2008 Edition

download 2008 Edition

of 186

Transcript of 2008 Edition

  • 8/19/2019 2008 Edition

    1/186

  • 8/19/2019 2008 Edition

    2/186

     

    FOREWARD

    In order to carry out standard shipbuildingimprove the quality of shipbuildingshorten the

     period of shipbuildingin year 2003Shanghai Waigaoqiao Shipbuilding Company Limited

    following called as SWSStandard Committee organized the complication of SWS Building

    Technological Usual Practice Manualfollowing called as Manualand revised its 2003

    edition in October 2004 

    Since the publication of the Manualit has benefited the communication with the ship’s

    owners and the classification societiesand it has also played an important role in normalizing

     production technologies and improving the shipbuilding quality of SWS 

    With the development of the shipyard shipbuilding technology is improved continuously

    Thereforein October 2007the SWS Standard Committee convened a meeting specific to

    revising the manual and made the decision of revising the ManualWith the coordination ofall the departments concerned the revision work was finished in April2008 

    On the basis of the previous technological standards, three (3) new technological standards

    including the Rudder Installation Technology Standard have been added in the Manual

    And nowtotally 26 enterprise standards are selected consisting of 4 items for hull part, 5 items

    for welding part, 3 items for hull outfitting , 5 items for machinery part, 3 items for painting part,

    and 6 items for electrical partFor using conveniently, the Manual is written in both Chinese

    and English 

    During revising the manual ,we got the huge support and coordination of all the branches

    in the design department and also got the company responsible leaders’ and design department

    leaders’ concern and helpWe express our thanks here 

    The Manual was planned and guided by Mr. Li Gaoxing in the design departmentMr.

    Dai Xiaohu, Mr. Shen Zhiping, Ms. Xu Yuzhen, Ms. Wu Xin in the Standard Team of the design

    department were in charge of compiling the Manual 

    When the Manual (2008 edition)   is issued, the previous Manual (2004 edition) will

     be invalid  

    The Standard Team of the design department is the permanent organization of the SWS

    Standard Committee, which is in charge of the issue, implementation, maintenance and

    amendment work of the ManualImproving ideas and suggestions from the Users of the

    Manual are valuable and welcomed And please contact the Standard Team of the designdepartment in timeThe extension telephone number is 8755The liaison man is Mr. Dai

    Xiaohu 

    Shanghai Waigaoqiao Shipbuilding Company Limited

    Design Departmant

    June2008

  • 8/19/2019 2008 Edition

    3/186

     

    I

    TABLE OF CONTENTS

      HULL

    1 HULL ASSEMBLY TECHNOLOGICAL RULES......................................................1

    Q/SWS42-034-2003 

    2 HULL STRENGTH STRUCTURE OPENING AND REINFORCEMENT ......................20

    Q/SWS52-014-2006 

    3 PROCEDURES FOR HULL TIGHTNESS TEST OF SEA-GOING STEEL SHIPS ........26

    Q/SWS62-001-2006 

    4 INCLINING TEST RULE...................................................................................................30

    Q/SWS62-002-2006 

    WELDING

    1 PROCEDURES FOR HULL STRUCTURE WELDING AND SELECTION OF

    GROOVE TYPES ...............................................................................................................51

    Q/SWS41-003-2007 

    2 PROCEDURES FOR WELDING OF CU/NI ALLOY PIPES ...........................................66

    Q/SWS41-006-2006 

    3 PROCEDURES FOR WELDING OF CARBON STEEL PIPE AND STAINLESS

    STEEL PIPES......................................................................................................................69

    Q/SWS41-008-2004 

    4 PROCEDURES FOR HULL WELDING ...........................................................................73

    Q/SWS41-009-2005 

    5 GENERAL PROCEDURES FOR TECHNOLOGY OF WELD REPAIR.........................80

    Q/SWS41-011-2005 

      HULL OUTFITTING ACCOMMODATION VENTILATION

    1 INSTALLATION PROCEDURE OF RUDDER SYSTEM................................................83

    Q/SWS43-025-2007 

    2 BORING PROCEDURE FOR RUDDER SYSTEM ..........................................................87

    Q/SWS44-004-2003 

    3 TIGHTNESS TEST PRACTICE FOR DOORS AND WINDOWS ...................................91

    Q/SWS63-005-2006 

      MACHINERY INSTALLATION 

    1 INSTALLATION PROCEDURE OF MARINE PIPING...................................................93Q/SWS44-001-2007 

  • 8/19/2019 2008 Edition

    4/186

     

    II

    2 INSTALLATION PROCEDURE OF MARINE AUXILIARY MACHINE......................99

    Q/SWS44-002-2004 

    3 STANDARD OF STRENGTH TEST AND TIGHTNESS TEST OF PIPELINE ..........102

    Q/SWS44-003-2007 

    4 MANUFACTURE PROCEDURE OF PIPING ACCESSORIES.....................................106

    Q/SWS44-009-2007 

    5 EARTHING PROCEDURE OF PIPING ..........................................................................114

    Q/SWS44-017-2007 

      PAINTING 

    1 GENERAL REGULATIONS FOR SHIP PAINTING ......................................................117Q/SWS45-007-2007 

    2 GENERAL REGULATIONS FOR SECONDARY SURFACE PREPARATION IN

    SHIPBUILDING ...............................................................................................................125

    Q/SWS45-008-2007 

    3 PROCEDURE FOR IN-DOCK PAINTING OF SHELL PLATES WITHOUT

    SHIFTING BLOCKS ........................................................................................................128

    Q/SWS45-009-2007 

    ELECTRIC INSTALLATION 

    1 TECHNOLOGICAL REQUIREMENTS FOR INSTALLATION OF ELECTRIC

    CABLES ON SHIPS .........................................................................................................130

    Q/SWS46-001-2007 

    2 INSTALLATION PROCEDURES OF MARINE ELECTRICAL EQUIPMENT............148

    Q/SWS46-002-2007 

    3 PROCEDURE FOR SAFETY EARTHING OF MARINE ELECTRICAL

    EQUIPMENT AND CABLES .........................................................................................166Q/SWS46-003-2007 

    4 INSTALLATION PROCEDURES OF MARINE NAVIGATION EQUIPMENT............171

    Q/SWS46-004-2007 

    5 INSTALLATION PROCEDURES OF MARINE RADIO EQUIPMENT.......................175

    Q/SWS46-005-2007 

    6 PROCEDURES FOR ANTENNA INSTALLATION .......................................................178

    Q/SWS46-013-2006 

  • 8/19/2019 2008 Edition

    5/186

    1

    SWS  HULL ASSEMBLY TECHNOLOGICAL RULES

    Reference Standard

    Q/SWS42-034-2003

    1 SCOPE

    The Rules prescribe preparation before construction, personal, technical requirement and technics flow for

    steel ship hull construction.The rules apply to steel work of hull construction for bulk carrier, oil tanker, container carrier and oil storage

    ship, other types ship can applied as applicable.2 NORMATIVE REFERENCE

    Q/SWS60-001.2-2007 Shipbuilding Quality Standard Construction Accuracy3 TERMS AND DEFINITION

    The following terms and definition apply to the Rules.

    3.1 PartPart refers to a single steel plate or a profile, for example one floor, one longitudinal.

    3.2 AssemblyAssembly refers to two or more parts fit together, for example floor with stiffeners, planar bulkhead with

    stiffeners.

    3.3 BlockTotal hull structure is split into several planar or cubic masses, which can be fitted together to form a full ship,

    these masses are called blocks.

    3.4 Grand blockSeveral adjacent blocks made up of a large block, which is called a grand block, for example, a deck house

    grand block.

    3.5 Sub-assemblyThe production process of fitting two or more parts together to form an assembly is calledsub-assembly, for

    example, building up a T profile, fitting stiffeners or opening reinforcement onto a floor .

    3.6 Unit-assembly

    The production process of fitting sub-assemblies and parts together to form a large assembly is calledunit-assembly, for example, building up an oil tank.

    3.7 Grand assemblyThe production process of fitting assemblies and parts together to form a block is called grand assembly.

    3.8 Pre-erection assemblyThe production process of fitting several adjacent blocks together to form a grand block is called pre-erection

    assembly.3.9 Erection

    The production process of fitting blocks and grand blocks together in dock to form a full hull of ship is callederection.4 PREPARATION BEFORE CONSTRUCTION

    4.1 Drawings Make available the construction related drawings, part list, welding procedures, on-completion measure

    tables etc.

    4.2 Material Check parts’ material grade, steel plate’s thickness, profile’s dimensions to be same as the drawings

    4.3 Tools Get ready steel tape, plumb, leveling set of glass tubes and hose, oil pump joist, pull screw, steel wedge,

    various kinds of strip shores/clamps, laser transit instrument, hammer, oxyacetylene cut torch, electric weldingholder, electric welding mask, angle square, angle gauge.

    5 PERSONNEL

    Assembly workers should have specialty and safety training before assigning their jobs, and should pass theexamination. They should know contents and intentions of the drawings, understand letters and symbols’ meaning

    on the cutoff parts. They should be familiar with related technics and technical documents and carry out the jobaccordingly.6 TECHNICAL REQUIREMENT

    6.1 Sub-assembly

    6.1.1 Sub-assembly technics flow:

  • 8/19/2019 2008 Edition

    6/186

    2

    align small parts with

    big parts' mark linefit and tack weldingget ready and check

    essential reinforce and supportflame fairing after weldingwelding

     

    6.1.2 Sub-assembly work criteria:

                                                                  

     The installation of structural member is on the basis of align line or offset line, error limits: 1.5mm

    2.0mm

    Flatness limits: 4mm 6mm

    Vertical limit of small piece fit to big piece: 2 mmStandard range tolerance limit

    Planar panel: L±4mm ±6mm

    B±4mm ±6mm

    Difference between diagonals: L1-L24mm 8mm6.2 Unit-assembly

    6.2.1 Unit-assembly technics flow 

    flame fairingweldingfit and tack welding

    temporary supportfit small parts

    on big partsmake jig or platform

    laydown big parts

    on jig or platform

     6.2.2 Unit-assembly work criteria 

    The installation of structural member is on the basis of align line or offset line, error limits1.5mm

    Main plane flatness limits 4mm

    Vertical limit of small piece fit to big piece 2 mm

    Framework 4-corner level ±8mm

    Longitudinal end flatness ±4mm

    Two diagonals’ mid point distance 2mm

                                                                                                      

              

    temporary

    support

                                                                                                                                                                                              

                                                                                                                                                                                              

    oil chest  

  • 8/19/2019 2008 Edition

    7/186

  • 8/19/2019 2008 Edition

    8/186

    4

    Curved center or platform

    m e m b  e r  c h  e  c k l  i  n e  a n d  a 

     d  j   u s  t  

    F  C B w e l   d i  n g

    f  i  n a l  m e  a  s  ur  e 

     o u t  f  i   t   t  i  n g

     w e l   d i  n g

     b l   o c k  a  s  s  .

     s  e  t  f  r  a m e  or r i   b 

     b  ui  l   t  - u p s i   d  e  pl   t   .

     w e l  

     d i  n g

     uni   t   a  s  s  . of   p a n e l   s 

     s  e  t  l   on gi   . of   s h  e l  l   pl   a  t   e 

    m e m b  e r  c h  e  c k l  i  n

     e  a n d  a  d  j   u s  t  

    F  C B w

     e l   d i  n g

     b  ui  l   t  - u pi  n

    n e r  b  o t   . pl   t   .

     s  e  t   b k  t   . of  f  r  a m e 

     s  e  t  

    l   on gi   . of  h  o p p e r  pl   t   .

    m e m b  e r  c 

    h  e  c k l  i  n e  a n d  a  d  j   u s  t  

    F  C B w e l   d i  n g

     b  ui  l   t  - u ph  o p p e r  pl   t   .

     panel center:sub-ass. of block 

     a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   o

    n

     Typical block with longitudinals to be singly fitted

                                                                     

            

            

    6.3.2.2 Assembly work criteria:

    Block length  L ±4mm

    Block width  B ±4mm

    Inner bottom height  H1 ±3mm

    Block height  H2 ±4mm

    Block square (hopper)  4mm

    Block twist (hopper)  ±8mmLongitudinal end flatness: ±4mm

  • 8/19/2019 2008 Edition

    9/186

    5

    6.3.3 Cargo hold Top side block grand assembly6.3.3.1 Technics flow:

     w e l   d i  n g

     s  e  t  l   on gi   . on d  e  c k 

     w e l   d i  nh 

     b  ui  l   t  - u p d  e  c k  pl   t   .

     s  e  t   b r  a  c k  e  t   a n d f  r  a m e  pl   t   .

     b  ui  l   t   u p t  h  e h  o p p e r  pl   t   . a n d n uk l   e  pl   t   .

     s  e  t  l   on gi   . onh  o p p e r  pl   t   .

     w e l   d i  n g

     panel center:sub-ass.of block 

     b  ui  l   t  - u p t   o p p e r  pl   t   .

     j   oi  n u p t  h  e  t   o p p e r  a n d  d  e  c k 

     

          B      4

          B     3

         B     2

         B     1

    upper deck 

    B 4  

    B 3  

      B  2 

      B  1

    temporary support

    topside deck ?±?2??×°?

         H

     6.3.3.2 Assembly work criteria:

    Block length  L ±4mm

    Block width  B ±4mm

    Block height  H ±3mm

    Block square (upper deck)  4mm

    Block twist (upper deck)  ±8mmLongitudinal end flatness: ±4mm

  • 8/19/2019 2008 Edition

    10/186

    6

       L

    B  

      

    B  

     6.4.4 Side shell block grand assembly6.4.4.1 Technics flow:

     p a r  t   s  pr  e  p a r  e 

     s  e  t   s i   d  e  s h  e l  l   pl   t   . on pl   a n a r  j  i   g

    i  n s  e r  t  f  r  a m e  a n d  t   o p p e r  pl   t   .

     w e l   d i  n g

    f  l   a m e f   a i  r i  n g

    f  i  n a l  m e  a  s  ur  e 

     top plt. of hopper tank 

     6.4.4.2 Assembly work criteria:

    Block length  L ±4mm

    Block width  B ±4mm

    Block height  H ±3mm

    Block square (side shell plate)  4mm

    Longitudinal end flatness: ±4mm

    6.4.5 Engine room double bottom block grand assembly6.4.5.1 Technics flow:

  • 8/19/2019 2008 Edition

    11/186

    7

     a  c  c  e  p t   a n c  e i  n s  p

     e  c  t  i   on

     t  i   gh  t  n e  s  s  t   e 

     s  t  

     w e l   d i  n g

    m e  a  s  ur  e  b  e 

    f   or  e  w e l   d i  n g

     w e l   d  t  

    h  e m e m b  e r  wi   t  h  s h  e l  l   pl   t   .

     t   ur n o

     v e r  b l   o c k  a n d  pl   a  c  e 

     s  e  t  l  i  f   t  i  n gl   u g ,r  e l   e  a  s  e f   or m  j  i   g

    i  n s  t   a l  l   s h  e l  l   pl   t   .

     p

    i   p e  pi   e  c  e i  n t   a nk 

     s  e 

     t   s  t   e  e l   o u t  f  i   t   t  i  n g

     w e l   d i  n g

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     s 

     e  t  m e m b  e r  s 

     s  e  c  on d  a r 

     y d r  a  wl  i  n e  oni  nn e r  pl   t   .

     s  e  t  i  nn e r  b  t  m . pl   t   .

    m a k  e  j  i   g

    member sub-ass.

     

     

     

    6.4.5.2 Assembly work criteria:

    Block length  L ±4mm

    Block width  B ±4mm

    Block height  H ±4mm

    Block square (inner bottom plate)  8mm

    also measure engine foundation inner bottom level 

  • 8/19/2019 2008 Edition

    12/186

    8

    6.4.6 Eengine room main deck (platform) block grand assembly

    6.4.6.1 Technics flow 

    member sub-ass.

     p a i  n t  i  n

     g

     a  c  c  e  p t   a n c  e i  n

     s  p e  c  t  i   on

    m

     a k  e  j  i   gf   or  s h  e l  l   pl   t   .

     s  e  t   s h  e l  l   pl   t   . a n d  w e l   d 

     s  e  c  on d  a r  ym a r k i  n g of  f  

    i  n s  t   a l  l  m e m b  e r 

     w e l   d  t  h  e m e m b  e r 

    m a k  e  j  i   gf   or m a i  n d 

     e  c k  (   pl   a  t  f   or m )  

     b  ui  l   t  - u p t  h  e m a i  n d  e 

     c k  or  pl   a  t  f   or m

     w e l   d  t  h  e  s  e 

     a m

     s  e  c  on d  a r  y d r 

     a  wl  i  n e  s 

     s  e  t  m e m

     b  e r 

    i  n s  t   a l  l   s i   d  e  pl   t   .

     s  e  t  l  i  f   t  i  n gl   u g a n

     d r  e i  nf   or  c  e 

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     w e l   d  t  h  e m e 

    m b  e r  s 

     o u t  f  i   t   t  i  n g

    f  i  n a l  m e  a  s  ur  e  a n d  c h  e  c k 

     c  e n t   e r l  i  n e  ,f  r  a m

     e  c h  e  c k 

    l  i  n e  a n d  o t  h  e r 

    m a r k  s 

     6.4.6.2 Assembly work criteria:

    Block length  L ±4mm

    Block width  B ±4mm

    Block height  H ±4mm

    Block bottom width  0~8mm

    Transverse and longitudinal BHD. vertical ±3mm

    Block end flatness(plates and longitudinal parts) ±3mm

      

                                                                                                                 

            

             

           

     

    6.4.7 Corrugation bulkhead block grand assembly6.4.7.1 Technics flow:

  • 8/19/2019 2008 Edition

    13/186

    9

    member sub-ass.

    m a k  e  j  i   gf   or l   o w s  t   o ol  

     s  e  t   pl   a  t   e  s 

     s  e  t  m

     e m b  e r  s 

     s  e  t   t   o p pl   t  

     . of  l   o w s  t   o ol  

     s  e  t   w a l  l   of  l   o w s  t   o ol  

     w

     e l   d 

    m a k  e  j  i   gf   or  c  or r  u g a  t  i   on b h  d  .

     b  ui  l   t  - u p t  h  e  c  or r  u g a  t  i   on b h  d  .

     w e l   d  t  h  e m

     d r  a  wl  i  n e  a n d  c  u t   of  f  

    f  i   t   t  h  e l   o w s  t   o ol   a  s  s  . a n d  w e l   d 

    f  i   t   t  h  e  t   o p pl   t   . a n d  w e l   d 

     s  e  t   & w e l   d r  e i  nf   or  c  e  b  a r  &l  i  f   t  i  n gl   u g

     t  i   gh  t  n e  s  s  t   e  s  t  

    f  i   t   & w e l   d  s h  e  d  pl   t   .

     o u t  f  i   t   t  i  n g

     t   ur n o v e r  ,f  i   t   & w e l   d  t  h  e  s h  e  d  pl   t   .

     o u t  f  i   t   t  i  n g

    f  i  n a l  m e  a  s  ur  e  a n d  c h  e  c k  c  e n t   e r l  i  n e 

    h  or i  z on t   a l   c h  e  c k l  i  n e  , a l  i   gnl  i  n e f   or 

     d  o c k i  n g a n d  o t  h  e r m a r k  s 

     a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     p a i  n t  i  n g

     6.4.7.2 Assembly work criteria:

    Block width  B ±4mmBlock height  H ±4mm

    Transverse and longitudinal BHD. vertical ±3mm

    Block end flatness(plate and longitudinal part) ±3mm

    Stool bottom opening width S ±3mm

    Stool bottom 4-corner level ±4mm

    Stool bootom linearity 3mm

    Mid point curve of bertical BHD. 8mm

    Corrugation BHD.’ top cover plate flatness 3mmMark centerline, upper align line and lower align line after work finished.

  • 8/19/2019 2008 Edition

    14/186

    10

    6.4.8 Aft block grand assembly

    6.4.8.1 Technics flow 

    member sub-ass.

    fit the stern boss fit stern tube  preheat weld

    stern tube

    m a k  e  j  i   g

    f  i   t   t  h  e  c  a  s  t  i  n gi  nf  r  on t   of   t  h  e  s  t   e r n t   u b  e 

    f  i   t   t  h  e  b h  d  . of   t  h  e  a  p t   .

    i  n s  t   a l  l  f  r  a m e  on e  b  y on e 

    i  n s  t   a l  l   s  t   e r n t   u b  e 

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     w e l   d  t  h  e m e m b  e r  s 

     pr  e h  e  a  t   t  h  e  s  t   e r n t   u b  e  a n d  c  a  s  t  i  n g

     w e l   d  t  h  e  s  t   e r n t   u b  e  a n d  c  a  s  t  i  n g

     t  i   gh  t  n e  s  s  of   s  t   e r n t   u b  e  a n d  s  u b mi   s  s i   on

     o u t  f  i   t   t  i  n g

     s  e  t   t  h  e  s h  e l  l   pl   t   .

     w e l   d  t  h  e  s  e  a m  of   s h  e l  l   a n d m e m b  e r  s 

     pr  e h  e  a  t   t  h  e  s  t   e r n b  o s  s 

     w e l   d  t  h  e  b  o s  s  a n d  s h  e l  l   pl   t   .

    f  i  n a l  m

     e  a  s  ur  e  a n d  c h  e  c k  c  e n t   e r l  i  n e 

    f  r  a m e 

     c h  e  c k l  i  n e  a n d  o t  h  e r m a r k  s 

     a 

     c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     p a i  n t  i  n g

     6.4.8.2 Assembly work criteria:

    Aft and fore shaft center eccentricity 3mm welding deformation be controled duiring working 

    The allowance of the length L,: +30 +40shared equally by both ends(L refers to the length between aft end of the aft stern tube and fore end of the fore stern tube).

    After bulkhead level ±3mmStern tube hydraulic pressure 0.02MPa

    When weld with casting steel, casting steel and steel plate be warmed up to 120ºC 

  • 8/19/2019 2008 Edition

    15/186

    11

                                                                                                                                                                                                                                                                                                                                                                                

     6.4.9 Rudder horn block grand assembly

    6.4.9.1 Technics flow 

    member sub-ass.

    m a k  e  j  i   g

     s  e  t  

     s  t   e  e r  g e  a r  pl   a  t  f   or m  pl   t   .

     w e l   d  t  h  e m

     s  e  c  on d  a r  y d r  a  wl  i  n e 

     s  e  t  l   on g . & t  r  a n s  .m e m b  e r 

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     w e l   d m e m b  e r  s 

     pr  e h  e  a  t  r  u d  d  e r h  or n

     w e l   d  t  h  e r  u d  d  e r h  or n a n d m e m b  e r  s 

     s  e  t   s h  e l  l   pl   t   .

     w e l   d  s h  e l  l   p

    l   t   . s  e  a m  a n d m e m b  e r  s 

     pr  e h  e  a  t  r  u d  d  e r h  or n

     w e l   d r  u d  d  e r h  or n a n d  s h  e l  l   pl   t   .

     s  e  t  l  i  f   t  i  n gl   u g

    f  i  n a l  m e  a  s  ur  e  a  a n

     d  s h  e  c k  c  e n t   e r l  i  n e 

    f  r  a m e  c h  e  c k l  i  n e  , a l  i   gnl  i  n e i  n d  o c k 

     a n d  o t  h  e r m a r k  s 

     a  c  c  e  p t   a n c  e 

    i  n s  p e  c  t  i   on

     p a i  n

     t  i  n g

     6.4.9.2 Assembly work criteria:

    Block length: L ±4mm

    Block width  B ±4mm

    Block height  H ±4mm

    Rudder stock centerline ±3mm

    Aft BHD. vertical ±3mmSteering gear room platform flatness ±8mm

    6.4.9.3 Technics essentials

  • 8/19/2019 2008 Edition

    16/186

  • 8/19/2019 2008 Edition

    17/186

    13

     6.5 Pre-erection assembly

    6.5.1 Cargo hold side block pre-erection assembly

    6.5.1.1 Technics flow 

     j  

     oi   s  t   a r r  a n g e m e n t  

    f  i   t   t  h  e  b l   o

     c k  wi   t  h  c  e n t   e r l  i  n e 

    f  i   t  

     a n o t  h  e r  b l   o c k 

     gr  a n d  a  s  s  e m b l   e 

    m e  s  ur  e  b  e f   or  e  w e l   d i  n g a n d  c h  e  c k 

     c  e n t   e r l  i  n e  ,f  r  a m e  c h  e  c k l  i  n e  , a l  i   gn

    l  i  n e f   or  d 

     o c k i  n g a n d  o t  h  e r m a r k  s 

     w e l   d 

     o u t  f  i   t   t  i  n g

    f  i  n a l  m e  a  s  ur  e  a n d  a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     t  

     o u c h - u p pr i  m e r 

     6.5.1.2 Assembly work criteria:

    Block length: L ±4mm

    Block width: B ±4mm

    Block height: H 0~5mmCamber: b 0~10mm

    Longitudinal ends flatness ±3mm

    Corrugation bulkhead vertical ±3mm

    Corrugation bulkhead level ±4mm

    Topside and hopper tanks’ rib misalign ±4mm

     

  • 8/19/2019 2008 Edition

    18/186

    14

    6.5.2 Cargo hold double bottom pre-erection assembly

    6.5.2.1 Technics flow:

     t   o u c h - u p pr i  m e r 

     o u t  f  i   t   t  i  n g

     w e l   d 

    l  i  n e f   or  d  o c k i  n g a n d  o t  h  e r m a r k  s 

     c  e n t   e r l  i  n

     e  ,f  r  a m e  c h  e  c k l  i  n e  , a l  i   gn

    m e  s  ur  e  b 

     e f   or  e  w e l   d i  n g a n d  c h  e  c k 

     gr  a n d  a  s  s  e m b l   e 

    f  i   t  

     a n o t  h  e r  b l   o c k 

    f  i   t   t  h  e  b l   o

     c k  wi   t  h  c  e n t   e r l  i  n e 

     j  

     oi   s  t   a r r  a n g e m e n t  

    f  i  n a l  m e  a  s  ur  e  a n d  a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     6.5.2.2 Assembly work criteria:

    Block length: L ±4mm

    Block width: B ±4mm

    Inner bottom level±8mmLongitudinal ends flatness ±3mm

    Inner square(diagonals difference)   4mm

          

          L

     6.5.3 Engine room upper deck pre-erection assembly (platform deck similar)

    6.5.3.1 Technics flow:

     j   oi   s  t   a r r  a n g e m e m t  

    f  i   t   t  h  e  b l   o c k  w

    i   t  h  c  e n t   e r l  i  n e 

    f  i   t   a n o t  h  e r  b l   o c k 

     gr  a n d  a  s  s  e m b l   e 

    l  i  f   t  i  n gr  e i  nf   or  c  e 

    l  i  n e f   or  d  o c k i  n g a n d 

     o t  h  e r m a r k  s 

     c h  e  c k l  i  n e  ,h  or i  z on t   a l  l  i  n e  , e l   e  v .l  i  n e  , a l  i   gn

    m e  a  s  ur  e  b  e f   or  e  w e l   d 

    i  n g a n d  c h  e  c k f  r  a m e 

     w e l   d 

     o u t  f  i   t   t  i  n g

    f  i  n a l  m e  a  s  ur  e  a n d  a  c  c 

     e  p t   a n c  e i  n s  p e  c  t  i   on

     t   o u c h - u p

     pr i  m e r 

      top

    bot

    strength

     6.5.3.2 Assembly work criteria:

  • 8/19/2019 2008 Edition

    19/186

    15

    Block length: L ±4mm

    Aft and fore deck breadth 0 5mm

    Aft and fore bottom breadth 0 15mm

    Deck level ±8mm

    Height 0 5mm

    Longitudinal ends flatness ±3mmTransverse and longitudinal BHD vertical 0.1%h and 10mm

    6.5.4 Superstructure pre-erection assembly6.5.4.1 Technics flow:

     w e l   d 

    f  i   t   t  h  e 2 n d  a  c  c  om o d  a  t  i   on

     d  e  c k  b l   o c k 

    l  i  f   t   p a r  t   b  e f   or  e 

     c  o v e r i  n g

     d r  a  wl  i  n e  s f   or f  i   t   t  i  n g2 n d  w a l  l  

    f  i   t   t  h  e  a  c  c  om o d  a  t  i   on b l   o c k 

    m a k  e  j  i   g

    m a r k  of  f  f   or f  i   t   t  i  n g 3 r  d  w a l  l  

    lift blocks tier by tier 

     6.5.4.2 Assembly work criteria:

    Centerline warp: ±3mm

    Tier height 0 15mm

    Deck 4-corner level ±3mm

    Main wall cross joint misalign   1/3 t

    t is thickness of thinner wall 

    platform

    compass deck

    bridge deck

    D deck

    C deck

    B deck

     A boat deck

    main deck

     

    6.6 Erection in dock:

    6.6.1 Marking off in dock6.6.1.1 Technics flow:

    Mark off center-line with fine laser theodolite, set laser point by fixed distance and flip them by powder

    thread, frame datum line and dock centerline should be marked with nailed stainless steel plate, set 2 surveyor's poles per bottom block.

    bottom block

    dock centerline

    dock datum line

     

  • 8/19/2019 2008 Edition

    20/186

    16

    6.6.1.2 Assembly work criteria:

    Dock centerline right-and-left warp ±1.5mm

    Dock datum line up and down warp ±1.5mm

    Frame datum line vertical ±3mm at max. half width 

    Half width line ±3mm

    Adjacent block frame datum line distance warp ±3mmLongitudinal space adjusting line ±3mm

    Ship overall length ±3mm6.6.2 Bottom PE block erection

    6.6.2.1 Technics flow:

     w e l   d 

     s  u b mi   t  f   or  a  c  c  e  p t   a 

    n c  e 

    f  i   t   t   or i   gh  t   p o s i   t  i   o

    n

    r  e l   e  a  s  e f  r  om  6  0  0 T  c 

    r  a n e 

    m e  a  s  ur  e f   or  e r  e  c  t  i   on

    l  i  f   t   gr  a n d  b l   o c k 

     6.6.2.2 Assembly work criteria:

    Centerline ±3mm

    Datum frame line ±4mm

    Block 4-corner level ±8mm

    Height from base line ±5mm

    6.6.3 Transverse BHD block erection

    6.6.3.1 Technics flow:

    l  i  f   t   gr  a n d  b l   o c k 

    m e  a  s 

     ur  e f   or  e r  e  c  t  i   on

    f  i  x u p w

    i   t  h r  e i  nf   or  c  e m e n t  

    r  e l   e  a  s  e 

    f  r  om  6  0  0 T  c r  a n e 

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     e r  e  c 

     t  i   on a  s  s  e m b l   e 

    i  n s  t   a l  l   a  t  

     t   a  c h  e  d  p a r  t  i  n d  o c k 

     w e l   d 

    f  i  n a l  m e  a  s  ur  e  a n d 

      a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     

    6.6.3.2 Assembly work criteria:

    Centerline ±3mm

    Datum frame line ±4mm

    Height ±5mm

    Vertical

    0.1%h and ≤10mm

  • 8/19/2019 2008 Edition

    21/186

    17

    Stool vertical BHD bottom and inner bottom floor top misalign   1/4 t,t is thickness of thinner plate 

    corrugationBHD

    bottom block

    steady rope

     6.6.4 Side shell PE block erection6.6.4.1 Technics flow:

     s  e  t   s  u p p or  t   o u t   s i   d  e  s h  e l  l  

    f  i   t  f   or  e r  e  c  t  i   on

     s  e  t   s  u p p or  t  i  n t   a nk 

     s  e  t   o v e r  b r i   d  g e 

    f  i  x u p

     e r  e  c  t  i   on a  s  s  e m b l   e 

     w e l   d 

    f  i  n a l  m e  a  s  ur  e  a n d 

    l  i  f   t   gr  a n d  b l   o c k 

    r  e l   e  a  s  e f  r  om  6  0  0 T  c r  a n e 

    m

     e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     

    6.6.4.2 Assembly work criteria:

    Datum frame line ±4mm

    Distance from cargo hold opening to center ±4mm

    Upper deck level ±8mm

    Butt gap between blocks 6  +

      -

      6

      2  mmlocal gap 18mm

    Frame space at block butt ±10mm  utmost ±20mmSet support outside bigle and inside cargo hold

    corrugation BHDD type PE block

    support inside

    cargo hold

    hydraulic jack 

    assistant barsfor fitting

     

    6.6.5 Block between hatch erection

  • 8/19/2019 2008 Edition

    22/186

    18

    6.6.5.1 Technics flow:

     w e l   d 

    m e  a  s  ur  e  b  e f   or 

     e  w e l   d i  n g

     e r  e  c  t  i   on a  s  s  e m b l   e 

    r  e l   e  a  s  e f  r  om  6  0  0 T  c r  a n e 

    f  i  x u p

     t   ur n o v e r  gr  a n d 

     b l   o c k  a n d l  i  f   t  

     a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

    f  i  n a l  m e  a  s  ur  e  a n d 

     

    6.6.5.2 Assembly work criteria:

    Centerline ±3mm

    Datum frame line ±4mm

    Cargo hold opening longitudinal half length ±4mmDeck level meet with side deck

     block between hatch

     6.6.6 Stern frame and rudder horn block erection6.6.6.1 Technics flow:

    f  i  n a l  m e  a  s  ur  e  a n d 

     a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     pr  e - s  e  t   s  u p p or  t  i  n d  o c k 

     t   u

    r n o v e r  t  h  e  gr  a n d  b l   o c k  a n d l  i  f   t  

    f  i   t   t  h  e  gr  a n d  b l   o c k 

     d r  a  wl  i  n e  s f   or  e x c  e  s  s  a n d  c  u t   of  f  

     s  e 

     c  on d  a r  yf  i   t   a n d r  e i  nf   or  c  e  wi   t  h  b  a r 

    r  e l   e  a  s  e f  r  om  6  0  0 T  c r  a n e 

     e r  e  c  t  i   on a  s  s  e m b l   e 

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     w e l   d 

     6.6.6.2 Assembly work criteria:

    Rudder stock , dock center line and #0 frame warp ±5mmCenterline fore-and-aft level ±4mm

    Rudder stock and shaft centerline warp ±4mmSteering gear room platform 4-corner level ±8mm

    Aft BHD vertical ≤0.1%h and 10 mm

     

  • 8/19/2019 2008 Edition

    23/186

    19

    6.6.7 Fore bottom PE block erection

    6.6.7.1 Technics flow:

     w e l   d 

     s  u b mi   t  f   or  a  c  c  e  p t   a n c  e 

    f  i   t   t   or i   gh  t   p o s i   t  i   on

    r  e l   e  a  s  e f  r  om  6  0  0 T  c r  a n e 

    m e  a  s  ur  e f   or  e r  e  c  t  i   on

    l  i  f   t   gr  a n d  b l   o c k 

     6.6.7.2 Assembly work criteria:

    Centerline warp ±3mm

    Datum frame line warp ±4mm

    Thruster installation requrement: thruster platform level 1/1000   or according to manufacturerrequirement.

    thruster platform level

     6.6.8 Superstructure PE block erection

    6.6.8.1 Technics flow:

     on u p p e r  d  e  c k 

     w e l   d 

    m e  a  s  ur  e  b  e f   or  e  w e l   d i  n g

     e r  e  c  t  i   on a  s  s  e m b l   e 

    r  e l   e  a  s  e f  r  om  6  0  0 T  c r  a n e 

    f  i  x u p

    f  i   t  f   or  e r  e  c  t  i   on

    l  i  f   t   gr  a n d  b l   o c k  t   or i   gh  t   p o s i   t  i   on

     s  e  t   c  o v e r i  n g

     d r  a  wl  i  n e  s f   or f  i   t   t  i  n g s  u p e r  s  t  r  u c  t   ur  e 

    f  l   a m e f   a i  r i  n g

     a  c  c  e  p t   a n c  e i  n s  p e  c  t  i   on

     

    6.6.8.2 Assembly work criteria:Centerline warp ±3mm

    Datum frame line warp ±4mm

    PE block level warp ±8mm

    Tier height 0 15mm

    Front wall bottom and BHD below main deck misalign ±1/3t,t is thickness of thinner plate.

    Per frame flatness of outer wall and weather deck   4mm

    Per frame flatness of inner wall and non-weather deck   7mm

    6.7 Hull construction accuracy according to Q/SWS60-001.2-2007   Shipbuilding Quality Standard

    Construction Accuracy .

  • 8/19/2019 2008 Edition

    24/186

    20

    SWS 

    HULL STRENGTH STRUCTURE OPENING AND

    REINFORCEMENT 

    Reference Standard

    Q/SWS52-014-2006

    1 SCOPEThis standard defines general opening principles, stress zone classification, opening and opening

    reinforcement for hull strength structures.This standard applies to the detailed design and production design of hull structures.

    2 HULL STRENGTH STRUCTUR GENERAL OPENING PRINCIPLES

    In general, opening in stress concentration area of hull structure shall be avoided as practicable as possible.

    Hull structure stress distribution is shown in Figure 1. The left figure shows the maximum bending momentappears at both ends of the beam, and there is no any stress at the locations that are 0.25L to both ends. The right

    figure shows the maximum bending moment appears near the face plate, and there is no any stress in the middleof the web. Therefore, the opening for a transverse beam should try to be in the middle region of the beam web

    and at a location that is 0.25L or 0.75L to the end of the beam.

    Fig. 1 Hull structure stress distribution3 HULL STRENGTH STRUCTUR STRESS ZONE TYPE

    3.1 Stress zone classification of the hull strength structures is shown in Table 1.

    Table 1 Classification of stress zone

    Zone Symbol Definition

    A Low stressopening ok.

    B General stressopening ok.

    CHigh stress, try to avoid opening. Once a hole opened, reinforce it

    carefully.

    D Stress concentrated area, avoid opening.

    3.2 Typical stress zone of hull strength structures3.2.1 Typical frame section is shown if Figure 2.

    Fig.2 Typical frame section

  • 8/19/2019 2008 Edition

    25/186

    21

    3.2.2 Typical longitudinal section is shown in Figure 3.

    Fig.3 Typical longitudinal section

    3.2.3 Typical stress zones for other structures are shown in Figure 4.D/B,S/Shell and deck longitudinal Longi. BHD, swash BHD.

    Fig.4 Others4 OPENING

    4.1 General requirement for opening4.1.1 Allowable opening size in zones A and B is in accordance with Table 2. The dimensional symbols in

    Table 2 are shown in Figure 5.

    Fig.5 Opening symbols

    Table 2 Opening allowable size

    Opening height(b)/member height(h)

    Zone A Zone BMember

     No reinforceforce

    reinforce No reinforce reinforce

    Oil tank 0.2 *0.2 **

    0.50.1 *

    0.1 **

    0.25

    Cargo hold, engine room

    and all the other tanksexcept oil tank

    0.250.25

    0.50.125

    0.125

    0.25

     Gi  r  d  e r 

    Accommodation area and

    weather deck0.33

    0.33

    0.50.165

    0.165

    0.25

    Solid floor 0.40.4

    0.50.2

    0.2

    0.25

    Frame plate, side girder in

    double bottom, all kind ofclapboard 0.5

    0.5

    0.66  ___ ___

    * b300  ** b600.

  • 8/19/2019 2008 Edition

    26/186

    22

    4.1.2 Try to avoid opening in zone C. Structure strength shall be considered carefully when making

    reinforcement if the opening is inevitable ..4.1.3 Openings are forbidden in zone D.

    4.1.4 Total height of all openings in girder vertical direction shall be less than the limit in Table 2.

    4.1.5 Total length of all openings shall be no more than 0.6 times frame space (or 0.6 times longitudinal space ),Openings shall be scattered and shall be never gathered closely in the adjacent frame spaces or longitudinal

    spaces.4.1.6 Opening length shall be no more than 2 times opening height..

    4.1.7 Opening edge shall be ground smoothly. The radius of opening should be more than 1/8 height or 25mm.4.1.8 The maximum width and length of the outer contour of all openings shall be used in the calculation of theopening when there are many small holes in beam, and the space between them can not meet the requirement.

    4.2 The minimum space between holes and minimum distance to the member edge shall be in compliance withTable 3. S value can be reduced when an opening is added with the same thickness doubling or ring. The

    reduction value is half of the doubling or ring’s width, but should be no less than half of the standard value of S.

    Table 3 Minimum space between holes and holes to member edge

    Minimum (S)Description Sketch

    Zone A Zone BRemarks

    Hole to holed1 + d2

    2d1+d2 —

    Hole to edge d/2 2d

    Heating pipe

    opening(LR  

    S100mm

    Hole to scallop d + R2 d+R —

    Hole to cutoutd + B

    2d+B

    S  150mm(ABS)

    S  180mm(LR)

    Cutout to cutout

    S12B

    S12d

    S22B

     — —

    5 OPENING REINFORCEMENT

    5.1 Reinforcement for bending stress should be in compliance with Table 4.Table 4 Reinforcement for bending stress

    Requirement Figure

    1) “A” zone

     b×tR =1/2(d-dA)×tW(MIN.=75×8)tR ≥tW dA=Max. allowable sizeif no reinforcement.

    2) “B” zone b×tR =1/2×d×tW(MIN.=75×8)

    tR ≥tW 

  • 8/19/2019 2008 Edition

    27/186

    23

    5.2 Reinforcement for shear stress should be in compliance with table 5.

    Table 5 Reinforcement for shear stress

    Requirement Figure

    1“A” zone(b1+b2)×tR =1/2(d-dA)×tW 

    2) “B” zone(b1+b2)×tR =d×tW 

    when b2=b1t×tR =1/2×d×tW 

    5.3 Reinforce method in the region where stress level is difficult to be estimated

    5.3.1 When openings are allowable in A and B zones, they shall be reinforced with doubling or ring whose

    sectional area must be over a quarter of sectional area of the hole along the width direction. Increase the web plateheight locally according to the opening size is also allowable, but material of the reinforcements shall be sameas that of the strength members.

    5.3.2 When the opening’s length is less than 2 times of its width, and its width exceeds the allowable value, the

    reinforcement method is shown in Figure 6.

    a. add doubling b. add T-TYPE face plate c. add L3—TYPE face plate

    Fig 6 Reinforce type I5.3.3 When the opening’s length is over two times of its width, and its width is under limit, add carlings alonglength direction to prevent local deformation. The ratio of opening’s length and width should never over 3. If the

    ratio is over 3, the opening should be replaced by several openings. Add carlings at upper and lower positions

    along length direction as shown in Figure 7.

    Fig 7 Reinforce type II5.3.4 When the opening’s length and width are both beyond the standard, add carlings at upper and lower

     positions along length direction to reinforce local bending stress, and carlings should be added to opening’s fore

    and aft position to compensate lost sectional area. Reinforcement method is shown in Figure 8.

    Fig 8 Reinforce type  

  • 8/19/2019 2008 Edition

    28/186

    24

    APPENDIX A

    (NORMATIVE APPENDIX)

    CLASS REGULATION

    A.1 CLASS REGULATION

    A.1.1 Longitudinal strength member opening (DNV 3.1.5, LR 4.1.4)

    aGenerally no openings on keel plate;(DNV) bTry to avoid openings on bilge plate in the mid 0.6L area, otherwise there should be enough space between hold

    and bilge keel plate;(DNV)

    cTry to set openings inside of hatch line on strength deck, otherwise openings should have enough space fromhatch corner and side shell;(DNV, LR)

    d) Openings on side shell, stringer, transverse and longitudinal BHD should have twice of the opening’s

    diameter’s distance from strength deck ;( DNV)e) Openings without reinforcement should have 4 times of adjacent opening’s diameter’s distance from transverse

    adjacent openings;f) Try to set enough space from lower deck openings to hatch corner or high stress area; (DNV)

    g) No small openings should be set outside of strength deck’s hatch line ;( LR)A.1.2 Openings on floor (LR 3.10.4, 3.10.5)

    aOpenings on main floor should be in compliance with Figure A.1 d  0.25D

    c  0.4D

    L  D or 0.6 S

    A  B

    d  0.25D (MAX.75mm)

    R  25 mm

    S  75 mm

    L  150 mm

    A.1 Opening principle on main floor

     bThere should be no manhole or lightening hole in following high stress areas unless it is proved to besatisfied with strength and yield requirements by calculation:

    1/3 length area from both ends for stringers or vertical clapboard in narrow empty tank or double

    cofferdam;Floor and double bottom longitudinal girder near pillar root or bracket toe.

    cAir hole, drain hole, cutout and notch should have more than 200mm’ distance from bracket toe and otherstress concentrated area;(LR Pt.3 Ch.10 Sec.5.3)

    d) The size of openings on double bottom contacted members without reinforcement should be no larger thanhalf of double bottom height(LR, 4.1.8)

    A.1.3 Transverse section coefficient calculation (KR 3.3.2, DNV 3.1.5, LR 3.3.3)

    a Strength deck openings with length less than 2.5m and width less than 1.2m can be treated as noopening ;(KR)

     bDeck openings with length less than 2.5m and width less than the smaller of 1.2m and 4% of the molded breadth, whichever is less, can be treated as no opening;

    c Openings with length less than 2.5m and width less than 1.2m can be treated as no opening when calculatesection coefficient;(DNV)

    dFloor and girder openings with height no bigger than 25% of floor height, or notches no bigger than75mm ,can be treated as no opening (LR, DNV)

    e Above four types of openings should be set as the same orientation as floor and the space should be morethan 1m,(LR) otherwise the space must be more than 10 times of opening height;(DNV)

    f  Corresponding extent summation of such types of openings in one section shouldn’t reduce bottom sectioncoefficient more than 3%,otherwise take proper reinforcement.(KR,DNV)

    gCorresponding extent summation of such types of openings in one section of bottom or deck should lessthan 0.06 (B-∑ b).

    hereB = breadth of deck or bottom b = breadth of large opening fall short of above requirements Find opening’ top point in the diameter direction vertical to hull longitudinal direction, draw a line by 30°ofhull longitudinal diameter from this point, find the intersection point, the space between opening’s both sides

  • 8/19/2019 2008 Edition

    29/186

    25

    is corresponding extent as shown in Figure A.2.

    Fig A.2 Corresponding extent

    A.1.4 Strength deck and bottom shell opening reinforcement (DNV 3.1.5)

    a) Circular opening: diameter b0.325m 

     b) Ellipse opening: length / width2width0.5m 

    c) Rectangular opening: width  0.4m; corner radius  0.2bmust reinforce, but for streamline corner

    with a  0.15bneedn't reinforce, see Figure A.3;

    Fig A.3 Streamline cornerd) Section area of reinforcement stiffener is shown as follows:

    A2.5 bt(cm2)

    t = deck or shell thickness(mm) 

     b = opening diameter(m) 

    The distance between opening edge and reinforcement stiffener should be no bigger than 0.05b e) Shell shearing strength area opening should be circular type, reinforcement or not is same as above.

    When average shearing strength exceeds 60N/mm2

    , stringer and floor openings should be reinforced

    horizontally and vertically at surrounding. But if shorter side stiffener is less than 400mm or both sides

    stiffeners are less than 300mm, no reinforcement required. What’s more, for cutout of longitudinal or

    floor whose height is more than 500mm, reinforce it on the top.DNV 3.1.3 C600 

  • 8/19/2019 2008 Edition

    30/186

    26

    SWS 

    PROCEDURES FOR HULL TIGHTNESS TEST OF SEA-GOINGSTEEL SHIPS

     

    Reference Standard

    Q/SWS62-001-20061 SCOPE

    This procedure specifies the definition, nomenclature, symbol, purpose, condition, item, sequence andinspection of hull tightness test of sea-going steel ships.

    This procedure is applicable to hull tightness test of sea-going steel ships.2 NORMATIVE REFERENCECB/T 257-2001 Hull tightness test method of steel shipQ/SWS 60-001.2-2003 Shipbuilding Quality Standard and Shipbuilding Accuracy

    3 DEFINITION, NOMENCLATURE AND SYMBOL3.1 The following definitions and nomenclatures are applicable to this procedure.3.1.1 Air testing

    The compressed air shall be filled into the closed tank until it reaches the specified pressure. After holdingthe pressure for a specified time, the testing liquid ( if using soap liquid, it shall be heated when the ambienttemperature is below 0 ) shall be sprayed upon the welds to be tested, then check whether air bubbles occur onthe welds.

    The air test shall not be performed simultaneously for adjacent tanks.3.1.2 Water testing

    The fresh water shall be filled into the closed tank until it reaches the specified water level. After holding thewater level for a specified time, check whether the leakage occurs on the weld and whether the structure isdistorted.3.1.3 Structural strength testing

    The fresh water or sea water shall be filled into the big compartment such as cargo hold, ballast tank, deep oiltank etc. until it reaches the specified water level, then check whether the structure of compartment is distorted.Generally, this testing should be carried out after ship launching.3.1.4 Filling water testing

    Water shall be filled into opened compartment until it reaches the height of door sill, then check whether theleakage occurs on the weld.3.1.5 Combined water and air testing

    Water shall be filled into the closed tank until it reaches the back face of manhole cover, then fill incompressed air and check whether the leakage occurs on the weld.3.1.6 Hose testing

    The clean water having a certain pressure shall be sprayed upon the weld to be tested by means of a nozzlewith specified size according to the requirements, then check whether the leakage occurs on the back face of weld.

    3.1.7 Vacuum testingThe testing liquid (if using soap liquid, it shall be heated when the ambient temperature is below 0 ) shall

     be sprayed on weld, next the weld shall be covered by a vacuum box, the vacuum is established through highspeed air flow, and finally, check whether air bubbles occur on the weld.3.2 Symbols

    The following symbols are applicable to this standard.A---- Air testingW---- Water testingS---- Structural strength testingF---- Filling water testingW+A— Combined water and air testingH---- Hose testingV---- Vacuum testing

    4 TESTING PURPOSEFor the hull structure with tightness requirements, the tightness testing shall be carried out according to the rulesfor Building and Classing Steel Vessels of relative classification society or design requirements so as to check thetightness and strength of weld or hull structure. For the tightness testing method, refer to CB/T 257-2001 Tightness Testing Method for Steel Ships .5 TESTING CONDITIONS5.1 The tightness testing shall be carried out in accordance with “Tightness Testing Drawings” drawn out by thedesign department. During testing, the testing method and contents shall not be changed without agree by designdepartment.5.2 Tightness testing may be carried out in accordance with the area, status of hull structure, testing method andrequirements separately after the stage of block subassembly, block assembly, dock erection or undocking.5.3The installation, welding and rectification work of hull structure, pre-outfitting etc. in the area related totightness testing should have been completed.5.4 The installation of main piping, joints and machine foundations etc. in the compartment to betightness-tested should have been completed; the installation and welding of appendages etc. which penetrateadjoining tank and are specified with tightness requirements should have been finished completely.

    5.5 The installation and welding of hull structure and pre-outfitting should have been measured and inspected bythe inspection department, and the important welds should have been NDT- tested and accepted.5.6 Tightness testing area (compartment) shall be cleaned, the rust shall be removed, the welds to be tested shall be kept clean and dry.

  • 8/19/2019 2008 Edition

    31/186

  • 8/19/2019 2008 Edition

    32/186

    28

    7.4 Air testing of compartments (A)7.4.1 Air testing method is that the compressed air is filled into the closed compartment and the testing liquid(such as soap liquid etc.) is sprayed upon the surface of weld to be tested so as to check whether the leakageoccurs on the weld.7.4.2 Air is filled into the compartment to be tested through a specially fabricated manhole cover (on which theconnections of air filling pipe, pressure gauge, safety valve etc. are fitted).7.4.3 For big compartment such as deep tank etc., in order to prevent accident, pressure gauges and safety valuesshall be fitted in two places, the compressed air should be controlled by pressure regulator or reducing valve.7.4.4 Pressure for air testing is 0.02MPa, the air inlet valve shall be closed after the pressure reaches a requiredvalue, then observe whether the pressure drops quickly, if it is really true, it shall be checked whether there ismiss-welding or not tight closure. If the pressure is kept constant and there is no obvious leakage after holding the pressure for 60minutes, the pressure shall be decreased to 0.015MPa and the soap liquid shall be sprayed upon thewelds to check whether the leakage occurs.7.4.5 For the weld which is difficult to be visually checked, the spraying of the soap liquid shall be repeatedseveral times, if no air bubble occurs, the weld is referred as acceptable.7.4.6 During testing, the unfrozen soap liquid shall be used when environmental temperature is below 0.7.5 Fillet weld air testing (A)7.5.1 Fillet weld air testing method is that the root of unbevelled fillet weld of watertight hull member (such asfloor plate, bulkhead etc.) is filled with air and the testing liquid is sprayed upon the outside surface of fillet weldto check whether the leakage occurs.

    7.5.2 The fillet joints to be air-tested shall be all fillet welded joints forming boundaries of the compartment.The assembling quality of fillet welded joints should conform to the requirements of Q/SWS 60-001.2-2003>.7.5.3 The complementary plate of longitudinal such as angle steel, bulb flat bar, T-steel etc. which penetrateswatertight members must be one-piece.7.5.4 Installing type of connecting plate for fillet weld air testing is as shown in Figure 1, the connection ofcompressed air inlet pipe is fitted on the connecting plate at one end of the fillet weld, the connection of the pressure gauge is fitted on the connecting plate at the other end of fillet weld, and the air stop holes are cut at twoends of the fillet weld and be welded up, so that the fillet weld to be tested is completely sealed.

     Figure 1 Type of connecting plate

    7.5.5 The pressure for fillet weld air testing is 0.015MPa ~ 0.02MPa.

    7.5.6 Tightness testing and examination method of fillet welds7.5.6.1 Open the ball valve and fill the compressed air into the gaps of fillet weld root. When the indicated valueof pressure gauge exceeds 0.015MPa, close the ball valve and hold the pressure for 15 minutes.7.5.6.2 Check whether the indicated pressure of pressure gauge drops, if the pressure drops obviously within 15minutes, check whether leakage occurs on connection or weld and find out the cause of pressure drop. If the pressure is kept constant, coat the surface of fillet weld with the soap liquid and check whether the air bubblesoccur on the weld. When no air bubbles occur on the weld, the weld is referred as acceptable.7.5.7 During testing, if the leakage is found, it shall be marked by chalk and the weld is repaired afterdischarging the air, the length of repair weld shall be more than 50 mm, the vacuum testing shall be carried outafter weld repairing.7.5.8 After testing is completed, the connection of compressed air pipe and the connection of pressure gauge onthe connecting plates must be fully welded.7.6 Vacuum testing (V)

    The fillet joint welds and butt welds to be vacuum-tested must be welds of watertight hull member forming

    the boundaries of compartment.7.6.1 In order to see clearly the leakage on the weld, vacuum box must be transparent.7.6.2 Evacuation device is as shown in Figure 2.

  • 8/19/2019 2008 Edition

    33/186

    29

     

     

     

    Figure 2 Evacuation device

    7.6.3 The pressure for vacuum testing is 0.015MPa ~ 0.02MPa.7.6.4 The method of vacuum testing is that the weld is coated with soap liquid and covered by a vacuum box,then open the ball valve and check whether the bubbles occur on the weld. If no air bubbles occur, weld is referred

    as acceptable.7.6.5 During testing, if the air bubbles are found, the weld shall be repaired. The length of repair weld shall bemore than 50mm. The re-testing shall be performed after weld repairing.7.7 Magnetic particle testing7.7.1 Magnetic particle testing method is that the magnetic medium is sprayed upon the surface of magnetizedweld and the nature, shape and size of defect are concluded through visually inspecting the distribution ofmagnetic particle on the weld.7.7.2 For partial deep and full penetration fillet welds on the boundaries of compartment which are required to be tightness-tested, the fillet weld air testing may not be adopted. The magnetic particle testing shall be used tocheck the tightness of welds.

    7.7.3 Magnetic particle testing must be approved by Surveyors and Representatives of Owner.7. 8 Liquid penetration testing

    7.8.1 Liquid penetration testing method is that the dye penetrant is sprayed upon the weld surface to demonstratethe nature, shape and size of weld defects.7.8.2 For the area where partial welds are required to be tightness-tested, in case it is unable to carry out thevacuum testing or fillet weld air testing, the liquid penetration testing may be adopted.7.8.3 Adoption of liquid penetration testing must be approved by Surveyors and Representatives of Owner.7.8.4 Filling water testing, hose testing, air testing of compartment, fillet weld air testing, vacuum testing,magnetic particle testing and dye penetration testing shall be carried out in accordance with the tightness testdrawings of each ship.8 INSPECTION8.1 After each tightness testing is completed, test department shall inform QC Department in written and QCDepartment shall notify Surveyors and Representatives of Owner to carry out the site-inspection. If no leakage isfound, this tightness testing is finished.8.2 If leakage is found in some location of weld during inspection by Representatives of Owner and Surveyors,

    this weld shall be repaired, and tightness testing of this location shall be carried out again after repairing iscompleted, the repaired weld must be subjected to inspection by owner and surveyors. This tightness testing isfinished after signature and approval by Representatives of Owner and Surveyors.

  • 8/19/2019 2008 Edition

    34/186

    30

    SWS  INCLINING TEST RULE 

    Reference Standard

    Q/SWS62-002-2006

    1 SCOPE The rule prescribe the test purpose and calculation principle, environment condition, preparation before test,

    test schedules, error check and record The rule apply to the passenger ships and the cargo ship having a length, as defined in the International

    Convention on Load Lines 1966, of 24m and upwards.2 TERMS AND DEFINITION

    The following terms and definition apply to this rule.2.1 Lightship condition

    A ship complete in all respects, but without consumables, stores, cargo, crew and effects, and without anyliquids on board except thatmachinery and piping fluids, such as lubricants and hydraulics,are at operating levels.3  TEST PURPOSE AND CALCULATION PRINCIPLE 3.1 Test purpose

    The test is intended to determine the position of the center of gravity and light weight of the ship.

    Prepare the inclining test report according to the inclining test record.

    3.2 Calculation principle 3.2.1 Calculate the metacenter height according to formula1 

    GM=M/(·tgθ) 1 whereGM——Transverse metacenter height above vertical center of gravity (m) 

    M ——heeling moment t.m 

     ——Displacementin water (t) 

    θ ——heeling angle (deg.) 3.2.2 Calculate the longitudinal center of gravity according to formula2:

    XG=XB+ZG-ZBtgψ  2 whereXG ——longitudinal center of gravity from midshipm positive means forward midship 

    XB ——longitudinal center of buoyancy from midshipm positive means forward midship 

    ZG ——vertical center of gravity above baselinem ZB ——vertical center of buoyancy above baselinem 

    ψ ——trim angledeg. positive means trim by stern 3.2.3 Calculate the vertical center of gravity according to formula3:

    ZG=KM-GM 3 

    whereZG ——vertical center of gravity above baselinem 

    KM——Transverse metacenter height above baselinem 

    GM——Transverse metacenter height above vertical center of gravity (m) 4 ENVIRONMENT CONDITION

     

    4.1 The test should be carried out at weather with wind not exceeding Beaufort scale 3. Otherwise the test can be done if administration agrees.

    4.2 The test should be done in outfitting quay. Pay attention to the wind direction and wave direction. Try todone at slack tide.

    4.3 There should be enough space to ensure the ship be afloat freely and not touch any other things during the

     process of the test.4.4 The ship should be moored in a manner to allow unrestricted heeling. The access ramps should be removed.Power lines, hoses, etc., connected to shore should be at a minimum, and kept slack at all times.

    4.5 The mooring lines should be as long as practical. All lines are to be slack, with the ship floating and heeling

    freely, when takereading during test.

  • 8/19/2019 2008 Edition

    35/186

    31

    5 PREPARATION BEFORE TEST

    5.1 The test should be carried out after completing as far as possible. The ship should be lightship condition. Allshipyard tools and remainders should be removed from the ship.

    5.2 If it is difficult to get to lightship condition, a few value of missing weights and surplus weights is allowed.

    But the total value of both should not exceed 1% of the lightship displacement. This doesn’t include the testweights and necessary ballast.

    5.3 The day before test, a preliminary survey should be done. The names, weights, vertical and longitudinalcenter of gravity of the surplus and missing weight should be recorded in the table respectively. Referred to the

    Appendix A.4. Ship’s conditions should be checked by owner’s representative and Class’s surveyor for theirconformation before commencing of test.5.4 Decks should be free of water. Any rain, snow or ice accumulated on the ship should be removed prior to the

    test. All equipments and other things which are liable to swing or moving should be lashed in proper positionsecurely, to prevent from moving or swinging during the test.

    5.5 All water or oil in machinery, boiler, piping and system should be of the quantity equivalent to lightship

    condition. Relevant valves should be kept closed to avoid the oil, water flowing or losing. Sea chest valves alsoshould be closed. The relative system is allowed to be in working condition if it is necessary for the generator towork during the test.

    5.6 The ballast tanks involved in the test and oil tanks allowed to fill oil in should be full. The ballast tanks

    should be filled several times to ensure it is full completely. The number of slack tanks should be kept to anabsolute minimum. Effect of the free surface of specific tanks not to be full should be determined.

    5.7 Fortest’s accuracy, ballast tanks and oil tanks not involved in the test should be emptied completely tominimize the effect of free surface as far as possible.

    5.8 Water or oil which accumulates in the space (including the cofferdam space) except ballast tanks and oiltanks should be removed.

    5.9 The ship should be as upright as possible and have sufficient draft so that any abrupt changes in the water plane will be avoided when the ship is inclined from side to side. Ship floating condition can be adjusted by

     ballast weight such as ballast water which has known weight and VCG (vertical center of gravity). When notrim or trim is very little, displacement, vertical center of transverse metacenter, longitudinal center of buoyancy

    etc can be determined using hydrostatic data according to average corrected draft. A deviation from trim of up to1% of L is normally acceptable when using hydrostatic data. Otherwise, the hydrostatic data should be calculated

    for the actual trim. For the ship has design trim, above-mentioned trim requirement base on design trim. 5.10 With inclining weight in the initial position, up to one-half degree of list is acceptable.

    5.11 The total weight used should preferably be sufficient to provide a minimum inclination of two degrees anda maximum of four degrees of heel to each side. However, a minimum inclination of one degree to each side may

     be accepted for large ships.

    5.12 Test weight should be compact and of such a configuration that the VCG (vertical centre of gravity) of theweights can be accurately determined.5.13 Water ballast is generally not acceptable as inclining weight. However, water ballast transfer may be

     permitted when it is absolutely impractical to incline using solid weights if acceptable to the administration.

    Where water ballast is permitted, the following should be complied with:a) Inclining tanks should be wall-sided and free of large stringers (air pockets).

     b) Tanks should be directly opposite to maintain ship’s trim.c) Pipe lines to inclining tanks should be full.

    d) All ballast valves should be closed prior to the test. Strictly valve control should be maintained during thetest. If the water is transferred through manifolds or valve boxes, all valves to the branches not used

    should be tagged or locked to prevent opening during the test.e) Inclining tanks initial weights and transfer weights should be satisfied with the requirement of maximum

    inclining of heel to each side.5.14 Test weight should be divided into four groups with similar shift moments. Certification of the test weights

    should be carried out prior to the inclining and be acceptable to the administration. Test weights location shouldavoid the deck to be overloaded and the location should be painted clearly on the deck.

    5.15 The heeling angle of the ship to be measured by hanging pendulum. Three sets of hanging pendulum to belocated. They should each be located in an area protected from the wind and as far apart as practical. The

     pendulum length (λ) is the perpendicular distance from the nail to the scale gauge. The pendulums should be longenough to give a measured deflection, to each side of upright, of at least 15cm. Generally, this will require a

     pendulum length of at least 3m. The pendulum weight should be immersed into the liquid in the trough and nottouch the bottom and side each movement. Pendulum arrangement is simply shown in figure (1) .

  • 8/19/2019 2008 Edition

    36/186

    32

                                                         

         

     Fig. 1

    5.16 Interphones are provided for communication between central control and each pendulum station and between central control and the test weight position. One person at a central control station should have complete

    control over all personnel involved in the test.6 TEST PROCEDURE

    6.1 The test should be carried out in presence of administration representative and owner. The test commanderorganizes shipyard, administrationowner and other delegates to check the ship’s status completely together and to

    confirm whichhas been satisfied with the test requirement.6.2 During the test, one person as commander in chief should plan the test procedure, give orders to start

    reading pendulum gauge and to superintend personnel in place. Furthermore, meet with administrationrepresentative and relative delegates to survey the wind direction, the wind velocity, current, the status of river

    surface around and to confirm which is satisfied with the test required condition and mooring status.6.3 The personnel who take part in the inclining test should be in right place and their weights and position

    should be recorded. Excess personnel should be away from the ship.

    6.4 To get accurate test displacement and buoyancy center, all draft marks (forward, mid ship, and aft) on eachside of the ship should be read accurately. At the same time, the measurement of the density of test area’s watershould be carried out. The data recorded in appendix A.1.

    6.5 If the test weight is solid weight, test procedure is showed as fig 2. If the test weight is ballast water, test

     procedure is showed as fig 3 (a example of 175k bulk carrier).

     Fig. 2

    note  1■-- the position of test transfer weight2□-- the position of notest transfer weight

  • 8/19/2019 2008 Edition

    37/186

    33

    Fig. 36.6 When everything and personnel is in place, the test should commence immediately. After the ship is stable,

    observers should start reading under the instructions of commander in chief and record the data in appendix A.2.Hereafter, reading and recording should be made for each weight movement. For each movement, the pendulum

    gauge reading should be repeated recordedten times when the pendulum is swing by right and left, then theaverage value should be calculated and recorded. At the same time, the incline liquid tanks’ sounding should be

    repeated and recorded three times in appendix A.3. Then the average value should be calculated and recorded.

    6.7 After each weight movement and prior to each reading, the following should be checked:

    athe mooring arrangement should be checked to ensure that the ship is afloat freely.

     bwhen the ship heels, the wire for pendulums should be perpendicular and should not touch the scale gauge.

    call personnel are in place.6.8 The heeling angle is calculated by the following formula:

    tgθ=a/λ  4 where  θ ——heeling angle°.

    a——the average value of swing of pendulum (m).

    λ ——the value of perpendicular distance of pendulum wire from nail to scale gauge (m).

  • 8/19/2019 2008 Edition

    38/186

    34

    7 TEST ERROR CHECK

    7.1 A error check plot should be plot during the test to ensure that acceptable data is being obtained. Theabscissa of the plot will be heeling moment and the ordinate will be the tangent of the heel angle. The error check

     plot refer to figure 4 

    Fig.4

    7.2 Plotting the average of the readings after each weight movement. Once any deviation is found, analyze the

    reason and determine if part or the entire test to be redone.8 TEST RECORDS

    During inclining test, relevant data should be recorded, the records format refer to the Appendix A.

  • 8/19/2019 2008 Edition

    39/186

    35

    APPENDIX A

    (NORMATIVE APPENDIX)

    INCLINING TEST RECORDING TABLE

    A.1  Ship test condition record:

      GeneralTime of the test started:

    Time of the test finished:Weather condition:river condition:Air temperature:

      Draft, water temperature, water specific gravity reading(Port side)

    aft mid fwd

    (Stb’d side)

    ItemPosition Draft

    (m)water specific gravity (t/m

    3) water temperature ()

    PortFore

    Stb’d

    PortMid.

    Stb’d

    PortAft.

    Stb’d

    Personnel: Class

    OwnerShipyard

    A.2 Pendulum reading record:

      Pendulum position

    Position

     No

    Longitudinal Transverse

    Length (mm)

     No.1 pendulum

     No.2 pendulum

     No.3 pendulum

  • 8/19/2019 2008 Edition

    40/186

    36

      Pendulum deflection

     No.1 pendulum No.2 pendulum No.3 pendulum

     No.Reading

    (mm)

    Deflection

    (mm)Reading (mm)

    Deflection

    (mm)Reading (mm)

    Deflection

    (mm)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Personnel: Class

    OwnerShipyard

  • 8/19/2019 2008 Edition

    41/186

    37

     No.1 pendulum reading Length= mm

    ReadingNo.

    Shift No.1

    (mm)2

    (mm)3

    (mm)4

    (mm)5

    (mm)6

    (mm)7

    (mm)8

    (mm) (m

    0

    1

    2

    3

    4

    5

    6

    7

    8

  • 8/19/2019 2008 Edition

    42/186

    38

     No.2 pendulum reading reading Length= mm

    ReadingNo.

    Shift No.1

    (mm)2

    (mm)3

    (mm)4

    (mm)5

    (mm)6

    (mm)7

    (mm)8

    (mm) (m

    0

    1

    2

    3

    4

    5

    6

    7

    8

  • 8/19/2019 2008 Edition

    43/186

    39

     No.3 pendulum reading reading Length= mm

    ReadingNo.

    Shift No.1

    (mm)2

    (mm)3

    (mm)4

    (mm)5

    (mm)6

    (mm)7

    (mm)8

    (mm) (m

    0

    1

    2

    3

    4

    5

    6

    7

    8

  • 8/19/2019 2008 Edition

    44/186

    40

    A.3 Shifting ballast water sounding record:

      Sounding position

    Tank name Longitudinal

      Sounding level

    Port StarboardRead. No

    Shift No1

    (m)

    2

    (m)

    3

    (m)

    Aver.

    (m)1

    (m)

    2

    (m)

    3

    (m)

    Aver.

    (m)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Personnel: Class

    OwnerShipyard

  • 8/19/2019 2008 Edition

    45/186

    41

    A.4 Detail of weight to be loaded and unloaded

      Detail of weight to be loaded and unloaded - E/R part1. Detail of weight to be loaded

    ItemsWeight

    (t)L.C.G

    (m)L.C.G-M

    (t-m)V.C.G

    (m)V.C.G-M

    (t-m)

    TOTAL

    Personnel: Class

    Owner

    Shipyard

  • 8/19/2019 2008 Edition

    46/186

    42

      Detail of weight to be loaded and unloaded - E/R part2. Detail of weight to be unloaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipya

  • 8/19/2019 2008 Edition

    47/186

    43

      Detail of weight to be loaded and unloaded - E/R part3. Detail of weight to be unloaded (liquid)

    ItemsSound’g

    (m)Volume

    (m3)S.G

    Weight(t)

    L.C.G.(m)

    L.C.G-M(t-m)

    TOTAL

  • 8/19/2019 2008 Edition

    48/186

    44

      Detail of weight to be loaded and unloaded - main hull part1. Detail of weight to be loaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipyard

  • 8/19/2019 2008 Edition

    49/186

    45

      Detail of weight to be loaded and unloaded - main hull part2. Detail of weight to be unloaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipyard

  • 8/19/2019 2008 Edition

    50/186

    46

      Detail of weight to be loaded and unloaded - main hull part3. Detail of weight to be unloaded (liquid)

    ItemsSound’g

    (m)Volume

    (m3)S.G

    Weight(t)

    L.C.G.(m)

    L.C.G-M(t-m)

    TOTAL

  • 8/19/2019 2008 Edition

    51/186

    47

      Detail of weight to be loaded and unloaded - accomodation part1. Detail of weight to be loaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipyard

  • 8/19/2019 2008 Edition

    52/186

    48

      Detail of weight to be loaded and unloaded - accomodation part2. Detail of weight to be unloaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipyard

  • 8/19/2019 2008 Edition

    53/186

    49

      Detail of weight to be loaded and unloaded - other part1. Detail of weight to be loaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipyard

  • 8/19/2019 2008 Edition

    54/186

    50

      Detail of weight to be loaded and unloaded other2. Detail of weight to be unloaded

    ItemsWeight

    (t)

    L.C.G

    (m)

    L.C.G-M

    (t-m)

    V.C.G

    (m)

    V.C.G-M

    (t-m)

    TOTAL

    Personnel: ClassOwner

    Shipyard

  • 8/19/2019 2008 Edition

    55/186

    51

    SWS 

    PROCEDURES FOR HULL STRUCTURE WELDING AND

    SELECTION OF GROOVE TYPES 

    Reference Standard

    Q/SWS41-003-20071 SCOPE

    This standard defines the basic groove types and dimensions for the hull structural butt joints and T-type joints.

    This standard applies to welding design and production which include such welding processes as SMAW,single-wire or double-wire SAW, FCB SAW, semi-auto or auto FCAW, combined welding of FCAW and SAW,EGW, HS-MAG, T-bar welding and so on.

    2 BUTT WELDING

    2.1 The options for butt welding are as shown in table 1.

    Table 1 Options for butt welding

     No.

    WeldingProcesses

    Applicable range Remarks

    1 FCB SAW

    During block construction:

    (1) Butt welds of the planar plates in the inner bottom plate;

    (2) Butt welds of the planar plate in the bottom shell plate;(3) Butt welds of the planar plate in the side shell plate;

    (4) Butt welds of the planar plate in the deck;

    (5) Butt welds of the slope plate in the top or bottom sidewater ballast tanks;

    (6) Butt welds of the plates in the longitudinal or transverse bulkheads.

    (1) Apply to welding in the panel production flow line;

    (2) The butt welds must be perpendicular to the flowdirection of the line;

    (3) The chamfer must be inthe back of the weld ifthere is plate thicknessdifference.

    2

    Single-wireor

    double-wireSAW

    During blocks construction:

    (1) Butt welds of the planar deck plate and the platform plate;

    (2) Butt welds of the planar bulkhead plate and the transom plate;

    (3) Butt welds of the longitudinal girder plate and floors plate during sub-assembling;

    (4) Butt welds of the superstructure plates;

    (5) Butt welds of the face plates or the web plates of themain engineer seat;

    (6) Butt welds of the corrugated bulkhead plates, the vertical plates of stool and the slope plates;

    (7) Butt welds of the web plates(the weld length is over 1meter) in the large T-bar;

    (1) The angle between theweld plane and the horizonis less than 10°;

    (2)The welds of the platesthat won’t flow into the planar panel flow line.

    3 EGW

    During pre-erection and erection stage in dock:(1) Vertical butt welds of the planar part in the side shell

     plate;

    (2) Butt welds of the slope plate in the bottom water ballasttank;(3) Vertical or slope block butt welds of the vertical plate in

    low stool;(4) Vertical block butt welds of the transverse or

    longitudinal bulkheads;(5) Vertical butt welds of the transverse bulkhead in the bow

     between portside and starboard block.

    The welding face must bethe non-frame side.

    4

    CombinedWelding

    (FCAW+SA

    W)

    During block construction stage (1) Butt welds of the inner bottom plates, shell, side shell

     plate, deck, slope plate which couldn’t be welded by FCBSAW in the planar panel flow line or have local curved;During pre-erection and erection stage in dock:

    (1) Butt welds of the inner bottom plate, deck, platform plate;

    The angle between theweld plane and the horizon isless than 10°;

          

                  

     

     

  • 8/19/2019 2008 Edition

    56/186

    52

    Table 1Continued  Options for butt welding

     No.Welding

    ProcessesApplicable range Remarks

    5

    FCAW

    (ceramic backing)

    During block construction stage (1) Butt welds of the shell plates (in the bow, stern, round

     plate) in the partly curved block;

    (2) Butt welds