20111110_CHT_TL_教育訓練 Day5

download 20111110_CHT_TL_教育訓練 Day5

of 58

Transcript of 20111110_CHT_TL_教育訓練 Day5

  • 8/2/2019 20111110_CHT_TL_ Day5

    1/58

    2011 Juniper Networks, Inc. All rights reserved. | www.juniper.net

    Day 5

    MPLS Foundamentals

    Johnson Liu

    [email protected] Nov. 10, 2011

  • 8/2/2019 20111110_CHT_TL_ Day5

    2/58

    2011 Juniper Networks, Inc. All rights reserved. | www.juniper.net

    MPLS Fundamentals

  • 8/2/2019 20111110_CHT_TL_ Day5

    3/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 3

    IGP Metric-Based Forwarding

    IGP ForwardingTraffic is routed based on the IGPs best path selection

    Traffic that is destined for networks attached to R6 and R7

    uses the same path

    R1 R2

    R3

    R4

    R5

    R6

    1

    1

    1

    21

    1

    R7

    1

  • 8/2/2019 20111110_CHT_TL_ Day5

    4/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 4

    Downsides of IGP Metric-Based Forwarding

    Redirecting traffic from R1, destined for R7, totraverse R4 causes traffic destined to R6 to use R4

    also

    This redirecting of traffic causes some of your links to be

    underutilized, while others are overutilized

    R1 R2

    R3

    R4

    R5

    R6

    1

    1

    3

    21

    1

    R7

    1

  • 8/2/2019 20111110_CHT_TL_ Day5

    5/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 5

    Additional Drawbacks of IGP Metrics

    Adjusting the IGP metric might destabilize the networkMoves the problem to another section of the network

    Some of the links will be underutilized

    Some of the links will be congested and overutilized

    Lacks control All traffic flows over the IGP shortest path

  • 8/2/2019 20111110_CHT_TL_ Day5

    6/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 6

    Internet Growth Required Changes

    ATM switched networks also known as an OverlayNetwork

    Benefits of using ATM

    ATM switches offered performance and predictable behavior

    Virtual circuits (VCs) could be reengineered without physicalnetwork changes.

    Traffic statistics on a per-VC basis

    Downsides of ATM

    Maintain separate infrastructure

    ATM cell overhead (1 cell = 5 bytes

    Header + 48 bytes payload)

    Scalability issues

    Not well integrated

    ATM

    IP

  • 8/2/2019 20111110_CHT_TL_ Day5

    7/58 2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 7

    Additional Options for Connecting Sites

    Frame Relay networksBenefits of using Frame Relay

    Uses virtual circuits (VCs) to move traffic to its destination

    Uses Data Link Connection Identifier (DLCI) number to separate

    VCs

    Built in Congestion Control (DE, FECN, BECN)

    Downsides of Frame Relay

    Maintain separate infrastructure

    FR

    IP

  • 8/2/2019 20111110_CHT_TL_ Day5

    8/58 2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 8

    Traditional IP Routing

    Destination-based routing lookup is needed on every hop

  • 8/2/2019 20111110_CHT_TL_ Day5

    9/58 2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 9

    MPLS Example

    MPLS core routers swap labels and forward packets based on simple

    label lookups

    MPLS edge routers also perform a routing table lookup, and add or

    remove labels

  • 8/2/2019 20111110_CHT_TL_ Day5

    10/58 2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 10

    MPLS Benefits

    MPLS support multiple applications

    Fixed label lookup faster than IP routing

    MPLS support forwarding non-IP protocols

    MPLS VPN solve overlapping intranet IP problem

  • 8/2/2019 20111110_CHT_TL_ Day5

    11/58 2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 11

    Benefits of MPLS (1 of 2)

    Some benefits of MPLS include:Improved route lookup time by using labels to forward traffic

    Increased scalability

    Additional control over how traffic moves through the

    network usingtraffic engineering (TE)

    R1R2

    R3

    R4

    R5

    R6

    1

    1

    3

    21

    1

    R7

    1

    LSP A

    LSP B

  • 8/2/2019 20111110_CHT_TL_ Day5

    12/58 2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 12

    Benefits of MPLS (2 of 2)

    Service Providers can offer different technologies likeATM, Frame Relay, Ethernet, and IPsec over the same

    infrastructure

    R1

    R2

    R3

    R4

    R5

    R6

    ATM-LSP

    Site 1

    Site 2

    CoreInfrastructure

    ATM

    ATM

    Site 3Site 4

    Frame Relay LSP

    Site 5

    Site 6

  • 8/2/2019 20111110_CHT_TL_ Day5

    13/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 13

    Labeled Packets

    MPLS is often referred to as a "Layer 2.5" protocol.

  • 8/2/2019 20111110_CHT_TL_ Day5

    14/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 14

    MPLS Header information

    The MPLS packet headerMPLS header is prepended to packet with a pushoperation

    at ingress node

    Label is added immediately after Layer 2 encapsulation

    header

    Packet is restored at the end of the LSP with a pop

    operation

    Normally the label stack is popped at the penultimate()router

    32-Bit

    MPLS shim Header

    DataL2 Header MPLS Header

  • 8/2/2019 20111110_CHT_TL_ Day5

    15/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 15

    MPLS Shim Header Structure

    MPLS shim header consist of four fields

    Labelused to associate packet with an LSP (Label SwitchedPath)

    Experimental(EXP) bitscarry packet queuing priority (Class of

    Service, CoS)

    Bottom ofStacking bit

    Time to live (TTL)limits packet lifetime within LSP In most cases, the IP TTL is copied into the MPLS TTL

    TTLLabel (20 bits) CoS S

    Data

    32 bits

    L2 Header MPLS Header

  • 8/2/2019 20111110_CHT_TL_ Day5

    16/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 16

    MPLS Label Stack

    The PID(0x8847=MPLS unicast packets) in a layer 2 headerspecifies that the payload starts with a label followed by an IPheader

    The bottom-of-stack bit(S bit) indicates whether the label isthe last label in the stack

    The receiving router uses the top label only

  • 8/2/2019 20111110_CHT_TL_ Day5

    17/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 17

    MPLS Labels

    Key things to remember about labels:Labels can be assigned manually or by a signaling protocol

    in each LSR during path setup

    Label values will change at each segment in the path

    The LSR(Label Switch Router) will swap incoming label withnew unique outgoing label

    MPLS Labels only have local significance

  • 8/2/2019 20111110_CHT_TL_ Day5

    18/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 18

    Reserved Labels

    Label values 0 through 15 are currently reserved0 = IPv4Explicit NULL

    1 = Router Alert Label

    2 = IPv6 Explicit NULL

    3 = Implicit NULL (default)

    4 through 15 = for future use

  • 8/2/2019 20111110_CHT_TL_ Day5

    19/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 19

    user@R3> show route table mpls.0

    mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

    + = Active Route, - = Last Active, * = Both

    0 *[MPLS/0] 01:13:17, metric 1

    Receive

    1 *[MPLS/0] 01:13:17, metric 1

    Receive

    2 *[MPLS/0] 01:13:17, metric 1

    Receive

    1000050 *[MPLS/6] 01:13:16, metric 1

    > to 172.20.100.14 via ge-1/0/6.0, Swap 1000515

    Label Information Base (LIB)

    Label Information BaseThe LIB is stored in the mpls.0 table

    The mpls.0 table is automatically created, with label values for 0,

    1, and 2, when you configure the MPLS protocol

    This table is used by transit routers to make forwarding decisions

    The mpls.0 table maps the incoming labels with the outgoing

    label and next hop to forward the packets

    Incoming Label

    Outgoing Label

  • 8/2/2019 20111110_CHT_TL_ Day5

    20/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 20

    Label-Switching Routers

    Label-switching router (LSR) performs:- MPLS packet forwarding

    - LSP setup

  • 8/2/2019 20111110_CHT_TL_ Day5

    21/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 21

    Label-Switching Routers (LSR)

    The LSR performs:MPLS packet forwardingLSP setup

    All M Series Routers, T Series Routers, and MX Series

    Ethernet Services Routers support LSR capabilities

    Simply called routers in this material

    R1 R2

    R3

    R4

    R5

    R6

    R7

    LSRLSP A

  • 8/2/2019 20111110_CHT_TL_ Day5

    22/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 22

    Label-Switched Path (LSP)

    LSPUnidirectional path through network

    Generally within a single MPLS domain

    LSP

    R1 R2

    R3

    R4

    R5

    R6

    R7

    LSP A

  • 8/2/2019 20111110_CHT_TL_ Day5

    23/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 23

    1000050 COS TTLS

    MPLS Router Functions: Ingress

    Ingress router

    Packets enter LSP at ingress

    Also called a head-end router

    Upstream from other routers

    Performs label push operation

    Ingress

    R1 R2

    R3

    R4

    R5

    R6

    R7

    Layer 2

    LSP A

    Data FCS

    label push

  • 8/2/2019 20111110_CHT_TL_ Day5

    24/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 24

    1000515 COS TTLS

    MPLS Router Functions: Transit

    Transit routerThere can be zero or more transit routers

    Perform label swap operations

    Forward traffic to next hop in LSP

    Transit

    R1

    R3

    R4

    R5

    R6

    R7

    LSP A

    label swap

    Layer 2 Data FCS

    R2

  • 8/2/2019 20111110_CHT_TL_ Day5

    25/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 25

    MPLS Router Functions: Penultimate

    Penultimate router

    Second-to-last router

    Normally pops the label stack

    Unlabeled packets sent to egress

    Penultimate

    R1 R2

    R3

    R4

    R5

    R6

    R7

    LSP A

    Layer 2 Data FCS

    label pop

  • 8/2/2019 20111110_CHT_TL_ Day5

    26/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 26

    MPLS Router Functions: Egress

    Egress router

    Packets exit LSP at egress

    Also called tail-end router

    Downstream from other routers

    Forwards packets based on IP address Egress

    R1 R2

    R3

    R4

    R5

    R6

    R7

    LSP A

    Layer 2 FCSData

  • 8/2/2019 20111110_CHT_TL_ Day5

    27/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 27

    Label Stacking

    PE 2

    PE 1

    X

    P P

    Inner Tunnel(LDP-signaled LSP)

    Outer Tunnel(RSVP-signaled LSP)

    PPY

    1) Packet enters

    LDP tunnel with

    LDP label push

    4) Packet

    restored with LDP

    label pop

    2) Packet enters

    RSVP engineered

    core with RSVP label

    push

    3) Packet leaves

    outer tunnel with

    RSVP label pop

    5) Packet leavesMPLS domain

    Label stacking improves scalability- Similar to ATMs VP and VC hierarchy

    http://www.iconbazaar.com/symbols/symbols/home02.gifhttp://www.iconbazaar.com/symbols/symbols/home02.gifhttp://www.iconbazaar.com/symbols/symbols/home02.gifhttp://www.iconbazaar.com/symbols/symbols/home02.gifhttp://www.iconbazaar.com/symbols/symbols/home02.gifhttp://www.iconbazaar.com/symbols/symbols/home02.gif
  • 8/2/2019 20111110_CHT_TL_ Day5

    28/58

    2011 Juniper Networks, Inc. All rights reserved. | www.juniper.net

    MPLS SIGNALING(LDP vs RSVP)

  • 8/2/2019 20111110_CHT_TL_ Day5

    29/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 30

    Label Distribution Protocol(LDP)

  • 8/2/2019 20111110_CHT_TL_ Day5

    30/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 31

    LDP Signaling Overview

    LDP messages types

    Discovery: Locate potential LDP peers Session: Manage peer-to-peer TCP sessions

    Advertisement: Create, change, or delete label mappings

    Notification: Provide advisory information

    Upstream

    LDP peer

    Downstream

    LDP peer

    TCP Session Establishment

    Initialization Messages

    Label Request Messages

    Hello messages

    Label Mapping Messages

    Session

    Advertisement

    Discovery

  • 8/2/2019 20111110_CHT_TL_ Day5

    31/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 32

    Label Assignment

    LSR FEC: 10.0.0.1/32

    Label: 52

    FEC: 10.0.0.1/32

    Label: 29

    MPLS Table

    In Out

    (so-0/0/1, 17)

    Receive

    Outgoing

    Label

    FEC: 10.0.0.1/32

    Label: 17

    Advertise

    Incoming

    Label

    (fe-0/0/2, 35)

    LDP label mapping:

    Downstream peer assigns labels

    Benefits:

    Traffic engineering information is not piggybacked on routing protocols

    Limitations: LSPs follow the conventional IGP path

    Does not support explicit routing

    fe-0/0/2 so-0/0/1 so-0/0/1 so-0/0/3 so-0/0/3 at-0/2/0

    MPLS Table

    In Out

    (so-0/0/3, 52)(so-0/0/1, 17)

    MPLS Table

    In Out

    (at-0/2/0, 29)(so-0/0/3, 52)

    FEC: 10.0.0.1/32

    Label: 35

  • 8/2/2019 20111110_CHT_TL_ Day5

    32/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 33

    Hello-Based Neighbor Discovery

    Neighbor discovery is asymmetric process

    Respond only if LDP session is desired

    Active node has the higher IP address

    Transport address takes precedence over source address

    Basic Discovery

    224.0.0.2, UDP port 646Router A Router B

    Extended Discovery

    Specific Address, UDP port 646

  • 8/2/2019 20111110_CHT_TL_ Day5

    33/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 34

    LDP Session Establishment

    Active Node initiates TCP session

    LDP Session initiated after TCP session established

    Router A

    (Passive)

    Router B

    (Active)TCP 3-way Handshake

    10.0.1.210.0.1.1

    Session Initialization

    (Version, Label modes, Timer Values)Session Initialization

    (Version, Label modes, Timer Values)

    Keepalives

  • 8/2/2019 20111110_CHT_TL_ Day5

    34/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 35

    LDP Session Maintenance

    LDP session requires at least 1 hello adjacency

    Hello interval: 5-second default

    Hold timer: 15-second default

    If hold timer expires, LSR deletes hello adjacency

    Can be asymmetric

    Transport address selection:

    Interface address

    Router ID

  • 8/2/2019 20111110_CHT_TL_ Day5

    35/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 36

    [edit]

    lab@r7# show protocols mpls

    label-switched-path test {

    to 10.0.6.1;

    ldp-tunneling;

    no-cspf;

    }

    interface all;

    LDP Tunneling Through RSVP-TE LSP

    Router A Router B

    RSVP

    LDP LDP

    R7 R8

  • 8/2/2019 20111110_CHT_TL_ Day5

    36/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 37

    MPLS Terminology

    Label Swapping Connection table maintains mappings

    Exact match lookup

    Input (port, label) determines:

    Label operation

    Output (port, label)

    Port 1

    Port 3

    Port 2

    Port 4

    Connection TableIn

    (port, label)Out

    (port, label)(1, 22)(1, 24)(1, 25)(2, 23)

    (2, 17)(3, 17)(4, 19)(3, 12)

    LabelOperation

    SwapSwapSwapSwap

    25P

    19P

  • 8/2/2019 20111110_CHT_TL_ Day5

    37/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 38

    MPLS Forwarding Example

    134.5.1.5

    200.3.2.7

    1 2

    200.3.2.1

    134.5.6.1

    Ingress Routing TableDestination Next Hop134.5/16

    200.3.2/24(2, 84)(3, 99)

    MPLS TableIn Out

    (1, 99) (2, 56)

    MPLS TableIn Out

    (3, 56) (5, 0)

    DestinationEgress Routing Table

    Next Hop134.5/16

    200.3.2/24134.5.6.1200.3.2.1

    200.3.2.7

    MPLS TableIn Out(2, 84) (6, 0)

    200.3.2.73 5

    23

    2 6

  • 8/2/2019 20111110_CHT_TL_ Day5

    38/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 39

    LDP over RSVP LSP LDP neighbor relationships between:

    A and B via the physical interface

    B and E via bi-directional RSVP LSPs

    E and F via the physical interface RTR-B performs a swap and push operation

    Swap label 583 for label 101 (advertised by E)

    Push label 106 (advertised by C)

    A B C D E FLDP LDPSVP

    PE1 P1 P2 P3 P4 PE2

    LDP over RSVP(T-LDP)

    IP583

    IP101106

    IP101150

    IP101

    IP

    *33500683

    101

    *Note: Label 3 = implicit null

  • 8/2/2019 20111110_CHT_TL_ Day5

    39/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 40

    Resource Reservation Protocol(RSVP)

  • 8/2/2019 20111110_CHT_TL_ Day5

    40/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 41

    Basic RSVP Path/Resv signaling

    UnidirectionalflowsIngress router initiates connectionSoft state

    Path and resources are maintained dynamicallyCan change during the life of the RSVP sessionPath message (containing label-request object) sent downstreamResv message (containing label object) sent upstream

    PATH PATH PATH PATH PATH

    Label requestobject

    Label requestobject

    Label requestobject

    Label requestobject

    Label requestobject

    R2 R1R3R4 R5 R6RESV RESV RESV RESV RESV

    1004

    Labelobject

    5341

    Labelobject

    4711

    Labelobject

    2477

    Labelobject

    0

    Labelobject

  • 8/2/2019 20111110_CHT_TL_ Day5

    41/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 42

    RSVP Signaling Example: Path

    Miami

    Seattle

    San

    Francisco

    (Ingress)

    New York(Egress)

    RSVP sets up path from San Francisco to New York

  • 8/2/2019 20111110_CHT_TL_ Day5

    42/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 43

    RSVP Signaling Example: Reservation

    San

    Francisco

    (Ingress)

    New York

    (Egress)

    Miami

    Seattle

    3

    LSP Established!

    The RESV message visits each router on the path in reverseorder labels assigned hop to hop in the upstream direction

  • 8/2/2019 20111110_CHT_TL_ Day5

    43/58

    2011 Juniper Networks, Inc. All rights reserved. | www.juniper.net

    Traffic Engineering(TE)

  • 8/2/2019 20111110_CHT_TL_ Day5

    44/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 45

    What is traffic engineering?

    A major goal of Internet Traffic Engineering is to facilitateefficient and reliable network operations while

    simultaneously optimizing network resource utilization

    and performance

    RFC 2702, Requirements for Traffic Engineering over MPLS

  • 8/2/2019 20111110_CHT_TL_ Day5

    45/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 46

    IGP Metric-Based Forwarding

    1 1

    1 2

    A B

    C

    Traffic sent to A or B follows path with lowest metrics

  • 8/2/2019 20111110_CHT_TL_ Day5

    46/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 47

    Drawbacks of IGP Metric Forwarding

    1 4

    1 2

    A B

    C

    Redirecting traffic flow to A via C causes traffic for B to move

    also!

    - Some links become underutilized or overutilized

  • 8/2/2019 20111110_CHT_TL_ Day5

    47/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 48

    Additional Drawbacks of IGP Metrics

    Adjusting an IGP metric might destabilize the network- Moves problem around

    Some links underutilized

    Some links overutilized

    - Lacks control

    All traffic flows via the IGP shortest path

  • 8/2/2019 20111110_CHT_TL_ Day5

    48/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 49

    Constraint-Based Path Computation

    Constraint-basedrouting is demand-driven. Resource-reservation-aware routing paradigm:

    - Based on criteria including, but not limited to, network topology- Calculated at the edge of a network:

    Modified Dijkstras algorithm at tunnel headend (CSPF [Constraint-based SPF]).

    Output is a sequence of IP interface addresses (next-hop routers)between tunnel endpoints.

    Constraint-based routing takes into account:- Using the least-cost path computed by OSPF or IS-IS- Policy constraints associated with the tunnel and physical links- Physical resource availability- Network topology state

  • 8/2/2019 20111110_CHT_TL_ Day5

    49/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 50

    IGP-Based Traffic Engineering

    San

    Francisco

    New York

    192.168.1/24

    134.112/16

    Standard IGP routing IP prefixes are bound to a physical next hop

    - Typically based on IGP view of shortest path

    30M

    50M

    30M

    30M

    50M30M

    30M

    30M

    30M

    IGP Shortest Path

  • 8/2/2019 20111110_CHT_TL_ Day5

    50/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 51

    MPLS-Based Traffic Engineering

    San

    Francisco

    IGP Shortest Path

    RSVP Traffic Engineered Path

    (Need 20M)

    New York

    Engineer unidirectional paths through your networkwithout using the IGPs shortest path calculation

    30M(5M available)

    50M

    (10M available)

    30M

    (20M available)30M

    (20M available)

    30M

    (25M available)

  • 8/2/2019 20111110_CHT_TL_ Day5

    51/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 55

    Fast Reroute schemes supported in JUNOS

    1. One-to-one backupSeparate backup LSP (called Detour LSP) for each LSP thatrequires protection

    2. Facility backupBypass Tunnel created to protect a given facility (a link or anode). Multiple LSPs can share the same bypass tunnel.Two variants:

    Link protection Node protection

    The schemes are described in RFC 4090 Fast Reroute Extensions to RSVP-TE for LSPTunnels http://www.ietf.org/rfc/rfc4090.txt

    http://www.ietf.org/rfc/rfc4090.txthttp://www.ietf.org/rfc/rfc4090.txt
  • 8/2/2019 20111110_CHT_TL_ Day5

    52/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 56

    Comparison of FRR schemes

    R11

    R13

    R1 R2

    LSP X

    R3 R4 R5 R6

    R7

    R8 R9

    LSP Y

    R10

    LSP Z

    R14

  • 8/2/2019 20111110_CHT_TL_ Day5

    53/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 57

    Facility protection, Link protectionvariant

    R1 R2

    LSP X

    R3 R4 R5 R6

    R7

    R8 R9

    LSP Y

    Shared bypass

    tunnel

    R10

    LSP Z

    R11

    R13

    R14

    R1 computes and signals a single bypass tunnel to the next-hop node, R2, that avoids the

    R1-R2 link. The bypass tunnel can be shared between all LSPs using R1->R2 link, if

    desired. Merge point is R2.

  • 8/2/2019 20111110_CHT_TL_ Day5

    54/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 58

    Facility protection, Node protectionvariant

    R1 R2

    LSP X

    R3 R4 R5 R6

    R7

    R8 R9

    LSP Y

    Shared bypass

    tunnel

    R10

    LSP Z

    R11

    R13

    R14

    R1 computes and signals bypass tunnel(s) to the next-next-hop node(s) which avoids R1-R2

    link and R2 itself. Same bypasstunnel can be shared between all LSPs that pass from R1

    to R2 and have the same next-next-hop. In the example, the 3 LSPs have the same next-

    next-hop so only one bypass was needed to protect R2.

  • 8/2/2019 20111110_CHT_TL_ Day5

    55/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 59

    FRR 1:1 protection

    R1 R2

    LSP X

    R3 R4 R5 R6

    R7

    R8 R9

    LSP Y

    Detour LSP for

    LSP Y

    Detour LSP for

    LSP X

    R10

    LSP Z

    R11

    R13

    R14

    Detour LSP for

    LSP Z

    Separate detour LSP for each protected LSP.

    1:1 protection always protects downstream link and downstream node.

    Case study 1 Facility protection:

  • 8/2/2019 20111110_CHT_TL_ Day5

    56/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 60

    BR

    BR

    CR

    CR

    CR

    CR

    CR CR

    BR

    BRMPLS Core

    Link Protection

    When one backbone link disconnect, it will compute and signal a single bypass tunnel tothe next-hop node. The bypass tunnel can be shared between all LSPs. One of the CR will

    need to carry all traffic of all LSP when failure occurs.

    BR: Border Router

    CR: Core Router

  • 8/2/2019 20111110_CHT_TL_ Day5

    57/58

    2011 Juniper Networks, Inc. All rights reserved. www.juniper.net | 61

    BR

    BR

    CR

    CR

    CR

    CR

    CR CR

    BR

    BRMPLS Core

    Case study 2 1:1 FRR

    Separate detour LSP for each protected LSP. 1:1 protection can help network admin to load sharebetween different path and node

    resource when detouring LSP generated.

    BR: Border Router

    CR: Core Router

  • 8/2/2019 20111110_CHT_TL_ Day5

    58/58