  is  defined  as  “the  tendency  of  an  object  to  resist  a  change  in  mo*on.”  –  Imagine  throwing  a  ball……  –  Imagine  throwing  an  elephant…  – Which  one  do  you  think  has  greater  iner*a?  –  The  greater  a  mass,  the  greater  its  iner*a,  therefore  the  harder  it  is  to  change  its  mo*on  (larger  force  needed).  

•  Newton’s  First  Law  states:  –  “An  object  will  remain  at  rest  or  at  constant  velocity  un*l  acted  upon  by  a  non-­‐zero  net  force.”  

Page 53: 2014 Topic 1: Moving About

Transla4onal  Equilibrium  •  In  a  transla6onal  equilibrium  all  the  forces  on  an  object  

cancel  each  other  out,  in  the  sense  that  the  (vector)  sum  of  all  forces  is  zero,  so  there  is  no  net  force  ac*ng  on  it.  All  the  forces  are  balanced.    So  the  state  of  transla*onal  equilibrium  is  equivalent  to  the  condi*on  for  no  accelera*on.    

•  Compare  to  Newton’s  first    law  of  mo4on:    First  Law  An  object  will  stay  at  rest  or  move  at  a  constant  speed  in  a  straight  line  unless  acted  upon  by  an  unbalanced  force.    

Page 54: 2014 Topic 1: Moving About

Newton  1:  an  applica*on  

•  While  travelling  in  a  bus  standing  up,  you  are  asked  to  write  observa*ons  for  the  following  scenarios  based  on  Newton’s  first  law  of  mo*on.  

!  Bus accelerates

!  Bus stops suddenly

!  Bus turns to the right

Pg:219

Q:11-13

Page 55: 2014 Topic 1: Moving About

•  Net  force  (Fnet)  –  When  all  the  forces  ac*ng  on  an  object  are  added  together,  the  resultant  force  is  the  Net  Force.  –  The  accelera*on  of  an  object  is  propor*onal  to  the  NET  force  on  the  object  and  inversely  propor*onal  to  the  mass  of  the  object.  

•  m  is  the  MASS  of  the  SYSTEM  in  kg.  this  is  the  mass  of  everything  which  the  force  acts  on.  

•  The  accelera*on  is  how  fast  the  system  is  gesng  faster  (or  slower)  in  metres  per  second  per  second.  

Page 56: 2014 Topic 1: Moving About

Newton’s  Second  Law    Fnet=ma  –  Eg.  Bill  pushes  his  trolley  with  a  force  of  20N,  there  is  a  resistance  

force  of  5N  ac*ng  in  the  opposite  direc*on.    Determine  the  net  force  ac*ng  on  the  trolley.  

20N

5N

Taking right as positive

Fnet = ∑Forces

Fnet = 20N + -5N

Fnet = 15N

Because answer is +ve, direction is to the right.

Page 57: 2014 Topic 1: Moving About

Newton’s  Second  Law  

•  Fnet  =  ma  –  The  accelera*on  of  an  object  is  propor*onal  to  the  NET  force  on  the  

object  and  inversely  propor*onal  to  the  mass  of  the  object.  •  Eg.  If  Bill’s  trolley  had  a  mass  of  50kg,  what  would  be  the  accelera*on  of  

the  trolley?  

•  If  Bill  wanted  the  trolley  to  remain  at  a  constant  velocity,  what  forward  force  would  he  have  to  apply?  (assume  resistance  force  is  always  5N)  

•  Show  that  the  accelera*on  would  be  zero  when  this  force  is  applied.    

 

5N

Page 58: 2014 Topic 1: Moving About

Newton  2  Applica*ons  •  While  sisng  in  a  car,  it  accelerates  at  5ms-­‐2.  Calculate  the  net  force  ac*ng  

on  your  body  assuming  you  have  a  mass  of  60kg.  

•  Calculate  the  force  required  to  throw  a  ball  50g  ball  at  a  velocity  of  20ms-­‐1  if  it  takes  0.2s  from  rest  to  release  of  the  ball.  

Pg:220

Q:22-24 +28

Page 59: 2014 Topic 1: Moving About

¨  E.g.  A  medicine  ball  of  mass  6kg  is  dropped  off  of  a  very  tall  building.    

¨  Aier  some  *me,  the  air  resistance  provides  an  upwards  force  of  10  Newtons.  

¨  What  is  the  net  force  and  the  accelera*on  of  the  ball  at  this  instant?  

Net  force  and  accelera*on  

Weight force

Air resistance

Page 60: 2014 Topic 1: Moving About

¨  The  weight  force  can  be  calculated  from  F=mg  

¨  ‘g’  is  the  gravita*onal  field  strength.  

¨  On  the  surface  of  the  earth,  this  is  9.8m/s/s  or  9.8N/kg  

¨  So  the  weight  is    6x9.8  =  58.8N  

Net  force  and  accelera*on  

58.8N

10N

Page 61: 2014 Topic 1: Moving About

¨  The  net  force  is  the  effec*ve  force  ac*ng  on  the  system  which  accelerates  it.  

¨  In  this  case,  the  net  force  is:  58.8  -­‐  10  =  48.8  N  

We  can  work  out  the  accelera*on  too:  a  =  F/m  =  48.8/6  =  8.1m/s2  

Net  force  and  accelera*on  

58.8N

10N

Pg:219

Q:9-10

Page 62: 2014 Topic 1: Moving About

Newton  2  Applica*on  

•  A  train  locomo*ve  has  a  mass  of  100  tonnes.  The  carriages  it  pulls  has  a  mass  of  40  tonnes  each.  A  resistance  force  exists  when  the  train  is  moving  of  3000N  on  each  carriage  and  5000N  on  the  locomo*ve.  

•  The  train  accelerates  at  1ms-­‐2.  –  A)  determine  the  net  force  ac*ng  on  the  whole  train.  –  B)  determine  the  thrust  force  applied  by  the  locomo*ve.  –  C)  determine  the  force  the  coupling  is  exer*ng  on  the  last  carriage.  

Pg:221

Q:31-32

Page 63: 2014 Topic 1: Moving About

Experiment:  forces  in  systems  

We  can  measure:  The  mass  of  the  system  The  weight  force  which  accelerates  the  mass  The  accelera*on  of  the  system  So  we  can  measure  all  of  the  things  in  Newton's  second  law  equa*on.  We  can  then  compare  the  results  to  confirm  the  Law!  

!  We will set up a system like this.

!  The mass which hangs off the edge of the table accelerates the mass and the trolley.

Page 64: 2014 Topic 1: Moving About

Forces  in  systems  

•  The  applied  force  =  weight  force  ac*ng  on  m1  –  Fweight  =  m1a  –  Fweight  =  m1  x  9.8ms-­‐2    

•  This  applied  force  must  accelerate  the  en*re  mass  of  the  system.  •  Fnet  =  mtotal  atrolley  •  mtotal  =  m1  +  mtrolley  

•  Therefore  atrolley  =  Fnet/(m1  +  mtrolley)  

!  The mass m1 is under the influence of gravity and will therefore have a force acting on it.

!  The trolley will be accelerated by the applied force. M1

M2

Weight force= m1g

P 224 Newton 2

Page 65: 2014 Topic 1: Moving About

Mass  vs  Weight  

•  One  force  that  we  have  referred  to  is  a  weight  force.  •  We  know  this  is  the  force  ac*ng  on  an  object  due  a  

gravita*onal  field.  •  The  gravita*onal  field  strength  and  the  mass  of  an  object  

determines  the  weight  exerted  on  the  object.  •  The  gravita*onal  field  strength  is  given  in  the  units  Nkg-­‐1  (the  

force  exerted  on  each  kilogram  of  mass).  –  Force  is  measured  in  Newtons  –  F=ma  therefore  units  for  Newtons  is  kgms-­‐2    –  Gravita*onal  field  units  =  Nkg-­‐1  =  kgms-­‐2/kg  =  ms-­‐2  

–  Gravita*onal  field  strength  =  accelera*on  due  to  gravity!!  

Page 66: 2014 Topic 1: Moving About

Mass  vs  Weight  

•  Mass  does  not  change!  •  Weight  depends  on  accelera*on  due  to  gravity.  –  F=ma  –  Fweight  =  mg  (where  g  =  accelera*on  due  to  gravity)  

•  Calculate  the  force  that  the  Earth  exerts  on  you  (g  =  9.8Nkg-­‐1)  

Pg:219

Q:3-6 + 9

Page 67: 2014 Topic 1: Moving About

Weight  on  different  planets  

•  Complete  the  following  table.  

Planet Gravitational field strength

Your Weight

Mercury 0.36 Nkg-1

Jupiter 26.04 Nkg-1

Mars 3.75 Nkg-1

Pluto 0.61Nkg-1

Page 68: 2014 Topic 1: Moving About

Newton’s  Third  Law  

•  For  every  ac*on  there  is  an  equal  and  opposite  reac*on.  – When  you  push  a  wall,  the  wall  pushes  back  on  you.  

– When  you  stand  on  the  ground,  the  ground  pushes  back  on  you.  

– When  you  push  a  trolley,  the  trolley  pushes  back  on  you.  

– You  can  only  hit  something  hard  that  can  exert  a  large  force  back  on  you.  

Kicking different

balls

Page 69: 2014 Topic 1: Moving About

‘Magic  Statement’!  •  These  pairs  of  forces  are  called  ac*on-­‐reac*on  pairs.    To  always  

get  these  correct,  use  the  following  formula  and  never  fail.  –  A  exerts  a  force  on  B  –  B  exerts  an  equal  and  opposite  force  on  A  

•  Ac*on-­‐reac*on  pairs  must  ALWAYS  act  on  different  objects.  

Page 70: 2014 Topic 1: Moving About

Label  the  following    ac6on-­‐reac6on  pairs  Pg: 221

Q: 29

Page 71: 2014 Topic 1: Moving About

IdenDfy  6  pairs  in  the  following:  

Page 72: 2014 Topic 1: Moving About

Newton  3  QuesDon:  •  These  forces  are  equal  and  in  opposite  direc*ons  but  are  they  an  ac*on-­‐reac*on  pair?  

Normal-reaction force of ground acting on person

Weight force acting on the

person !  Applying the formula

–  Weight exerts a force on person –  Normal reaction exerts equal and opposite

force on person

!  This is not an action-reaction pair as both forces are acting on the same object!

Page 73: 2014 Topic 1: Moving About

Momentum  

•  Momentum  (P)  -­‐  The  mass  of  an  object  mul*plied  by  its  velocity.    

•  If  an  object  has  a  large  momentum,  it  is  more  difficult  to  change  its  velocity.      

p=mv    –  p  =  momentum  (kgms-­‐1)  – m  =  mass  (kg)  –  v  =  velocity  (ms-­‐1)  

Read Chapter 11 p231-233

Page 74: 2014 Topic 1: Moving About

Momentum  

•  Momentum  (P)  -­‐  The  mass  of  an  object  mul*plied  by  its  velocity.    

•  If  an  object  has  a  large  momentum,  it  is  more  difficult  to  change  its  velocity.      

p=mv    –  p  =  momentum  (kgms-­‐1)  –  m  =  mass  (kg)  –  v  =  velocity  (ms-­‐1)  

The  units  of  momentum  are:  Ns  or  kgm/s  

Read Chapter 11 p231-233

Page 75: 2014 Topic 1: Moving About

Momentum  magic!  •  Because  the  net  force  is  equal  to  the  change  in  momentum  (Newton2)  and  forces  are  ac*on-­‐reac*on  pairs  of  equal  magnitude  (Newton3),  the  total  change  in  momentum  of  the  system  is  equal  to  zero!!!!  

 m1u1+m2u2=m1v1+m2v2    

•  This  is  known  as  the  CONSERVATION  OF  MOMENTUM  

•  For  this  to  be  true,  we  need  to  consider  the  TOTAL  system,  i.e.  everything  interac*ng  

Expt: collision

Page 76: 2014 Topic 1: Moving About

ConservaDon  of  Linear  Momentum  quesDon  

•  A  billiard  ball,  mass  40g,  is  ini*ally  rolling  to  the  lei  at  20cm/s.  It  hits  a  second  iden*cal  sta*onary  ball.  The  ini*al  ball  slows  to  5cm/s  lei  immediately  aier  the  collision.  What  is  the  final  speed  of  the  other  ball?  

Page 77: 2014 Topic 1: Moving About

Linear  Momentum  quesDon  2  

•  A  toy  train,  mass  420g,  moving  at  30cm/s  south  collides  with  a  carriage  moving  at    32cm/s  north.  If  they  become  coupled  together,  what  is  their  common  velocity  aier  collision?  

Page 78: 2014 Topic 1: Moving About

Linear  Momentum  quesDon  3  •  A  2.1-­‐kg  cart  is  rolling  along  a  fric*onless,  horizontal  track  

towards  a  1.4-­‐kg  cart  that  is  held  ini*ally  at  rest.    •  The  carts  are  loaded  with  strong  magnets  that  cause  them  

to  akract  one  another.  Thus,  the  speed  of  each  cart  increases.    

•  At  a  certain  instant  before  the  carts  collide,  the  first  cart's  velocity  is  +5.9  m/s,  and  the  second  cart's  velocity  is  -­‐2.0  m/s.    

(a)  What  is  the  total  momentum  of  the  system  of  the  two  carts  at  this  instant?    

(b)  What  was  the  velocity  of  the  first  cart  when  the  second  cart  was  s*ll  at  rest?    

Pg: 244

Q: 20-25

Page 79: 2014 Topic 1: Moving About

Impulse  (Δp)  !  Impulse is the change in momentum !  But how can that be if momentum is

conserved? !  Momentum is NOT conserved if we consider only

one thing. !  Think about playing snooker…when the white ball

hits a coloured ball, the coloured ball moves… the P of the ball changes…

Page 80: 2014 Topic 1: Moving About

Impulse  (Δp)  

Force vs Time - Soccer Ball

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5

Time (s)

Forc

e (N

)

!  Impulse is the change in momentum of an object: – Δp=pf – pi

– Δp=mfvf – mivi !  Usually the mass of an

object remains the same, therefore: – Δp=mfvf – mivi

– Δp=mfv – miu – Δp=m(v – u)

Impulse is also equal to : force x time

Page 81: 2014 Topic 1: Moving About

Impulse  quesDon  

•  A  ball  with  a  mass  of  0.10  kg  has  a  velocity  of  7  m/s.  It  strikes  a  concrete  wall  perpendicularly  and  bounces  straight  back  with  velocity  of  4  m/s.  what  is  the  impulse  on  the  wall?  

•  If the ball is in contact with the wall for 0.1seconds, what is the average force on the wall?

•  If the wall is softer, the contact will take place over a

longer time. What will this do to the peak force? •  Can you think of an example to do with vehicles where this

is important?

Page 82: 2014 Topic 1: Moving About

Newton’s  2nd  and  Momentum  

•  Newton  actually  defined  his  second  law  in  terms  of  momentum!  

•  Net  Force  =  rate  of  change  in  momentum.  

matuvmtpFnet

−=

Δ

Δ=

)(

Page 83: 2014 Topic 1: Moving About

Impulse  quesDon  2  

•  Determine  the  impulse  of  the  ball  aier  being  struck  for  the  0.4s  

•  Calculate  the  final  velocity  of  the  500g  ball  once  it  leaves  the  boot.  

•  Calculate  the  average  net  force  ac*ng  on  the  ball  when  kicked.  

Force vs Time - Soccer Ball

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5

Time (s)

Forc

e (N

)

Pg:242

Q:9-19

Page 84: 2014 Topic 1: Moving About

Impulse  quesDon  3  

•  In  a  game  of  snooker  a  player  hits  a  0.20kg  ball  with  the  cue,  exer*ng  an  average  force  of  40N  south  on  the  ball  for  12  milliseconds.  

•  A.  What  is  the  impulse  exerted  on  the  ball?  •  B.  What  is  the  change  in  momentum  of  the  ball?  

•  C.  With  what  velocity  does  the  ball  leave  the  cue?  

  A) 0.48Ns; B) 0.48Ns; C) 2.4m/s south

Page 85: 2014 Topic 1: Moving About

So  do  we  understand  momentum?  

•  We  know  that    •  IMPULSE  =  Change  in  Momentum  

•  And…  •  In  collisions,  momentum  is  conserved.  

Read both the above statements. Considered together they don’t make sense. Why not? How can you explain that they are actually correct?

Page 86: 2014 Topic 1: Moving About

Collisions  simulaDon  

Page 87: 2014 Topic 1: Moving About

Review  –  Newton’s  3  laws  

•  Cut  and  paste  the  following  link  into  your  browser  –    

hkp://www.grc.nasa.gov/WWW/K-­‐12/airplane/newton.html  

 Read  the  slides  on  Newton’s  3  laws,  and  do  the  11/12  ac*vity  for  Newton’s  3rd  law.  Also,  have  a  look  at  the  ‘movie’  of  the  Wright  

Brothers  

Page 88: 2014 Topic 1: Moving About

Read Chapter 11 p225-230

Moving  About  Part  3:  Work  and  

Energy  

Page 89: 2014 Topic 1: Moving About

Work  –  what  is  it?  •  Work  is  the  product  of  the  magnitude  of  the  displacement  and  the  component  of  the  force  ac4ng  in  the  direc4on  of  the  displacement  

•  The  units  are  JOULES  

θ

θ

cos)cos(

FdWxFW

=

Δ=!

θ

Page 90: 2014 Topic 1: Moving About

Work  •  Most  of  the  *me  F    is  in  the  direc*on  of  d  so  θ  =  0°  and  cos  0°  =  1  so…  

FdW =max

Page 91: 2014 Topic 1: Moving About

Work  •  Work  generally  falls  into  2  categories:  

1.  When  you  force  something  to  move  against  the  influence  of  an  opposing  force    –  (push-­‐ups  &  gravita*onal  force,  walking  

&  fric*on,  bow  &  elas*c  force)  2.  When  you  change  the  speed  of  something  

–  A  net  force  is  present  

Page 92: 2014 Topic 1: Moving About

How  are  Work  and  Energy  related?  

•  Energy  is  the  ability  to  do  work    OR  

•  Work  causes  changes  in  energy    OR  

•  Work  is  a  transfer  of  energy  

Page 93: 2014 Topic 1: Moving About

Why  is  work  important  in  car  crashes?  

Work  =  force  x  displacement  •  In  a  car  crash,  work  is  one  of  the  ways  most  of  the  kine*c  energy  that  the  car  has  is  converted  into  other  forms.  

•  HOW  this  conversion  occurs,  and  HOW  FAST  it  occurs  will  determine  the  likelihood  of  injury  to  the  passengers.  

•  Can  you  explain  why?  

Page 94: 2014 Topic 1: Moving About

Work  quesDons:  

•  What  work  is  done  by  a  force  of  12N  west  which  pushes  a  box  6.0m  west?  

•  How  much  work  is  done  by  a  bricklayer  liiing  a  brick  weighing  40N  a  ver*cal  height  of  1.5m?  

Page 95: 2014 Topic 1: Moving About

Energy  -­‐  Types  • Mechanical  Energy:  Energy  due  to  posi*on  in  a  field  force  or  energy  due  to  movement  

•  Non-­‐mechanical  Energy:  Energy  that  does  not  fall  into  the  above  category  

Page 96: 2014 Topic 1: Moving About

Energy – Flow Chart Energy

Mechanical

Kinetic

Linear

Rotational

Potential

Gravitational

Elastic

Electric

Magnetic

Non-mechanical

Light Sound Heat

Page 97: 2014 Topic 1: Moving About

Mechanical Energy - Types

1.   Kine6c  Energy,  KE:    Energy  of  a  moving  object  

 

–  Linear,  KE  →  center  of  mass  moving      

–  Rota4onal,  KR  →  object  rota*ng  around  center  of  mass  (not  required  as  part  of  HSC  course)  

 

Page 98: 2014 Topic 1: Moving About

Linear  KineDc  Energy  EquaDon  

2

21mvKE =

Page 99: 2014 Topic 1: Moving About

Mechanical Energy - Types

2.   Poten6al  Energy,  PE:    Energy  due  to  posi*on  in  a  field  force  

–  Gravita4onal,  PEg    –  Elas4c,  PEs    –  Electric,  PEE    –  Magne4c,  PEB    

*You  must  choose  a  zero  point  for  these*  

Page 100: 2014 Topic 1: Moving About

PotenDal  Energy  EquaDons  

mghPEg =2

21 kxPEs =

Page 101: 2014 Topic 1: Moving About

Work  and  Energy  

Page 102: 2014 Topic 1: Moving About

Work  –  Energy  Principle  or  work  done  by  a  net  force  or  net  work  done  on  an  

object  

EnergydFW netnet Δ==This means that the amount of energy input or output of a system is equal to the work done on or by that system. Give an example of this:

Page 103: 2014 Topic 1: Moving About

Energy  ConservaDon  •  The  total  energy  is  neither  increased  nor  decreased  in  any  process.      

•  Energy  can,  however,  be  transformed  from  one  type  to  another  AND  transferred  from  one  body  to  another,  BUT,  the  total  amount  of  energy  in  the  process  remains  CONSTANT!  

•  Using  this  informa4on,  and  considering  the  KE  equa4on,  explain  why  speeding  in  a  car  is  very  dangerous.  

Page 104: 2014 Topic 1: Moving About

Work  –  Energy  Principle  Redefined  

•  So  if  energy  is  conserved  we  can  write  it  this  way  using  mechanical  and  non-­‐mechanical  energies  

WPEKE =Δ+Δ

Page 105: 2014 Topic 1: Moving About

A skater of mass 60 kg has an initial velocity of 12 m/s. He slides on ice where the frictional force is 36 N. How far will the skater slide before he stops?

Work-­‐energy  principle  quesDon:  

Page 106: 2014 Topic 1: Moving About

Work-­‐energy  principle  quesDon  2:  

•  A  hammer  head  of  mass  0.50  kg  is  moving  with  a  speed  of  6.0  m/s  when  it  strikes  the  head  of  a  nail  s*cking  out  of  a  piece  of  wood.  When  the  hammer  head  comes  to  rest,  the  nail  has  been  driven  a  distance  of  1.0  cm  into  the  wood.  Calculate  the  average  fric*onal  force  exerted  by  the  wood  on  the  nail.  

Page 107: 2014 Topic 1: Moving About

Work  energy  principle  quesDon  3  

•  A  hill  rises  1.0m  ver*cally  for  every  14m  of  its  inclined  length.  A  truck  of  mass  3000kg  travels  a  distance  of  40m  up  the  slope  at  a  constant  speed.  Find  the  work  done  by  the  motor  if  the  fric*onal  resistance  is  100N  down  the  hill.  

Page 108: 2014 Topic 1: Moving About

Work-­‐energy  principle  quesDon  4:  

•  A  car  (m  =  1150  kg)  experiences  a  force  of  6.00  x  103  N  over  a  distance  of  125  m.  If  the  car  was  ini*ally  traveling  at  2.25  m/s,  what  is  its  final  velocity?    

Page 109: 2014 Topic 1: Moving About

Mechanical  Energy  ConservaDon  

•  If  we  ignore  non-­‐conserva*ve  forces  (fric*on  and  the  such),  the  implica*on  is  that  no  non-­‐mechanical  energies  are  present  (heat,  sound,  light,  etc)  therefore…  

0=Δ+Δ PEKEThis is the conservation of mechanical energy. It is useful when considering things which are thrown in the air, where the gain in GPE is offset by the loss in KE, as well as many other situations.

Page 110: 2014 Topic 1: Moving About

Work  energy  principle  simula*on  

Page 111: 2014 Topic 1: Moving About

Ques*on  

•  Georgina  jumps  off  a  10m  diving  pla�orm.  She  has  a  mass  of  60kg.  –  a)  calculate  the  gravita*onal  poten*al  energy  Georgina  has  when  

standing  on  the  pla�orm.      –  b)  determine  the  work  done  by  gravity  as  she  falls.      –  c)  what  is  Georgina's  kine*c  energy  just  before  she  hits  the  water?      –  d)  what  is  Georgina's  velocity  as  she  enters  the  water?  

Page 112: 2014 Topic 1: Moving About

Thinking  –  Total  Mechanical  Energy  •  Think  about  the  Energy  in  a  system  as  a  circle.  •  This  amount  of  energy  can  not  change!  It  can  only  be  converted  into  different  

types  of  energy  or  transferred  to  a  different  object.  •  When  mechanical  energy  is  conserved,  the  circle  stays  the  same  size,  it  is  just  the  

propor*on  of  the  circle  allocated  to  the  different  forms  of  energy  that  changes.  •  Applying  this  to  our  diving  example:  

Egp Ek

Ek

Egp

Roller Coaster

Page 113: 2014 Topic 1: Moving About

A diver of mass m drops from a board 10.0 m above the water surface, as in the Figure. Find his speed 5.00 m above the water surface. Neglect air resistance.

ConservaDon  of  mechanical  energy  quesDon:  

Pg:242

Q:1-8

Page 114: 2014 Topic 1: Moving About

ConservaDon  of  mechanical  energy  quesDon  2:  

•  A  200g  tennis  ball  is  thrown  ver*cally  upwards  at  2m/s.  What  is  the  maximum  height  it  reaches  above  the  point  from  which  it  was  thrown?  

Page 115: 2014 Topic 1: Moving About

A skier slides down the frictionless slope as shown. What is the skier’s speed at the bottom?

H=40 m

L=250 m

start

finish

ConservaDon  of  mechanical  energy  quesDon  3:  

Page 116: 2014 Topic 1: Moving About

Two  blocks,  A  and  B  (mA=50  kg  and  mB=100  kg),  are  connected  by  a  string  as  shown.  If  the  blocks  begin  at  rest,  what  will  their  speeds  be  aier  A  has  slid  a  distance  s  =  0.25  m?  Assume  the  pulley  and  incline  are  fric*onless.    

s

ConservaDon  of  mechanical  energy  quesDon  4:  

Page 117: 2014 Topic 1: Moving About

x

Now  a  harder  quesDon!  

To what height h does the block rise when moving up the incline? Hint – use the formula for potential energy in a spring to work out how much energy you start with. Remember this is conservation of mechanical energy – it is all transformed!

A 0.50 kg block rests on a horizontal, frictionless surface as in the figure; it is pressed against a light spring having a spring constant of k = 800 N/m, with an initial compression ‘x’ of 2.0 cm.

Page 118: 2014 Topic 1: Moving About

Part  4:  Collisions  

Page 119: 2014 Topic 1: Moving About

ElasDc  &  InelasDc  Collisions  

119

When we consider collisions we need to think about momentum and energy

There are three types of collisions we will consider:

1.  Elastic 2.  Perfectly inelastic

3.  Inelastic Elastic and perfectly inelastic collisions are

limiting cases. Most collisions actually fall into a category between the two extremes.

Page 120: 2014 Topic 1: Moving About

Perfectly   inelas*c   collision   is   a  collision   in   which   two   objects   s*ck  together   and   move   with   a   common  velocity  aier  colliding.  

120

Perfectly Inelastic Collisions

Page 121: 2014 Topic 1: Moving About

fii vmmvmvm !!! )( 212211 +=+

121

Perfectly Inelastic Collisions

Page 122: 2014 Topic 1: Moving About

Kine*c  Energy  is  not  constant  in  inelas*c  collisions.  Some  kine*c  energy  is  converted  to  sound  and/or  heat,  or  causes  deforma*on.  

122

Perfectly Inelastic Collisions

Page 123: 2014 Topic 1: Moving About

if

fff

iii

KEKEKE

vmvmKE

vmvmKE

+=

+=2

22212

1121

2222

12112

1

123

To  calculate  the  amount  of  kine*c  energy  that  is  lost:  

Perfectly Inelastic Collisions

Page 124: 2014 Topic 1: Moving About

A  90.0  kg  rugby  player  moving  south  with  a  speed  of  5.0  m/s  has  a  perfectly  inelas*c  collision  with  a  95.0  kg  opponent  running  north  at  3.0  m/s.  

a.  Calculate  the  velocity  of  the  players  just  aier  the  tackle.  

b.  Calculate  the  decrease  in  total  kine*c  energy  as  a  result  of  the  collision.  

124

Perfectly inelastic collisions question

Page 125: 2014 Topic 1: Moving About

Perfectly  inelasDc  collisions  quesDon  2  

•  A  freight  train  is  being  assembled  in  a  switching  yard.  Boxcar  #1  has  a  mass  of  6.5  x  104  kg,  and  Boxcar  #2  has  a  mass  of  9.2  x  104  kg.  If  car  1  is  moving  with  a  velocity  of  +0.80  m·∙s-­‐1,  and  car  2  hits  it  from  behind  with  a  velocity  of  +1.2  m·∙s-­‐1,  with  what  velocity  will  the  two  cars  move  with  together  aier  coupling?    

Page 126: 2014 Topic 1: Moving About

In  inelas*c  collisions,  colliding  objects  bounce  and  move  separately  aier  the  collision,  but  the  total  kine*c  energy  decreases  in  the  collision.    Most  collisions  where  things  do  not  s*ck  together  are  like  this.  

126

Inelastic collisions in general

Page 127: 2014 Topic 1: Moving About

An  Elas*c  collision  is  a  collision  in  which  the  total  momentum  and  the  total  kine*c  energy  remain  constant.  

127

Elastic Collisions

Page 128: 2014 Topic 1: Moving About

2222

12112

12222

12112

1

22112211

Energy Kinetic

Momentum

ffii

ffii

vmvmvmvm

vmvmvmvm

!!!!

!!!!

+=+

+=+

128

Elastic Collisions

Page 129: 2014 Topic 1: Moving About

Two  0.40  kg  soccer  balls  collide  elasDcally  in  a  head-­‐on  collision.  The  first  ball  starts  at  rest,  and  the  second  ball  has  a  speed  of  3.5  m/s.  Aker  the  collision,  the  second  ball  is  at  rest.  

a.  What  is  the  final  speed  of  the  first  ball?  b.  What  is  the  kineDc  energy  of  the  first  ball  before  

the  collision?  c.  What  is  the  kineDc  energy  of  the  second  ball  

aker  the  collision?  

129

Elastic Collisions question

Page 130: 2014 Topic 1: Moving About

Part  5:  Safety  devices  in  cars  

Read pages 233-240

Page 131: 2014 Topic 1: Moving About

Safety  devices  in  cars  

 Why  has  this  occurred?  What  sort  of  things  will  have  increased  the  likelihood  of  fatali*es,  which  would  have  decreased  the  likelihood  of  road  fatali*es?  Make  a  list.  

Page 132: 2014 Topic 1: Moving About

Safety  devices  in  cars  

•  1988  Holden  Commodore  

•  2010  Holden  Commodore  

Page 133: 2014 Topic 1: Moving About

NRMA  Crashed  Car  Showroom  

•  hkp://saferchoices.nrma.com.au/crashed-­‐car-­‐showroom.aspx  

Page 134: 2014 Topic 1: Moving About

Safety  devices  in  cars  –    avoiding  collisions  

Name  of  Device   FuncDon     Basic  physics  principle    (if  applicable)  

   

   

   

   

   

Page 135: 2014 Topic 1: Moving About

Safety  devices  in  cars  –  reducing  effects  of  collisions  

Name  of  Device   FuncDon     Basic  physics  principle  

   

   

   

   

   

Pg: 245

Q: 27

Page 136: 2014 Topic 1: Moving About
Page 137: 2014 Topic 1: Moving About

Speed  and  safety  –    low  speed  zones  

•  What  happens  to  the  amount  of  KE  when  the  speed  of  an  object  is  doubled?      calculate  the  rela*onship!  

•  What  will  this  mean  in  the  event  of  a  collision?  Write  a  paragraph  explaining  how  this  will  change  the  result  of  a  collision,  and  why.  

http://www.rta.nsw.gov.au/cgi-bin/player.cgi?crashlab_fs2

Page 138: 2014 Topic 1: Moving About

Part  6:  Forces  in  2  dimensions  

Read Chapter 10 p197-217

(2d vectors sections)

Page 139: 2014 Topic 1: Moving About

Forces  as  Vectors  Review-­‐  Vector  Addi*on  

•  Vector  addiDon  is  a  method  of  adding  any  vectors  of  the  same  type  in  a  parDcular  problem.  

•  This  could  be  the  addiDon  of  two  forces,  two  velociDes,  two  displacements….etc.  

•  The  thing  to  remember  is  that  vectors  have  magnitude  and  direcDon  so  we  must  take  into  consideraDon  both  of  these  whenever  we  do  a  problem  involving  the  addiDon  (or  subtracDon)  of  vectors.  

Page 140: 2014 Topic 1: Moving About

Adding  vectors:  method  1.  Tip  to  tail  addi*on.  

 •  Forces  can  be  represented  best  by  arrows.    This  can  show  magnitude  (length)  and  direc*on  (orienta*on)  therefore  sa*sfy  the  addi*on  of  both.  

•   Basketball  when  first  dropped                                                                Basketball  aier  falling  for  some  *me  –  Where    –  R  =  air  resistance  –  W  =  weight  (W  =  mg)  –  N  =  Normal  reac*on  force  (a  force  reac*ng  to  the  force  of  gravity)  

•  Net  force  is  downward  therefore  accelera*on  is  downward                          No  net  force  therefore  no  accelera*on.  

W W

R

+ = Fnet + = Fnet = 0

R

Page 141: 2014 Topic 1: Moving About

Tip  to  tail  2D  example:  •  A  boat  travels  across  a  river  at  2ms-­‐1  and  the  river  flows  at  

3ms-­‐1.  Calculate  the  velocity  of  the  boat  as  measured  by  a  bystander  on  the  shore.  

2ms-1

3ms-1 N

Page 142: 2014 Topic 1: Moving About

Vector  SubtracDon  or  ‘change  in’,  1D  •  For  1D  examples,  it  is  fairly  straigh�orward:  •  Maths  

•  A  –  B  =  A  +  (-­‐B)  •  Using  vectors  this  looks  a  likle  different  

 

B = A = !  -B has the same magnitude but opposite

direction (- B) =

!  A+(-B) =

+ =

A+(-B)

Page 143: 2014 Topic 1: Moving About

Vector  subtracDon  2D  Example  -­‐  AcceleraDon  

•  A  car  turns  a  corner  from  East  to  North  travelling  at  15ms-­‐1  and  it  takes  2s  to  make  the  turn.  –  Calculate  the  change  in  velocity  and  the  accelera*on  of  the  car  during  this  

*me.  (a=v-­‐u/t)  –  Remember  –  change  in  means  final  value  MINUS  ini*al  value!  

Page 144: 2014 Topic 1: Moving About

Vector  subtracDon  2D  example:  Momentum    

•  Adam  Gilchrist  strikes  a  300g  cricket  ball  that  was  bowled  to  him  at  140kmh-­‐1  and  sends  it  through  square  leg  at  200km-­‐1.  The  ball  was  in  contact  with  the  bat  for  0.02s.  

•  Calculate  the  change  in  momentum  of  the  ball  and  hence  the  average  force  ac*ng  on  the  ball  during  the  hit.  

u

v

Page 145: 2014 Topic 1: Moving About

Components  of  Vectors  •  Any  vector  can  be  broken  down  into  a  number  of  components  (usually  to  

make  solving  a  problem  easier).  •  Using  the  fact  that  any  two  vectors  can  be  added  to  create  a  “resultant”  

vector,  we  can  take  the  resultant  and  create  any  two  (or  more)  vectors  that  add  to  give  this  resultant  vector.  

•  Eg.  Oien  when  things  happen  at  an  angle  we  want  to  know  just  the  horizontal  or  ver*cal  component  of  the  mo*on  or  the  force  ac*ng  on  the  object.    If  a  force  acts  on  an  object  at  an  angle,  we  can  divide  it  up  into  different  components  such  as  horizontal  and  ver*cal  to  determine  the  net  force.  

Horizontal component of applied force

Vertical component of applied force

1.  What are all the forces acting on the trolley?

2.  What is the normal reaction force?

3.  What is the net force?

4.  What is the acceleration of the trolley?

4kg

30°

Applied force = 10N

Page 146: 2014 Topic 1: Moving About

Components  of  vectors:  Parallelogram  Method  

•  With  two  forces  ac*ng  in  different  direc*ons  one  can  use  the  parallelogram  method.  

•  Two  people  pull  on  a  large  rock  to  try  to  move  it  both  with  a  force  of  200N.    One  pulls  toward  the  North,  the  other  toward  the  East.    What  will  the  net  force  be?    Which  direc*on  will  the  block  move?  

1.  Place  forces  tail  to  tail  maintaining  their  magnitude  and  direc*on.  2.  Draw  in  the  net  force  as  though  it  would  create  the  diagonal  of  the  parallelogram  

(in  this  case  a  square)  3.  The  net  force  is  given  in  terms  of  magnitude  (length)  and  direc*on  (orienta*on).  4.  Therefore  the  resultant  net  force  will  be  283  N  to  the  North  East.  (using  

trigonometry)  

N

bac

cba

283200200 22

22

222

=

+=

+=

=+

200N

200N

Page 147: 2014 Topic 1: Moving About

Components  of  vectors  quesDon:  •  A  plane  takes  off  with  an  air  speed  of  300kmh-­‐1.  The  angle  of  take  off  is  30°.      

•  Calculate  how  fast  a  car  would  have  to  travel  along  the  runway  to  remain  directly  below  the  plane  as  it  takes  off..  

30°

Air speed

velocity relative to the ground

Vertical velocity

Page 148: 2014 Topic 1: Moving About

Force  as  a  Vector  

•  Force  is  a  vector  quan*ty.  If  the  sum  of  forces  on  an  object  is  zero,  the  object  is  moving  at  a  constant  speed.  

•  If  the  net  force  at  a  point  is  zero,  the  components  of  the  forces  in  any  direc*on  will  be  zero.  

P223 force as a vector

Page 149: 2014 Topic 1: Moving About

Normal  ReacDon  Force  •  The  normal  reac*on  force  acts  perpendicular  to  the  surface.    •  If  the  object  is  res*ng  or  moving  on  a  surface  is  flat,  this  force  is  directly  

opposite  in  direc*on  and  equal  in  magnitude  to  the  weight  force.  •  If  the  surface  is  sloped,  the  reac*on  force  is  s*ll  perpendicular  to  the  

surface.  This  means  that  the  direc*on  and  magnitude  of  the  force  are  no  longer  equal  and  opposite  to  the  weight  force.  

Page 150: 2014 Topic 1: Moving About

Forces  on  objects  on  inclines  •  Using  components  of  forces,  we  can  simplify  problems  with  objects  on  inclines.  To  do  this  we  break  all  forces  that  are  not  ac*ng  down  or  up  the  slope,  either  perpendicular  or  parallel  to  the  slope.  

θ

W = mg

N

R

θ

mg

R

Wperp

Wpara

θ

!  Here the weight force has been broken up into the components parallel (Wpara) and perpendicular (Wperp) to the inclined plane. You can see that Wperp = N but in opposite directions. Also R = Wpara but in opposite directions.

!  Trigonometry can be used to calculate Wpara = mg sin θ !  and Wperp = mg cos θ !  Note: The angle θ is the same between the horizontal and the incline

plane as it is between mg and Wperp

Page 151: 2014 Topic 1: Moving About

Forces  on  inclines  example:  •  A  car  accelerates  up  a  hill  of  10°  at  1ms-­‐2.  The  mass  of  the  car  is  

1000kg.    The  resistance  force  ac*ng  up  the  hill  is  300N.  •  Determine  

•  Weight  of  car  (W)  •  Component  perpendicular  to  slope  (Wy)  •  Component  parallel  to  the  slope  (Wx)  •  Normal  reac*on  force.  •  Net  force  on  car.  •  Thrust  force  provided  by  the  car.  

θ

W = mg

N Thrust

R

Pg: 220

Q: 16-19, 25,26

Page 152: 2014 Topic 1: Moving About

Uniform  Circular  MoDon  •  Objects do not perform

uniform circular motion unless they are subject to a centripetal force.

•  This is a force that is always perpendicular to the velocity of the object.

•  The centripetal force is always directed toward the centre of the circular motion.

Page 153: 2014 Topic 1: Moving About

Circular  MoDon  and  Centripetal  Force  

Page 154: 2014 Topic 1: Moving About

Going  around  a  corner  

When a vehicle turns a corner and maintains a constant speed, the vehicle is accelerating. How do we know this? The force required to turn the corner (centripetal force) is given by he equation:

F = mv2 / r We often hear about ‘centrifugal force’. What is it? How can we explain it?

Pg: 222

Q: 34

Page 155: 2014 Topic 1: Moving About

Banked  Turns  If the car is on a banked turn, the normal force (which is always perpendicular to the road's surface) is no longer vertical. The normal force now has a horizontal component, and this component can act as the centripetal force on the car! This helps the car move around the corner without sliding as it can provide some of the centripetal force. Given just the right speed, a car could safely negotiate a banked curve even if the road is covered with perfectly smooth ice!

Pg: 222

Q: 35-36

Page 156: 2014 Topic 1: Moving About

Centripetal  AcceleraDon  

•  Centripetal  acceleraDon  is  the  rate  of  change  of  tangen*al  velocity:  

•  We  can  deduce  the  direc*on  of  this  centripetal  force  for  uniform  circular  mo*on….  How?  

ac = v2 / r

Movie of hammer throw