2013 Final Exam Answer

download 2013 Final Exam Answer

of 5

Transcript of 2013 Final Exam Answer

  • 8/20/2019 2013 Final Exam Answer

    1/9

     

    Question 1 (15 marks)

    C01

    a b

    12 8

    1 mol of gas  B  expands adiabatically against a constant external pressure that equals to the

    final pressure, P  f  = 4 atm. The initial state of the gas is T i = 27 °C and P i = 10 atm. Assume the

    gas to be ideal with heat capacity of:

    C  P  ,m =28.58+1.76×10-2

    T  

    with C  P,m is in (J K -1 mol-1) and T  is in Kelvin.

    (a)  Determine the final temperature of the system, T  f   in °C. (12 marks)

    (b)  Calculate the enthalpy, Δ H  (in kJ) and entropy, ΔS  (in J K -1) of the process. (8 marks)

    SOLUTION:

    Part (a):

    Given: T i =27 °C = 300 K, P i = 10 atm, n = 1 mol, P external = P  f  = 4 atmdU = dq –  P external dV; since dq = 0 → dU = –  PdV  ∫     = ∆ =  ∫     = (  )  ………….  (1)∫     = ∆ = ∫   ,     ………….  (2)C  P,m  –  C V,m = R → C V,m = C  P,m  –  R

    C V,m = [(28.58 + 1.76 x 10-2T ) –  8.3145] = (20.2655 + 1.76 x 10-2 T ) J K -1 mol-1

    Ideal gas, PV = nRT

    Initial:  =    ⁄   ; Final:  =      From (1):  ∆ = (  ) =       ⁄ =         ⁄  ∆ = 18.31454   4⁄    300 10⁄ = 18.31454   4⁄    30 1⁄  ∆ = (8.3145 ) + 997.74  …….…..  (3)

     From (2):  ∆ = 1 ∫   20.2655 + 1.76 × 10−     ∆ = [20.2655(  ) + (1 2⁄ ) 1.76 × 10− (  )]∆ = [20.2655(  300) + 0.00898 (  300)] 

  • 8/20/2019 2013 Final Exam Answer

    2/9

    ∆ = [20.2655  6079.65 + 0.00898   808.2]  ..………..  (4) Eqn (3) = Eqn (4),

    [20.2655  6079.65 + 0.00898

      808.2] = (8.3145 ) + 997.74 

    0.00898  + 28.58  7885.59 = 0 Solving quadratic equation:

     = 28.58 ± √ 28.58  (4 × 0.00898 × 7885.59)2 × 0.00898  Taking the posit ive root: T f  =255.42 K = -17.58 °C

    Part (b):  

    (i) For ideal gas: ∫     = ∆ = ∫   ,    ∆ = [128.58(  ) + 10.00898 (  )] ∆ = 28.58255.42 300 + 0.00898 255.42  300 ΔH = -1496.6 J = -1.5 kJ

    (ii) For ideal gas: ∫     = ∆ = ∫   ,   ln  ∆ = 1 28.58 + 0.0176      18.3145 ln

      410 ∆ = 28.58ln  + 0.0176(  )  7.618 ∆ = 28.58ln 255.42300   + 0.0176255.42 300 + 7.618 ΔS  = 2.24 J K 

    -1 

    Question 2 (20 marks)

    CO2

    a b c d

    12 3 2 3

    The data below show the temperature variation of the equilibrium constant of the reaction

  • 8/20/2019 2013 Final Exam Answer

    3/9

    Ag2CO

    3(s)  5 Ag

    2O(s) + CO

    2(g) 

    a)  Draw a graph to demonstrate the relationship between the temperature and equilibrium

    constant. (Tips: use the integrated form of van’t Hoff equation; 

    (12 marks)

     b)  Based on the graph in part (a); determine the standard reaction enthalpy of the

    decomposition,  Δ H°rxn. (Tips: assume that  Δ H°rxn  is independent of temperature).

    (3 marks)

    c) 

    State either the above reaction is endothermic or exothermic? Why? (2 marks)

    d)  In general, list three factors that affect the position of chemical equilibrium? (3 marks)

    SOLUTION:

    a)

    T   [K] 350 400 450 500

     K  p   3.98E- 04 1.41E- 02 1.86E- 01 1.48

    1/T 0.002857 0.002500 0.002222 0.002000

    ln K  p   -7.8291 -4.2616 -1.6820 0.3920

     

      

      

    298.15K1

    T1

    RH298.15KlnKTlnK

    rxnPf P

    T  [K]  350  400  450  500 

     K  p 3.98 × 10−

      1.41 × 10−

      1.86 × 10−

      1.48

    dTT

    ΔH

    R

    1lnKd

    f f P

    P

    T

    298.15

    2

    rxn

    TK

    298.15K

    P    

  • 8/20/2019 2013 Final Exam Answer

    4/9

     

    Question 3 (20 marks)

    C03

    a b

    15 5

    The data in the following table have been obtained for the potential of the cell

    Pt(s) | H2(g, f = 1 atm) | HCl(aq, m) | AgCl(s) | Ag(s)

    as function of m at 25C. Given the cell reaction,

    2AgCl(s) + H2(g) 2Ag(s) + 2H+(aq) + 2Cl – (aq)

  • 8/20/2019 2013 Final Exam Answer

    5/9

     

    m (mol kg – 

    )  E (V)  m (mol kg –  )  E (V)  m (mol kg –  )  E (V) 

    0.00100 0.59715 0.0200 0.43024 0.500 0.27231

    0.00200 0.54425 0.0500 0.38588 1.000 0.23328

    0.00500 0.49846 0.100 0.35241 1.500 0.20719

    0.0100 0.46417 0.200 0.31874 2.000 0.18631

    a)  Determine E° using a graphical method. (15 marks)

     b) 

    Calculate γ± for HCl at m = 0.00100, 0.0100, and 0.100. (5 marks)

    SOLUTION:

    Question 4 (20 marks)

    m/m° (m/m°)1/2 E E+(2RT/F)ln(m/m°)

    0.001 0.031623 0.579150 0.224212

    0.002 0.044721 0.544250 0.224909

    0.005 0.070711 0.498460 0.226203

    0.010 0.100000 0.464170 0.227531

    0.020 0.141421 0.430240 0.229218

    0.050 0.223607 0.385880 0.231943

    0.100 0.316228 0.352410 0.234090

    m/m   ln   0.001 -0.010654 0.989

    0.010 -0.075511 0.927

    0.100 -0.203036 0.816

    a) Cell reaction: 2AgCl(s) + H2(g) 2Ag(s) + H+ (aq) + 2Cl – (aq)

     

      

     

    lnγF

    2RTE

    m

    mln

    F

    2RTEE

    mγaaa

    aalnF

    RTEaaln

    2F

    RTEE

    o

    222

    ClH

    ClH

    2

    ClH

    Low concentration limit  use the Debye-Hückel result

    oo

    10m

    m1.172614ln

    m

    m0.50926loglnγ  

    For dilute solutions

    oo   m

    mln1.172614

    F

    2RTE

    m

    mln

    F

    2RTE  

     

      

       

    Plot, E+(2RT/F) ln(m/mo) (y-axis) vs (m/mo) (x-axis), intercept E

    Use data up to m = 0.1    Debye-Hückel model is no valid for more concentrated solutions

    b) Given E we can now find  from

    y = 0.035x + 0.2237

    0.2200

    0.2240

    0.2280

    0.2320

    0.2360

    0.0000 0.1000 0.2000 0.3000 0.4000

         E    +     (     2     R     T     /     F     )     l    n     (    m

         /    m                 )

    (m/m)^1/2

     

      

     

    om

    mlnEE

    RT

    Flnγ  

    From graph, E = 0.2237

    E = 0.2237

  • 8/20/2019 2013 Final Exam Answer

    6/9

     

    C04

    a b c

    10 5 5

    Consider the schematic reaction,

     B A  k         

    a)  If the reaction is 3.5-th order with respect to [A], solve the derivative of integrated rate

    law expression for this reaction? (10 marks)

     b) 

    Explain what k  is, and how to determine its value from the above reaction? (5 marks)

    c)  Derive and evaluate the half-life expression for this reaction. (5 marks)

    SOLUTION:

  • 8/20/2019 2013 Final Exam Answer

    7/9

     

    Question 5 (20 marks)

    C05

    a b c

    4 3 13

    a.  What is the difference between a homogeneous and a heterogeneous catalyst? (4 marks)

     b. 

    What are the inherent assumptions in the Langmuir model of surface adsorption?

    (3 marks)c.  The adsorption of nitrogen on mica measured at different pressures is as follows

    Vads (cm3g

    -1) P (Torr)

    0.494 2.110-3 

    0.782 4.610-3 

    1.16 1.310-3 

    Langmuir equation can be written as

    1

    Vads=

    1

    KVm1P

    + 1Vm

     

  • 8/20/2019 2013 Final Exam Answer

    8/9

     

    where Vm is the maximum adsorption and K is equilibrium constant.

    Using Langmuir isotherm, determine the

    i.  Langmuir parameters (7 marks)

    ii. 

    Fractional coverage,  at each pressure. (6 marks)

    Fractional coverage,  is defined as ratio of adsorbed volume to the volume of

    maximum absorption

    SOLUTION:

    a.  For a homogeneous catalysis both the catalyst and the substrate exist in the same phase.

    1.5 marks

    Heterogeneous catalysis occurs when the catalyst and the substrate molecules exist in

    different phases. 1.5 marks

     b. 

    Langmuir assumptions:

    1.  Adsorption finishes once one monolayer of coverage results.

    2. 

    The surface is uniform and all adsorption sites are equivalent.3.  The occupancy of a site will not affect the adsorption or desorption processes in

    adjacent sites.

    c. 

    i.  Plot 1/Vads versus 1/P as follows: 4marks

    Vads (cm g- ) 1/Vads  P (Torr) 1/P

    0.494 2.024 2.110-3  476.19

    0.782 1.2794.6

    10

    -3

     217.39

    1.16 0.862 1.310-2  76.92

  • 8/20/2019 2013 Final Exam Answer

    9/9

     

    Best fit to the data by a straight line yields:

    1

    Vads=

    0.0029 

    1

    P

    +

     0.642 

    The maximum adsorption volume is,Vm=   1intercept of y-axis Vm=   10.642 

    Vm=1.56 cm3g-1  2marks

    The equilibrium constant, K =   1   =   10.00291.56 K=2.21 torr -1 2marks

    ii.  =Vads/Vm 

    Vads (cm g- )   P (Torr)

    0.494 0.317 2.110-3 

    0.782 0.501 4.610-3 

    1.16 0.744 1.310-3