2013 04 08 AC Interference Corrosion Mitigation

44
4/9/2013 1 Induced AC Interference, Corrosion & Mitigation Prepared for NACE / Pipeliners Joint Meeting Atlanta, GA April 8, 2013 Bryan Evans Vice President Corrosion & Integrity Solutions Grayson, GA 7709850505 bevans@cisolutionsllc.com 4/9/2013 1 About the Speaker Bryan Evans, E.I.T. B.S. Civil Engineering Technology Southern Polytechnic State University, Marietta, GA, 1993 NACE Cathodic Protection Specialist – No. 9754 NACE Coating Inspector Level 1 – No. 21458 15 years of experience in corrosion, cathodic protection, pipeline integrity and AC mitigation as a consultant & installation contractor. Experience in both field testing, design and construction. Former Chairman of the NACE Atlanta Section Currently, a coowner/operator of a woman owned, small business providing consulting/contracting in corrosion and cathodic protection services based in Grayson, GA. 4/9/2013 2

description

INTERFERENCES

Transcript of 2013 04 08 AC Interference Corrosion Mitigation

Page 1: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

1

Induced AC Interference, Corrosion & Mitigation

Prepared for NACE / Pipeliners Joint MeetingAtlanta, GAApril 8, 2013

Bryan Evans Vice PresidentCorrosion & Integrity SolutionsGrayson, GA770‐985‐0505bevans@ci‐solutionsllc.com

4/9/2013 1

About the Speaker

Bryan Evans, E.I.T.

B.S. Civil Engineering Technology

Southern Polytechnic  State University, Marietta, GA, 1993

NACE Cathodic Protection Specialist – No. 9754

NACE Coating Inspector Level 1 – No. 21458

15 years of experience in corrosion, cathodic protection, pipelineintegrity and AC mitigation as a consultant & installation contractor.Experience in both field testing, design and construction.

Former Chairman of the NACE Atlanta Section

Currently, a co‐owner/operator of a woman owned, small businessproviding consulting/contracting in corrosion and cathodic protectionservices based in Grayson, GA.

4/9/2013 2

Page 2: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

2

WHAT IS INTERFERENCE?

4/9/2013 3

As understood in the pipeline industry:

“Any detectable electrical disturbance on a structure caused by a stray current”

To further clarify:“Stray current is defined as unintended 

electrical path”

4/9/2013 4

Page 3: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

3

Possible Sources  of Interference

AC and DC Transit Systems

Welding Operations

Cathodic Protection Systems 

High‐voltage DC transmission systems

High‐voltage AC transmission systems

Low‐frequency communication systems

Telluric (Geomagnetically induced) currents

4/9/2013 5

Types of Interference

DC Interference ‐most commonly thought of within the pipeline industry and potentially most damaging

AC Interference – becoming more common due to HVPL joint‐use corridors

Telluric Interference – least common but problematic due to dynamic changes

4/9/2013 6

Page 4: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

4

DC Interference

Stray current interference occurs when DC currenttravels along a non‐intended path.

Where DC stray current is received by a structure, thearea becomes cathodic and generally, no corrosionoccurs

Where DC stray current exits the structure to return toits source, corrosion occurs and depending onmagnitude of stray current, can lead to highlyaccelerated corrosion failures.

4/9/2013 7

DC Interference

Using Faraday’s Law, weight loss is directly proportional to current discharge and time … 

Steel is consumed at ~ 21 lbs/amp‐year 

Example: A 1‐inch diameter cone shaped pit in 0.500” thick steel 

weighs 0.04 pounds.

One ampere of DC current discharging from a 1‐inch diameter coating holiday would cause a through wall, cone shaped pit to occur in 0.0019 years or 16 hours.

DC stray current corrosion can be a serious problem!!

4/9/2013 8

Page 5: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

5

AC Interference

A pipeline can experience AC interference as aresult of being in the proximity of any AC powerline. However, the vast majority of interferenceproblems are created by three‐phase (3φ) powertransmission systems because these involve bothhigh currents (during steady‐state and faultconditions) and high voltages. Moreover, thesesystem are more likely to run parallel topipelines for long distances.

A 3φ power transmission system consists ofthree energized conductors; Each conductor ~same voltage to ground, and each carries ~same current.

4/9/2013 9

Why is AC Interference a Problem?

AC Interference introduces a series of issues into theoperation of pipeline system:

Potential of Personnel Safety Issues

Potential for AC Corrosion

Potential for Pipeline and Coating Damage

4/9/2013 10

Page 6: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

6

Telluric Interference

Telluric currents are currents that are geomagnetically induced on the earth and onmetallic structures, such as power lines and pipe lines, as a result of the interaction of solarparticles on the earth’s magnetic field.

The solar plasma arises from two solar phenomena: sun spot activity and corona massejections (CME), which are commonly referred to as solar flares. The geomagnetic stormsthat result from the interaction of the solar plasma with the earth’s magnetic field causecurrents to be induced in the earth and metallic structures on the earth.

Note: Solar activity typically runs ~ 11 year cycles of activity. The next solar maximum ispredicted to peak in May 2013.

4/9/2013 11

Severity of Corrosion

4/9/2013 12

The severity of corrosion depends on the magnitude of the stray current and time as related by Faraday’s Law:

Wtotal = (M/nF) * t * Icorrosion

Where: Wtotal = weight loss (grams) at anode or weight gain at cathode

M = Atomic weight (grams) of the material corroding or being produced

n = number of charge transfers through the oxidation or reduction reactions

F = Faraday’s constant (96,500 coulombs per equivalent weight)

t = time the corrosion cell operated (seconds)

Icorrosion =  corrosion current in (Amps)

Page 7: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

7

Alternating Current – Power Grid System

A system of high tension cables by which electrical power is distributed throughout a region

Power travels from the power plant to your house through a system called the power distribution grid.

4/9/2013 13

Basic Corrosion Mechanism

Ste

el

Co

pp

er

Water

e-

e-

e-

e-

e- e-

e-

Anode (corrodes)

Electrolyte

(water, soil, mud, etc.)Cathode (protected)

Metallic Path

e-

e-

e-

Corrosion Deposits

Corrosion Current

(Conventional Current Flow)

In typical soils, at Anode:

Iron goes into solution and combines with ions

in the electrolyte to form corrosion Deposits

In typical soils, at Cathode:

Electrons consumed by 

water/oxygen – protective film 

forms

4/9/2013 14

Page 8: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

8

AC Pipe‐to‐Soil Potential Measurement

Copper‐Copper Sulfate 

Reference Electrode

High Impedance Voltmeter 

(Miller LC‐4 Pictured)

Area of Pipe 

detected by 

electrode

Negative

+_

V AC11.32

Polarization film

Pipeline

4/9/2013 15

Soil Resistivity Testing

Typically, completed via ASTM G57, “Wenner 4‐Pin Method”.

Field Resistivity Measurements

Single Pin Resistivity Measurements

Soil Box Laboratory Resistivity Measurements

4/9/2013 16

Page 9: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

9

4/9/2013 17

Soil Resistivity Testing

4/9/2013 18

Dataloggers

Page 10: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

10

Close Interval Survey (CIS)

4/9/2013 19

Close Interval Survey (CIS)

4/9/2013 20

Page 11: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

11

Direct Current Voltage Gradient (DCVG)

4/9/2013 21

AC  STRAY  CURRENT  INTERFERENCE

4/9/2013 22

Page 12: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

12

Pipelines in Congested Power ROW

4/9/2013 23

AC Interference The magnetic field generated by the overhead power lines induces an AC voltage onto the pipeline (which creates AC currents).  The magnitude of such currents depend on many factors such as coating condition, soil composition, power line voltage, separation distance, etc.

4/9/2013 24

Page 13: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

13

Shared Right of Ways

New (clear) Right‐of‐Ways are difficult to obtain for new pipeline applications

More attractive option is to share an existing right‐of‐way with other pipelines or with existing right‐of‐way with an overhead electric power transmission system

Due to the limited amount of land, and the cost associated with acquiring ROW shared right‐of‐ways will be more and more common in the coming years.

4/9/2013 25

AC Interference The electromagnetic field created by AC power changes 60 times per second per 

phase.

Metallic structures subject to a  changing electromagnetic field will exhibit an induced voltage (hence induced AC current).

Phase to ground faults can expose an underground structure to very high AC currents

4/9/2013 26

Page 14: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

14

Code – CFR 192

Where AC Interference effects falls within the Code:

§192.473 External Corrosion Control: Interference Currents.

(a) Each operator whose pipeline system is subjected to straycurrents shall have in effect a continuing program tominimize the detrimental effects of such currents.

4/9/2013 27

Code – CFR 192

§192.328 Additional construction requirements for steel pipe using alternative maximum allowable operating pressure.   Special Permit Lines 80% SMYS

(e) Interference currents.

(1) For a new pipeline segment, the construction must address the impacts of induced alternating current from parallel electric transmission lines and other known sources of potential interference with corrosion control.

4/9/2013 28

Page 15: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

15

Standards & Guidance Documents

NACE SP 0177 “Mitigation of Alternating Current andLightning Effects on Metallic Structures and Corrosion ControlSystems”.

ANSI / IEEE Standard 80 “Guide for Safety in AC SubstationGrounding”.

EPRI/AGA “Mutual Design Considerations for Overhead ACTransmission Lines and Gas Pipelines”.

Canadian Electrical Code C22.3 No. 6‐M1987 “Principles andPractices of Electrical Coordination between Pipelines andElectric Supply Lines”.

4/9/2013 29

Electrostatic (Capacitive) Coupling

Aboveground structures only

(such as an above ground test station, a car, or pipe stored near ditch)

Electromagnetic (Inductive) Coupling

Structure acts as secondary coil

Structure above or below ground

(most important component, causes AC corrosion of steel as well as 

personnel hazard potential)

Conductive (Resistive) Coupling

Buried structures only (during line faults)

AC Interference

4/9/2013 30

Page 16: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

16

AC Interference – Capacitive Coupling

Caused by accumulation of electro staticvoltage resulting in a capacitancecoupling (buildup) between the powerline and the pipeline.

Typically, occurs during construction when coated and ungrounded joints of pipe are near a HVAC power line

Common at above ground components; such as: test stations, risers, valves etc.

Unlikely on buried pipeline because of the low pipe‐to‐earth capacitance

4/9/2013 31

Caused by current flow in the power line which 

creates an electromagnetic field surrounding the paralleling pipe line.

Occurs during normal operating conditions of the power line.

Magnitude can reach 100’s of volts and presenting shock hazards

Pipe lines within 1000 lf of a HVAC power line should be investigated, in particular if they share a common ROW in parallel.

AC Interference – Inductive Coupling

4/9/2013 32

Page 17: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

17

AC Interference – Inductive Coupling

Voltage and currents areelectromagnetically inducedon to a pipeline in the samemanner that an inductivepipe locator induces an audiosignal onto a pipeline.

4/9/2013 33

Direct contact between a live component of the power line and an 

exposed metallic structure.  Occur during ground fault conditions or during lightning strikes.

Not common.

Very short duration (breakers will trip).  Typically, 0.1 seconds or    less on high voltage systems.

Potentials can exceed 15,000 volts.

Pipe line ruptures have occurred due to these fault conditions.  Can cause melting or cracking of the pipe wall.

Pipeline coating stress is a large concern.

Metal loss due to AC currents ~ 2.0 lbs/amp‐year (~10% of DC metal loss) ; but the magnitude is potentially much higher.  Especially, in ground fault conditions.

AC Interference – Resistive Coupling

4/9/2013 34

Page 18: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

18

AC Interference – Resistive Coupling

• On high voltage powerlines faults are most likely to occur as the result   of lightning, which can ionize the air in the vicinity of an insulator.

• High winds

• Failure of the powerline structures or insulators.

• Accidental contact between powerlines and other structures (cranes, construction equipment, etc).

CAUSES OF POWERLINE FAULT CONDITIONS

4/9/2013 35

Factors contributing to AC Interference:

Soil Resistivity.

Magnitude of steady state current in power line.

Geometry ‐ Separation distance and orientation between power line and pipeline.

Power line operating characteristics.

Magnitude and duration of fault currents.

Grounding characteristics.

Pipeline coating type.

AC Interference

4/9/2013 36

Page 19: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

19

High Voltage AC Power Lines can cause:

1. Personnel Shock Hazard Due To Induced AC Voltages.

2. Corrosion of the steel.

3. Coating damage.

AC Interference

4/9/2013 37

Personnel Safety

Industry standard for mitigation of induced AC voltage that aperson should be exposed to is 15 volts to a copper‐coppersulfate (CSE) reference electrode.

Courtesy NACE4/9/2013 38

Safety standards for personnel are based on:

1. Step Potentials

2. Touch Potentials  

Page 20: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

20

Safety considerations should be considered at  all times including :

1. Construction phase:

Temporary grounding connections (bonds). Ground Rods. Bare pipe casing. Grounding straps on vehicles/equipment.

2. Typical Operation & Maintenance:

AC Mitigation Measures. Employee PPE.

Personnel Safety

4/9/2013 39

Characteristics of AC corrosion:

1. Typically areas of low soil resistivity.

2. Typically located at coating defects.

3. Hard dome shaped cluster of soil and corrosion products

4. Typically results in rounded shaped pits.

5. Typically pit size larger than coating defect 

AC Corrosion 

4/9/2013 40

Page 21: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

21

Based on recent studies of AC corrosion related failures, the following guideline was developed: 

No AC induced corrosion at AC current densities <  1.86 A/ft2 ( 20 A/m2 ).

AC corrosion is unpredictable for AC current densities between 1.86 A/ft2

to  9.3 A/ft2 ( 20 to 100 A/m2 ).

AC corrosion typically occurs at AC current densities > 9.3 A/ft2 (~100 A/m2 ).

Highest corrosion rates occur at coating defects with surface areas between 0.16 in2 – 0.47 in2 (1 and 3 cm2 ) 

AC Corrosion 

4/9/2013 41

Recent studies related to AC have concluded the following:

1. AC does not have any significant effect on the polarization or depolarization ofcathodically protected steel.

2. It has been found that excessive amounts of CP can actually increase AC corrosionrates. This has been attributed to the lowering of the electrolyte resistivityimmediately adjacent to the site of the holiday, which coincides with the high pHresulting from increased levels of CP.

AC Corrosion 

4/9/2013 42

Page 22: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

22

Here is an actual scenario:

A number of anomalies were discovered after a regularly scheduled ILI run.  The key information is as follows:

24” Diameter x 0.375” wall Natural Gas Transmission Pipeline  Located in LA Pipe was installed in 1992, and has a FBE coating Soil resistivity ranged from 800 to 2000 ohm‐cm (4‐pin) and  as 

little as 400 ohm‐cm (via soil box) pH at and around the immediate vicinity of the defect 12.5 Pipeline had effective cathodic protection IR Free pipe to soil 

potentials of ‐1100 mV  vs. CSE Pipeline  was found to have 6.1 volts AC on the line at the defect 

location.  Given < 15 VAC, this is not a personnel hazard issue.

AC Corrosion : Case Study

4/9/2013 43

AC Corrosion : Case Study

4/9/2013 44

Power Line and Pipeline Alignment

Page 23: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

23

Anomaly #1

AC Corrosion:  Case Study

4/9/2013 45

Anomaly #1

AC Corrosion:  Case Study

4/9/2013 46

Page 24: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

24

Anomaly #1

AC Corrosion:  Case Study

4/9/2013 47

Anomaly #1 – ~ 20% Wall Loss

AC Corrosion:  Case Study

4/9/2013 48

Page 25: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

25

Anomaly #2

AC Corrosion : Case Study

4/9/2013 49

Anomaly #2 – 50% Wall Loss

AC Corrosion : Case Study

4/9/2013 50

Page 26: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

26

Anomaly #2

AC Corrosion : Case Study

4/9/2013 51

Fault Conditions ‐ Pipeline Damage

Fault currents from power lines can be collected and discharged from pipelines in the vicinity of the fault.

Coating damage can occur when the current picked up by the pipe lineexceeds the dielectric strength of the coating material. Coating stressvoltages:

2 kV for tape wraps and coal tar coatings

3 to 5 kV for fusion bonded epoxy and polyethylene

Arching resulting from the discharge of the fault current can causestructural damage to the pipeline in excess of >5000 volts

4/9/2013 52

Page 27: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

27

REVIEW – KEY POINTS:

Most important things to remember related to AC Voltages:

15 volt Limitation for Protection of Personnel

Voltages of 1000 volts ‐ 3000 volts Causes Coating Damage

>5000 volts Can Cause Pipe Structural Damage

AC does not have any significant effect on the polarization or depolarization of    cathodically protected steel

AC corrosion typically occurs at AC current densities greater than 100 A/m2 (~9.3 A/ft2).

Highest corrosion rates occur at coating defects with surface areas between 1 and 3 cm2 (0.16 in2 – 0.47 in2) 

4/9/2013 53

AC Interference Study – Data Necessary

Data required for AC Computer Modeling:

1. Soil conditions.  Resistivity via ASTM G‐57  (Wenner 4‐Pin)               at various spacings – to develop an “Apparent Resistivity”

Barnes Layer Analysis (Empirical Modeling)

Inverse Modeling Software 

Curve Matching 

2. Pipe line characteristics (materials of construction).

3. Pipe line and power line alignment.

4/9/2013 54

Page 28: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

28

AC Interference – Data Necessary

Data required for AC Computer Modeling:

4. Power system characteristics:

Operating Voltage.

Peak Loading

Day time vs. night time

Seasonal:  summer vs. winter

Weekday vs. weekend

Fault Currents.

Phase Transpositions – change in phase arrangement

Tower Configurations – height, horizontal distance, phase arrangement, shield wire arrangement

Horizontal separation from pipeline

Static (Shield) Wire.

Grounding Design.

Counterpoise Data.

Substation locations.

Note:  Must consider steady state, peak loading, times of lower resistivity, and times of fault conditions:

4/9/2013 55

AC Interference – Data Necessary

TYPICAL AC TRANSMISSION TOWER COMPONENTS

4/9/2013 56

Page 29: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

29

AC Interference – Data Necessary

Note:  Must consider steady state, peak loading, times of lower resistivity, and times of fault conditions of each HVPL in the corridor

4/9/2013 57

Methods for collecting Power Line Data:

Sub‐meter GPS – Data Loggers

4/9/2013 58

Page 30: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

30

Methods for collecting Power Line Data:

Survey Grade – Laser Range Finders

4/9/2013 59

Pipeline Electrical Characterisitics:

Longitudinal Electric Field (LEF):

The electromagnetic field produced by the powerline current generates  an electric field running longitudinally with the pipeline.  This is known as the LEF.   It is a complex number that has both magnitude and a phase angle.

– Voltages that are induced on the powerline are directly proportional to the magnitude of the LEF.

– LEF is directly proportional to the electromagnetic field, and directly proportional to the powerline phase currents.

– Because electromagnetic field strength varies with distance, so does LEF.

– LEF is also a function of how conductors are arranged on the HVAC tower.

– Separation distance between phase conductors is a key factor.  LEF increased linearly with increasing conductor separation.

4/9/2013 60

Pipeline‐Powerline Geometry for Calculation of LEF

Page 31: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

31

4/9/2013 61

Longitudinal Electric Field (LEF):

HVAC Tower Configurations:

In the “Single Horizontal Circuit” exampleshown, Phase C has the most effect onthe pipe line and Phase A the least. Thegreater the separation distance the lesseffect by that Phase. Figure to Right

Phase Arrangements for Double Vertical Circuit

Effect of Phase Conductor Separation

4/9/2013 62

Phase Transposition

Page 32: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

32

AC Interference – Computer Modeling

•Typical AC Conditions Modeled:– Steady State Induced AC Levels– Pipe Potentials Under Phase‐to‐Ground Fault– Potentials to Remote Earth– Step Potentials– Touch Potentials– Identify high risk areas (phase transpositions, power line crossings, 

areas of convergence/divergence, etc.)

• 15 volt Limitation for Protection of Personnel

• 1000 volts ‐ 3000 volts Causes Coating Damage

• >5000 volts Can Cause Pipe Structural Damage

4/9/2013 63

AC Interference – Computer Modeling

Several organizations and companies have developed software to model complex Right‐of‐Way conditions related to Induced AC voltages.  This is the most efficient means to effectively evaluate “What If Scenarios” during the design phase.  The modeling involves very complex mathematical formulae to analyze the various scenarios.  

The  range from affordable to very expensive (~ $50,000/license), and all have Pro’s and Con’s.  Some industry available models are as follows:

• Pipeline Research Council International (PRCI)

• Safe Engineering Services & Technologies

•CDEGS

•Safe ROW

• ELSYCA 

• OTHERS

4/9/2013 64

RULE OF THUMB COSTS FOR FIELD DATA COLLECTION, MODELING AND DESIGN FEES FOR AC  MITIGATION

RANGE FROM $1,500 TO $3,500 /mile on up

For computer modeling only, $1,000 to $1,500 on up depending on complexity of the HVPL corridor.

Page 33: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

33

Separate structure and AC line.

Use dead front test stations (to eliminate shock hazard).

Install polarization cells to ground (grounding).

Install semiconductor devices to ground (grounding).

Use bare copper cables or zinc ribbon as grounds with DC decoupling devices (capacitors, polarization cells, ISPs).

Install equipotential ground mats at valves, test stations (for shock hazard) and casing vents.

Use no casing vents or non metallic.

AC Interference – Mitigation Measures

4/9/2013 65

Insulated Test Posts

COTT Dead Front Test Station (Personnel Protection)

4/9/2013 66

Page 34: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

34

COTT Dead Front Coupon Test Station (Pipeline Simulation – Corrosion Rates)

4/9/2013 67

Pipeline Decoupling:

DEALING WITH CONFLICTING ELECTRICAL REQUIREMENTS:

– Structures must be cathodically protected (CP)

– CP systems require DC decoupling from ground

– All electrical equipment must be AC grounded

– The conflict:   DC Decoupling + AC Grounding

4/9/2013 68

Page 35: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

35

Pipeline Decoupling:

Reasons to DC Decouple From AC Mitigation and Electrical System Ground

If not decoupled, then:

– CP system attempts to protect grounding system

– CP coverage area reduced

– CP current requirements increased

– CP voltage may not be adequate

4/9/2013 69

Potassium Hydroxide Solutionw/ mineral oil 

Cell Terminals

Fill Hole

Stainless Steel Plates

Polarization (Kirk) Cell – Grounding/Decoupling

Cell ModelRated Capacity for 0.5 seconds (amps)

Steady State Rating (amps)

No. of Plates (pairs)

Conductor sizes (mm2)

Total WT. lbs (kg)

K‐5A 5,000 30 5 #8‐2 AWG (10‐35) 6 (2.7)

K‐25 25,000 175 12#2 AWG‐250 MCM 

(35‐125)74 (33.5)

K‐50 50,000 350 25#1/0 AWG‐500 MCM 

(50‐250)90 (40.8)

DISADVANTAGES:

1. Potassium Hydroxide Solution – Hazardous Caustic

2. Disposal of hazardous materials

4/9/2013 70

Page 36: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

36

Semiconductor Decoupling Devices ‐Grounding

SSD – Solid State Decoupler

PCR – Polarization Cell Replacement

Courtesy of Dairyland4/9/2013 71

Polarization Cell Replacement (PCR)

60 Hz Fault Current @ 1 cycle: 6,500; 20,000; 35,000 A                 @ 3 cycles: 5,000; 15,000; 27,000 A

Lightning Surge Current @ 8 X 20 µseconds: 100,000 A

Steady State Current Rating: 45 or 80 amps AC

Solid State Decoupler (SSD)

60 Hz Fault Current @ 1 cycle: 2,100; 5,300; 6,500; 8,800 A   @ 3 cycles: 1,600; 4,500; 5,000; 6,800 A

Lightning Surge Current @ 4 X 10 µseconds: 100,000A ; 75,000 A

Steady State Current Rating: 45 amps AC

Examples of De‐Coupling Devices ‐ Rating

4/9/2013 72

Page 37: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

37

Solid State Decoupling Isolating Devices

PCR

OVP

Gradient Control Mat

4/9/2013 73

MATCOR – “The Mitigator”

4/9/2013 74

Page 38: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

38

PLATTLINE– Zinc Ribbon

4/9/2013 75

LORESCO – Earth Backfills

4/9/2013 76

Page 39: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

39

ERICO – Earth Grounding Materials

4/9/2013 77

Typical AC Mitigation Design Layout

4/9/2013 78

Page 40: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

40

Typical AC Mitigation Design Layout

4/9/2013 79

Zinc Ribbon Installation for AC Mitigation ‐ Grounding

4/9/2013 80

Page 41: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

41

Equipotential Ground Mat

Zinc Ground Mat Connected to PipeCoated Pipeline

Test Station

Used to Protect Personnel from Electric Shock (at test stations, valves, etc.)4/9/2013 81

Equipotential Ground Mat

4/9/2013 82

Page 42: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

42

Other AC Mitigation Design Layouts

Point Grounding “Deep Anode Grounding Well”

Faraday Cage

Grounded Systems (Non‐Decoupled)

Combination / Multi Application Systems

4/9/2013 83

Testing the Effectiveness of AC Mitigation:

AC pipe‐to‐soil potential (at test stations and above groundappurtenances) to test for shock hazard voltage

A CIS (both VDC and VAC) to test the effectiveness of the cathodicprotection system as well as the AC potentials on the line.

Note: For ON/OFF surveys, the use of decouplers is critical to collect OFF

(IR Free) potentials.

Calculation of IAC to determine risk of AC corrosion

Locate/identify additional localized mitigation measures, if needed.Note: Collect additional, soil resistivity measurements at remaining high VAClocations

4/9/2013 84

Page 43: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

43

Testing the Effectiveness of AC Mitigation:

AC Current Drains

Ground Resistance

4/9/2013 85

Testing the Effectiveness of AC Mitigation:

Coupon Test Stations

4/9/2013 86

Page 44: 2013 04 08 AC Interference Corrosion Mitigation

4/9/2013

44

Questions???

4/9/2013 87

Thank YouMy contact information for any other follow‐up questions or 

comments:

Bryan Evans 

Vice PresidentCorrosion & Integrity SolutionsGrayson, GA770‐985‐0505bevans@ci‐solutionsllc.com

4/9/2013 88