[2008][07-1] Engineering Mathematics 2ocw.snu.ac.kr/sites/default/files/NOTE/4694.pdf · 2018. 1....

50
2008_Vector Calculus(4) Naval Architecture & Ocean Engineering Engineering Mathematics 2 Prof. Kyu-Yeul Lee Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering [2008][07-1] October, 2008

Transcript of [2008][07-1] Engineering Mathematics 2ocw.snu.ac.kr/sites/default/files/NOTE/4694.pdf · 2018. 1....

  • 2008_Vector Calculus(4)

    Naval A

    rch

    itectu

    re &

    Ocean

    En

    gin

    eerin

    g

    Engineering Mathematics 2

    Prof. Kyu-Yeul Lee

    Department of Naval Architecture and Ocean Engineering,

    Seoul National University of College of Engineering

    [2008][07-1]

    October, 2008

  • 2008_Vector Calculus(4)

    Naval A

    rch

    itectu

    re &

    Ocean

    En

    gin

    eerin

    g

    Vector Calculus (4) : Green’s, Stokes’and

    Divergence Theorem

    Green’s, Theorem

    Stokes’ Theorem

    Divergence Theorem

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Green’s Theorem in the Plane

    Suppose that C is piecewise smooth simple closed curve bounding a region R.

    If are continuous on R, then

    Theorem 9.13

    xQyPQP /and,/,,

    RC

    dAy

    P

    x

    QQdyPdx

    Positive direction

    C

    Negative direction

    C

    R R

    3/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Green’s Theorem in the Plane

    Suppose that C is piecewise smooth simple closed curve bounding a region R.

    If are continuous on R, then

    Theorem 9.13

    xQyPQP /and,/,,

    RC

    dAy

    P

    x

    QQdyPdx

    Proof)

    R

    )(2 xgy

    )(1 xgy

    ba x

    y

    bxaxgyxgR ),()(: 21

    C

    b

    a

    b

    a

    b

    a

    b

    a

    xg

    xgR

    dxyxP

    dxxgxPdxxgxP

    dxxgxPxgxP

    dydxy

    PdA

    y

    P

    ),(

    ))(,())(,(

    ))](,())(,([

    21

    12

    )(

    )(

    2

    1

    4/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Green’s Theorem in the Plane

    Suppose that C is piecewise smooth simple closed curve bounding a region R.

    If are continuous on R, then

    Theorem 9.13

    xQyPQP /and,/,,

    RC

    dAy

    P

    x

    QQdyPdx

    R

    )(2 xgy

    )(1 xhx

    b

    c

    x

    y

    )(1 yhx d

    dycyhxyhR ),()(: 21

    C

    d

    c

    d

    c

    d

    c

    d

    c

    xh

    xhR

    dyyxQ

    dyyyhQdyyyhQ

    dyyyhQyyhQ

    dxdyy

    QdA

    y

    Q

    ),(

    )),(()),((

    )]),(()),(([

    21

    12

    )(

    )(

    2

    1

    5/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 1Using Green’s Theorem

    Evaluatewhere C consists of the boundary of the region in the first quadrant that is bounded by the graphs of y=x2 and y=x3.

    ,)2()( 22 C dyxydxyx

    420

    11)(

    )(

    )21(

    )21(

    )()2(

    )2()(

    1

    0

    2346

    1

    0

    2

    1

    0

    22

    22

    2

    3

    2

    3

    dxxxxx

    dxyy

    dxdyy

    dAy

    dAy

    yx

    x

    xy

    dyxydxyx

    x

    x

    x

    x

    R

    R

    C

    Solution)

    x

    y

    2xy 3xy

    )1,1(

    R

    6/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 2Using Green’s Theorem

    Evaluatewhere C is the circle (x-1)2+(y-5)2=4.

    ,)2()3(35

    Cy dyexdxyx

    Solution)

    x

    y

    4)5()1( 22 yx

    4isarea

    R

    4

    )32(

    )3()2(

    )2()3(

    5

    5

    3

    3

    R

    R

    R

    y

    C

    y

    dA

    dA

    dAy

    yx

    x

    ex

    dyexdxyx

    7/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 3Work Done by a Force

    Find the work done by the force

    acting along the simple closed curve Cshown in Figure below.

    jiF )34()sin16( 22 xexy y

    Solution)

    R

    R

    y

    C

    y

    C

    dAx

    dAy

    xy

    x

    xe

    dyxedxxy

    dW

    )166(

    )sin16()34(

    )34()sin16(

    22

    22

    rF

    4

    3

    4,10:

    rR

    4)8cos2(

    )8cos2(

    )16cos6(

    4/3

    4/

    4/3

    4/

    1

    0

    23

    4/3

    4/

    1

    0

    d

    drr

    drdrrW

    x

    y

    xyC :1

    1: 222 yxC

    xyC :3

    8/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 4Green’s Theorem Not Applicable

    Let C be the closed curve consisting of the four straight line segments C1, C2, C3, C4 shown in Figure. Green’s theorem is not applicable to the line integral

    Cdy

    yx

    xdx

    yx

    y2222

    x

    y

    2:1 yC

    R

    2:2 xC

    2:3 yC

    2:4 xC

    9/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 4Green’s Theorem Not Applicable

    Let C be the closed curve consisting of the four straight line segments C1, C2, C3, C4 shown in Figure. Green’s theorem is not applicable to the line integral

    Cdy

    yx

    xdx

    yx

    y2222

    x

    y

    2:1 yC

    R

    2:2 xC

    2:3 yC

    2:4 xC

    since P, Q, ∂P/∂y, and ∂Q/∂y are not continuous at the origin.

    10/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Region with Holes

    C

    CC

    RRR

    QdyPdx

    QdyPdxQdyPdx

    dAy

    P

    x

    QdA

    y

    P

    x

    QdA

    y

    P

    x

    Q

    21

    21

    1C 2C

    1C

    2C

    2R

    1R

    (C=C1∪C2 )

    11/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 5Region with a Hole in It

    Solution)

    Evaluatewhere C=C1∪C2 is the boundary of the shaded region R shown in Figure

    ,2222

    Cdy

    yx

    xdx

    yx

    y

    x

    y

    R

    1C

    1: 222 yxC

    2222),(,),(

    yx

    xyxQ

    yx

    yyxP

    222

    22

    222

    22

    )(,

    )( yx

    xy

    x

    Q

    yx

    xy

    y

    P

    1

    2

    2 2 2 2

    2 2 2 2

    2 2 2 2

    2 2 2 2

    2 2 2 2 2 20.

    ( ) ( )

    C

    C

    C

    R

    y xdx dy

    x y x y

    y xdx dy

    x y x y

    y xdx dy

    x y x y

    y x y xdA

    x y x y

    since P, Q, ∂P/∂y, and ∂Q/∂y are continuous on the region R bounded by C, it follows from the above discussion that

    12/50

  • 2008_Vector Calculus(4)

    Green’s Theorem

    Example 6Example 4 Revisited

    Evaluate the line integral in Example 4.

    Example 4.

    Cdy

    yx

    xdx

    yx

    y2222

    Solution)

    C CCCC 4321

    x

    y

    R

    C

    1: 22 yxC

    2222),(,),(

    yx

    xyxQ

    yx

    yyxP

    222

    22

    222

    22

    )(,

    )( yx

    xy

    x

    Q

    yx

    xy

    y

    P

    2 2 2 2

    2

    0

    22 2

    0

    2

    0

    sin ( sin ) cos (cos )

    (sin cos )

    2

    C

    y xdx dy

    x y x y

    t t t t dt

    t t dt

    dt

    2 2 2 2C

    y xdx dy

    x y x y

    13/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Vector Form of Green’s Theorem

    kFF

    y

    P

    x

    Q

    QP

    zyx

    kji

    0

    curl

    )1() curl( R

    CCdAdsd kFTFrF

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    Green’s Theorem in 3-Space

    ( Stokes’ theorem)

    Green’s theorem in 3-space relates a line integral around a

    closed curve C forming the boundary of a surface S with a

    surface integral over S.

    Equation (1) relate a line integral around a closed curve C forming the

    boundary of a plane region R to a double integral over R.

    R

    )(2 xgy

    )(1 xhx

    b

    c

    x

    y

    )(1 yhx d

    Green Theorem in 2-D space

    Green Theorem in 3-D space

    14/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ Theorem

    Let S be a piecewise smooth orientable surface bounded by a piecewise smooth

    simple closed curve C. Let be a

    vector filed for which P,Q, and R are continuous and have continuous first partial

    derivatives in a region of 3-space containing S. if C is traversed in the positive

    direction, then

    Where n is a unit normal to S in the direction of the orientation of S.

    Theorem 9.14

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    S

    CCdSdsd nFTFrF ) curl()(

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    15/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ Theorem

    Let S be a piecewise smooth orientable surface bounded by a piecewise smooth

    simple closed curve C. Let be a

    vector filed for which P,Q, and R are continuous and have continuous first partial

    derivatives in a region of 3-space containing S. if C is traversed in the positive

    direction, then

    Where n is a unit normal to S in the direction of the orientation of S.

    Theorem 9.14

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    S

    CCdSdsd nFTFrF ) curl()(

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    See also

    Streeter V.L., Fluid Mechanics,

    McGraw-Hill, 1948,

    p47, ‘24. Stokes’ Theorem’

    16/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ TheoremTheorem 9.14

    S

    CCdSdsd nFTFrF ) curl()(

    Partial Proof)

    kjiF

    y

    P

    x

    Q

    x

    R

    z

    P

    z

    Q

    y

    R curl

    22

    1

    y

    f

    x

    f

    y

    f

    x

    fkji

    n

    ),( yxfz S is oriented upward and is defined by a function

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    0),(),,( yxfzzyxgIf we write

    If S is defined by g(x,y,z)=0,

    gg

    ||||

    1n

    (R.H.S)

    17/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ TheoremTheorem 9.14

    S

    CCdSdsd nFTFrF ) curl()(

    kjiF

    y

    P

    x

    Q

    x

    R

    z

    P

    z

    Q

    y

    R curl

    22

    1

    y

    f

    x

    f

    y

    f

    x

    fkji

    n

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    RS

    dAy

    P

    x

    Q

    y

    f

    x

    R

    z

    P

    x

    f

    z

    Q

    y

    RdSnF) curl(

    Hence,

    18/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ TheoremTheorem 9.14

    S

    CCdSdsd nFTFrF ) curl()(

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    R

    C

    b

    a

    CC

    dAx

    fRP

    yy

    fRQ

    x

    dyy

    fRQdx

    x

    fRP

    dtdt

    y

    y

    f

    dt

    dx

    x

    fR

    dt

    dyQ

    dt

    dxP

    RdzQdyPdxd

    xy

    rF

    Chain rule

    Green’s theorem

    btatytxfztyytxx ))(),((),(),(

    btatyytxx )(),(

    :C

    :xyC (Projection of C onto the xy-plane)(L.H.S)

    19/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ TheoremTheorem 9.14

    S

    CCdSdsd nFTFrF ) curl()(

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    x

    f

    y

    f

    z

    R

    y

    f

    x

    R

    yx

    fR

    x

    f

    z

    Q

    x

    Q

    x

    f

    z

    R

    x

    R

    y

    f

    yx

    fR

    x

    f

    z

    Q

    x

    Q

    y

    fyxfyxRyxfyxQ

    xy

    fRQ

    x

    2

    2

    )),(,,()),(,,(

    Chain and

    Product Rules

    Similarly,

    y

    f

    x

    f

    z

    R

    x

    f

    y

    R

    xy

    fR

    y

    f

    z

    P

    y

    P

    x

    fRP

    y

    2

    20/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Stokes’ TheoremTheorem 9.14

    S

    CCdSdsd nFTFrF ) curl()(

    kjiF ),,(),,(),,(),,( zyxRzyxQzyxPzyx

    i

    j

    x

    y

    z

    k

    C

    R

    T

    n

    x

    f

    y

    f

    z

    R

    y

    f

    x

    R

    yx

    fR

    x

    f

    z

    Q

    x

    Q

    y

    fRQ

    x

    2

    ∴ (L.H.S)=(R.H.S)

    y

    f

    x

    f

    z

    R

    x

    f

    y

    R

    xy

    fR

    y

    f

    z

    P

    y

    P

    x

    fRP

    y

    2

    R

    RC

    dAy

    P

    x

    Q

    y

    f

    x

    R

    z

    P

    x

    f

    z

    Q

    y

    R

    dAx

    fRP

    yy

    fRQ

    xdrF

    21/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Example 1Verifying Stokes’ Theorem

    Let S be the part of the cylinder z=1-x2 for 0≤x≤1, -2≤y≤2.Verify Stokes’ theorem if F=xyi+yzj+xzk.

    Solution) 1) Surface IntegralkjiF xzyzxy

    kji

    kji

    F xzy

    xzyzxy

    zyx

    curl

    01),,( 2 xzzyxg

    14

    2

    2

    x

    x

    g

    g kin

    2)4(

    )2(

    )2(

    14

    2)curl(

    1

    0

    1

    0

    2

    2

    2

    1

    0

    2

    2

    2

    dxx

    dxxyxy

    dxdyxxy

    dAxxy

    dSx

    xxydS

    R

    SS

    nF

    22/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Example 1Verifying Stokes’ Theorem

    Let S be the part of the cylinderz=1-x2 for 0≤x≤1, -2≤y≤2.Verify Stokes’ theorem if F=xyi+yzj+xzk.

    Solution) 2) Line Integral

    C CCCC 43210,0,0,1:1 dzdxzxC

    00)0()0(1

    C dyyy

    xdxdzdyxzyC 2,0,1,2: 22

    15

    11)222(

    )2)(1(0)1(22

    0

    1

    42

    22

    2

    dxxxx

    xdxxxxxdxC

    0,0,1,0:3 dzdxzxC

    0002

    23

    ydyydyC

    xdxdzdyxzyC 2,0,1,2: 24

    15

    19)222(

    )2)(1(0)1(22

    1

    0

    42

    22

    4

    dxxxx

    dxxxxxxdxC

    215

    190

    15

    110

    C

    xzdzyzxydx

    C Cd Pdx Qdy Rdz F r

    23/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Example 2Using Stokes’ Theorem

    Evaluatewhere C is the trace of the cylinder x2+y2=1 in the plane y+z=2.Orient C counterclockwise as viewed from above. See the Figure below

    C ydzxdyzdx ,

    Solution)

    kjiF yxz

    kji

    kji

    F

    yxz

    zyxcurl

    02),,( zyzyxg

    kjn2

    1

    2

    1

    g

    g

    2222

    2

    1

    2

    1)(

    RS

    SC

    dAdS

    dSd kjkjirF

    24/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Physical Interpretation of Curl

    (curl )r

    r

    CS

    d dS F r F n

    For a small but fixed value of r,

    0 0

    0 0

    0 0

    (curl ( )) ( )

    (curl ( )) ( )

    (curl ( )) ( )

    r

    r

    r

    CS

    S

    r

    d P P dS

    P P dS

    P P A

    F r F n

    F n

    F n

    0 00

    1(curl ( )) ( ) lim

    rCrr

    P P dA

    F n F r

    0 0

    1(curl ( )) ( )

    rCr

    P P dA

    F n F r

    0P

    rC

    rS

    0( )Pn

    By Stokes’

    theorem,

    Cr is Small circle of

    radius r centered at P0

    Because radius of circle Cr is small, then we

    approximate curl F(P) ≈ curl F(P0),

    Roughly then, the curl of F is the circulation of F

    per unit area.

    25/50

  • 2008_Vector Calculus(4)

    Stokes’ Theorem

    Physical Interpretation of Curl

    (curl )r

    r

    CS

    d dS F r F n

    For a small but fixed value of r,

    0 0

    0 0

    0 0

    (curl ( )) ( )

    (curl ( )) ( )

    (curl ( )) ( )

    r

    r

    r

    CS

    S

    r

    d P P dS

    P P dS

    P P A

    F r F n

    F n

    F n

    0 00

    1(curl ( )) ( ) lim

    rCrr

    P P dA

    F n F r

    0 0

    1(curl ( )) ( )

    rCr

    P P dA

    F n F r

    0P

    rC

    rS

    0( )Pn

    By Stokes’

    theorem,

    Cr is Small circle of

    radius r centered at P0

    Because radius of circle Cr is small, then we

    approximate curl F(P) ≈ curl F(P0),

    Roughly then, the curl of F is the circulation of F

    per unit area.

    See also

    Streeter V.L., Fluid Mechanics,

    McGraw-Hill, 1948,

    p49, ‘25. Circulation’

    26/50

  • 2008_Vector Calculus(4)

    Divergence Theorem of Gauss

    (Transformation Between Triple and Surface Integrals)

    Let T be a closed bounded region in space whose boundary

    is a piecewise smooth orientable surface S.

    x

    z

    yR

    n

    n

    n2S

    1S

    3S

    Fig. Example of a special region

    ),,( zyxF

    T S

    dAdV nFFdiv

    : a vector function that is continuous

    and has continuous first partial

    derivatives in T

    (2)

    ],,,[ 321 FFFF ]cos,cos,[cos nUsing component,

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321 (2’)

    z

    F

    y

    F

    x

    F

    321divF

    Divergence Theorem*

    *Erwin Kreyszig, Advanced Engineering Mathematics 9th ,2006, Wiley,Ch10.7(p458~463)

    Ref. Divergence Theorem

    27/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    )(

    )coscoscos()(

    321

    321321

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    S

    ST

    (proof) we can start with (2*)

    This equation is true if and only if the integrals of each component

    on both sides are equal

    SST

    SST

    SST

    dxdyFdAFdxdydzz

    F

    dxdzFdAFdxdydzy

    F

    dydzFdAFdxdydzx

    F

    333

    222

    111

    cos

    cos

    cos

    (3)

    (4)

    (5)

    28/50

  • 2008_Vector Calculus(4)

    Divergence Theorem(proof continue)

    dAFdxdydzz

    F

    ST

    cos33

    (5)

    We first prove (5) for a special region T that is bounded by a piecewise smooth

    orientable surface S and has the property that any straight line parallel to

    any one of the coordinate axes and intersecting T has at most one segment

    (or a single point)

    It implies that T can be represented in the form

    ),(),( yxhzyxg (6)

    x

    z

    yR

    n

    n

    n2S

    1S

    3S

    ),(:

    ),(:

    2

    1

    yxgS

    yxhS

    29/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    (proof continue)

    x

    z

    yR

    n

    n

    n2S

    1S

    3S

    ),(:

    ),(:

    2

    1

    yxgS

    yxhS

    dAFdxdydzz

    F

    ST

    cos33

    (5)

    R R

    R

    yxh

    yxgT

    dxdyyxgyxFdxdyyxhyxF

    dxdydzz

    Fdxdydz

    z

    F

    )],(,,[)],(,,[ 33

    ),(

    ),(

    33

    RRS S

    dxdyyxgyxFdxdyyxhyxFdxdyFdAF )],(,,[)],(,,[cos 3333

    We can decide the sign of the integral because on S2, and

    on S10cos

    0cos

    Therefore, we prove (5). In the same manner, (3),(4) can be proven.

    30/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    T S

    dAdV nFFdiv(2)

    31/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    (Example 1) Evaluate S

    zdxdyxydzdxxdydzxI 223

    x y

    z

    a a

    b

    2 2 2

    2 2 2

    : (0 )

    0 ( )

    S x y a z b

    z and z b x y a

    T S

    dAdV nFFdiv(2)

    32/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    (Example 1) Evaluate S

    zdxdyxydzdxxdydzxI 223

    x y

    z

    a a

    b

    2 2 2

    2 2 2

    : (0 )

    0 ( )

    S x y a z b

    z and z b x y a

    zxFyxFxF 232

    2

    3

    1 ,, (sol)

    2222 53 div xxxx F

    T S

    dAdV nFFdiv(2)

    33/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    (Example 1) Evaluate S

    zdxdyxydzdxxdydzxI 223

    x y

    z

    a a

    b

    2 2 2

    2 2 2

    : (0 )

    0 ( )

    S x y a z b

    z and z b x y a

    zxFyxFxF 232

    2

    3

    1 ,, (sol)

    2222 53 div xxxx F

    T S

    dAdV nFFdiv(2)

    Changing to the polar coordinate,

    zzryrx ,sin,cos

    34/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    (Example 1) Evaluate S

    zdxdyxydzdxxdydzxI 223

    x y

    z

    a a

    b

    2 2 2

    2 2 2

    : (0 )

    0 ( )

    S x y a z b

    z and z b x y a

    zxFyxFxF 232

    2

    3

    1 ,, (sol)

    2222 53 div xxxx F

    T S

    dAdV nFFdiv(2)

    2

    2 2 2

    0 0 0

    2 42

    2 4

    0 0 0

    5 5 cos

    55 cos 5

    4 4 4

    b a

    z rT

    b b

    z z

    I x dxdydz r r dr d dz

    a ad dz dz a b

    Changing to the polar coordinate,

    zzryrx ,sin,cos

    35/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    2 2 2: 4S x y z

    36/50

  • 2008_Vector Calculus(4)

    (Example 2) Evaluate over the spheredAzxS

    nki )7(

    Divergence Theorem

    2 2 2: 4S x y z

    37/50

  • 2008_Vector Calculus(4)

    (Example 2) Evaluate over the spheredAzxS

    nki )7(

    (a) by Divergence Theorem

    6423

    466div 3

    TTS

    dVdVdA FnF

    617,0,7divdiv zxF

    Divergence Theorem

    2 2 2: 4S x y z

    38/50

  • 2008_Vector Calculus(4)

    (Example 2) Evaluate over the spheredAzxS

    nki )7(

    (a) by Divergence Theorem

    6423

    466div 3

    TTS

    dVdVdA FnF

    617,0,7divdiv zxF

    Divergence Theorem

    2 2 2: 4S x y z

    39/50

  • 2008_Vector Calculus(4)

    (Example 2) Evaluate over the spheredAzxS

    nki )7(

    vvvuv sin2,sincos2,coscos2r

    (a) by Divergence Theorem

    6423

    466div 3

    TTS

    dVdVdA FnF

    617,0,7divdiv zxF

    (b) directly

    dudvdA Nn

    on spherical coordinate,

    ,0,coscos2,sincos2 uvuvu r vuvuvv cos2,sinsin2,cossin2 r

    vvuvuvvu sincos4,sincos4,coscos4 22 rrN vuvzx sin2,0,coscos14,0,7 F

    vvuvvvvuvuv 2232 sincos8coscos56sincos4)sin2(coscos4coscos14 NF

    We shall use

    643/216)3/22(56sincos82cos56

    sincos8coscos56)7(

    2

    0

    23

    2

    0

    2

    0

    223

    dvvvv

    dvduvvuvdAzxS

    nki

    Divergence Theorem

    2 2 2: 4S x y z

    40/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    Example 1Verifying Divergence Theorem

    Solution)

    Let D be the region bounded by the hemisphere x2+y2+(z-1)2=9, 1≤z≤4, and the plane z=1. Verify the divergence theorem if F=xi+yj+(z-1)k

    1) Triple Integral

    2) Surface Integral

    kjiF yxz

    3div F

    542

    34

    2

    1333div

    3

    DDD

    dvdvdvF

    S1 : hemisphere

    S2 : z=1

    1:,:, 2121

    zShemisphereSSSS

    222 )1(),,( zyxzyxg

    kjikji

    n3

    1

    33)1(

    )1(

    222

    zyx

    zyx

    zyx

    g

    g

    33

    )1(

    33

    222

    zyx

    nF

    54)9(9

    9

    3)3()(

    2

    0

    3

    0

    2/12

    22

    1

    drdrr

    dAyx

    dSRS

    nF

    kn

    1 znF

    0)0()1()(

    222

    SSS

    dSdSzdSnF

    54)( S

    dSnF

    41/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    Example 2Using Divergence Theorem

    If F=xyi+y2zj+z3k, evaluate ∬S(F∙n)dS, where the unit cube defined by 0≤x≤1, 0≤y≤1, 0≤z≤1.

    232div zyzy F

    Solution)

    22

    1

    2

    1

    32

    1

    32

    )32(

    )32(

    )32(

    1

    0

    32

    1

    0

    2

    1

    0

    1

    0

    222

    1

    0

    1

    0

    2

    1

    0

    1

    0

    1

    0

    2

    2

    zzz

    dzzz

    dzyzzyy

    dzdyzyzy

    dzdydxzyzy

    dVzyzydSDS

    nF

    42/50

  • 2008_Vector Calculus(4)

    Naval A

    rch

    itectu

    re &

    Ocean

    En

    gin

    eerin

    g

    Reference slides

    Divergence Theorem

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    44/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    45/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    dx

    3F

    n

    x

    z①

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    46/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    dx

    3F

    n

    x

    z①

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    3 cosF

    47/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    dx

    3F

    n

    x

    z①

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    3 cosF

    48/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    dx

    3F

    n

    x

    z① dx

    3F

    n

    x

    z②

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    3 cosF

    49/50

  • 2008_Vector Calculus(4)

    Divergence Theorem

    S

    ST

    dxdyFdzdxFdydzF

    dAFFFdxdydzz

    F

    y

    F

    x

    F

    )(

    )coscoscos()(

    321

    321321

    cosdx dx

    dx

    3F

    n

    x

    z① dx

    3F

    n

    x

    z②

    3 3

    3

    cos cosF dA F dx dy

    F dxdy

    3 cosF

    50/50