2007 ICNS-1 MEW 5/2/2007 MIT Lincoln Laboratory MPAR Trade Studies Mark Weber 12 October 2007.

22
2007 ICNS-1 MEW 5/2/2007 MIT Lincoln Laboratory MPAR Trade Studies Mark Weber 12 October 2007

Transcript of 2007 ICNS-1 MEW 5/2/2007 MIT Lincoln Laboratory MPAR Trade Studies Mark Weber 12 October 2007.

2007 ICNS-1MEW 5/2/2007

MIT Lincoln Laboratory

MPAR Trade Studies

Mark Weber

12 October 2007

2007 ICNS-2MEW 5/2/2007

MIT Lincoln Laboratory

Lincoln Laboratory ATC Program History

1970 1980 1990 2000

Discrete Address Beacon System Mode S

Surveillance and Communications

Microwave Landing System

Beacon Collision Avoidance System TCAS

Moving Target DetectorAirport Surface Detection Equipment

ASR-9 SLEP

Parallel Runway MonitorGPS Applications

ADS-BMode S

Surface CommsAirport Surface

Traffic Automation

Terminal ATC AutomationNASA ATM Research

Storm TurbulenceTerminal Doppler Weather Radar SLEP

ASR-9 Wind Shear ProcessorNEXRAD Enhancements

Multi Function Phased Array RadarIntegrated Terminal Weather System

Aviation Weather ResearchWake Vortex

GCNSS/SWIM

Communication,Navigation and

Surveillance

Automation

Weather

UAS

Corridor Integrated Weather System

Runway Status Lights

Proc. Augmentation Card

MIT Lincoln Laboratory2007 ICNS-3

MEW 5/2/2007

Today Future

National Air Surveillance Infrastructure

ASR-9ASR-9 ASR-11ASR-11

ARSR-3ARSR-3

TDWRTDWR

ARSR-4ARSR-4

ASR-8ASR-8

ARSR-1/2ARSR-1/2

NEXRADNEXRAD

FAA transition to Automatic Dependent Surveillance Broadcast (ADS-B) dictates that the nation re-think its overall surveillance architecture. Needs:

Weather (national scale and at airports)

ADS-B integrity verification and backup

Airspace situational awareness for homeland security

ADS-B

MPAR

MIT Lincoln Laboratory2007 ICNS-4

MEW 5/2/2007

Today’s Operational Radar Capabilities

Function

Maximum Range for Detection of

1m2 Target

Required Coverage

Range Altitude

Angular Resol.

Az El Waveform*

Scan Period

Terminal Area Aircraft

Surveillance(ASR-9/11)

60 nmi 60 nm 20,000' 1.4 5o

>18 pulsesPRI ~ 0.001 sec 5 sec

En Route Aircraft

Surveillance(ARSR-4)

205 nmi 250 nm 60,000' 1.4 2.0>10 pulsesPRI ~ 0.001 sec 12 sec

Airport Weather(TDWR) 212 nmi 60 nmi 20,000' 1 0.5

~50 pulsesPRI ~ 0.001 sec 180 sec

Nationwide Weather

(NEXRAD)225 nmi

250 nmi 50,000' 1 1

~50 pulsesPRI ~ 0.001 sec >240 sec

Weather surveillance drives requirements for radar power and aperture size

Aircraft surveillance functions can be provided “for free” if necessary airspace coverage and update rates can be achieved

Active array radar an obvious approach, but only if less expensive and/or more capable than “conventional” alternatives

MIT Lincoln Laboratory2007 ICNS-5

MEW 5/2/2007

Outline

• Perspectives on operational needs

• A specific MPAR concept

• Summary

MIT Lincoln Laboratory2007 ICNS-6

MEW 5/2/2007

Key Questions

• What are the operational driver’s for the “next generation” ground weather radar network?

– Improved low altitude coverage, particularly at airports?– Volume scan update rate?– Capability to observe low-cross section phenomena (e.g clear

air boundary winds)?– High integrity measurements, devoid of clutter, out-of-trip

returns, velocity aliasing, etc.?

• What are requirements for the ADS-B backup system?

• Are additional non-cooperative aircraft surveillance capabilities needed to maintain airspace security?

MIT Lincoln Laboratory2007 ICNS-7

MEW 5/2/2007

U.S. Airport “Weather” Radars

Current WSR-88D network does not provide the near-airport low altitude coverage or update rate (30 – 60 sec) needed by terminal ATC

MIT Lincoln Laboratory2007 ICNS-8

MEW 5/2/2007

Airport Weather Radar Alternatives Analysis

AirportOver ARENA

TDWR ASR-9 NEXRAD

ADW9793

8559

8290

ATL9689

8361

9497

BNA9896

8269

9283

BOS9794

9295

8696

BWI9895

8563

1010

CLE9896

9191

9795

CLT9998

8456

00

CMH100100

8772

1010

CVG9999

8977

1010

DAL9791

4340

8275

DAY9895

8873

6714

DCA9895

8664

8898

Wind Shear Detection Probability

ITWS “Terminal Winds” Accuracy

Without TDWR With TDWR

TDWR ASR-9

LLWAS

AirplaneLidar

NEXRAD

Sensors Considered

MIT Lincoln Laboratory2007 ICNS-9

MEW 5/2/2007

Preliminary Findings

• Easy to make the case for high capability airport weather radar at pacing airports (e.g. NYC, ORD, ATL, DFW, ....)

– Large delay aversion benefits associated with high quality measurements of adverse winds and precipitation (>$10M per year per airport)

• Business case for “TDWR-like” capability at smaller airports less convincing

– Alternative solutions may provide adequate safety margin– Weather related delay benefits small

• Implications for MPAR– Scalability key to realizing cost-effective solutions– Airport-specific integrated observation system configurations

will be appropriate in some cases (e.g. western U.S. “dry sites”)

MIT Lincoln Laboratory2007 ICNS-10MEW 5/2/2007

ADS-B Backup Separation Services Map

SeparationAirspace Type Altitude Range Coverage Area

5 nm YesEn Route SSR 250 nm 2,820,000 nm2

3 nm No 661,000 nm260 nmTerminal PSR 3 nm YesTerminal SSR 40 nm 314,000 nm2

No coverage

SeparationAirspace Type Altitude Range Coverage Area

5 nm BeaconEn Route SSR 200 nm 2,820,000 nm2

3 nm Pilot 661,000 nm2 40 nmTerminal PSR

3 nm BeaconTerminal SSR 60 nm 314,000 nm2

No coverage

MIT Lincoln Laboratory2007 ICNS-11MEW 5/2/2007

Required Surveillance Performance (RSP) Methodology

MIT Lincoln Laboratory2007 ICNS-12MEW 5/2/2007

RSP Derived from En Route Radar Capabilities*

Currently Acceptable(sliding window SSR)

Latest Technology(monopulse SSR)

Registration Errors

Location Bias 200’ uniform any direction

Azimuth Bias 0.3 uniform

Range ErrorsRadar Bias 30’ uniform

Radar Jitter = 25’ Gaussian

Azimuth Error Azimuth Jitter = 0.230 = 0.068

Data Quant.(CD2 format)

Range 760’ (1/8 NM)

Azimuth 0.088 (1 ACP)

Uncorrelated* Sensor Scan Time Error 10-12 sec

Transponder Error

Range Error(ATCRBS)

250’ uniform = 144’

RSP Analysis

Location Error = 1.0 NM 0.30 NM

Separation Errors(at 200 NM @ 600 kts)

= 0.8 NM = 0.25 NM

90% < 1.4 NM 99% < 2.4 NM99.9% < 3.3 NM

90% < 0.43 NM

99% < 0.76 NM99.9% < 1.02 NM

*Only applies for multiple sensors *Supports 5 nmi separation

MIT Lincoln Laboratory2007 ICNS-13MEW 5/2/2007

RSP Derived from Terminal Radar Capabilities*

Currently Acceptable(sliding window SSR)

Intermediate(primary radar)

Latest Technology(monopulse SSR)

Registration Errors

Location Bias 200’ uniform any direction

Azimuth Bias 0.3 uniform

Range ErrorsRadar Bias 30’ uniform

Radar Jitter = 25’ Gaussian

= 275’ Gaussian

= 25’ Gaussian

Azimuth Error Azimuth Jitter = 0.230 = 0.160 = 0.068

Data Quant.(CD2 format)

Range 95’ (1/64 NM)

Azimuth 0.088 (1 ACP)

Uncorrelated* Sensor Scan Time Error 4-5 sec

Transponder Error

Range Error(ATCRBS)

250’ uniform = 144’ N/A 250’ uniform

= 144’

RSP Analysis

Location Error = 0.20 NM 0.15 NM 0.10 NM

Separation Errors(at specified range

@ 250 kts)

= 0.16 NMat 40 nm

= 0.12 NMat 40 nm

= 0.08 NMat 60 nm

90% < 0.28 NM 99% < 0.49 NM99.9% < 0.65 NM

90% < 0.20 NM

99% < 0.35 NM99.9% < 0.46 NM

90% < 0.13 NM 99% < 0.23 NM

99.9% < 0.32 NM

*Only applies for multiple sensors *Supports 3 nmi separation

MIT Lincoln Laboratory2007 ICNS-14MEW 5/2/2007

MPAR RSP Analysis

4.4 antenna beamwidth meets Terminal RSP Separation Error4.6 antenna beamwidth meets En Route RSP Separation Error4.4 antenna beamwidth meets Terminal RSP Separation Error4.6 antenna beamwidth meets En Route RSP Separation Error

20:1 Monopulse

MIT Lincoln Laboratory2007 ICNS-15MEW 5/2/2007

Enhanced Regional Situation AwarenessSystem Elements

Ground BasedSentinel Radars

ElevatedSentinel Radars

FAA RadarsAnd Data Bases

Wide Area 3-D

NORADTADIL-J

Visual

Hi-Res EO Sites

Hi-Perf EO/IR and Warning Systems

Mode-SRCVR

Redundant Networks

US

ER

SF

US

ION

SE

NS

OR

S

Air Situation Decision Support Display and Camera Control

Fan-out to Multiple Users

Redundant Networks

Primary FacilityFusion and Aggregation

Evidence Accrual andDecision Support

PortableAir Situation Display

• Lincoln facilities provided infrastructure for rapid system development

– Radar and camera sites– FAA data feeds and fusion– Network connectivity

• Lincoln developed Integrated Air Picture, Decision Support, ID, and Visual Warning deployed for operational use in NCR

MIT Lincoln Laboratory2007 ICNS-16MEW 5/2/2007

Lincoln Perspectives on Role of FAA Surveillance Systems

• Current primary/secondary radars “as is” will provide an essential backbone to homeland air picture and decision support system

• Enhancement recommendations– “Network compatible interface”– External access to unfiltered target detections

(amplitude, Doppler velocity, …)– Target height information would be very valuable

• DoD/DHS will deploy ancillary sensor as necessary to meet specific operational needs

MIT Lincoln Laboratory2007 ICNS-17MEW 5/2/2007

Outline

• Perspectives on operational needs

• A specific MPAR concept

• Summary

MIT Lincoln Laboratory2007 ICNS-18MEW 5/2/2007

Concept MPAR Parameters

• Active Array (planar, 4 faces)Diameter: 8 mTR elements/face: 20,000Dual polarizationBeamwidth: 0.7 (broadside)

1.0 (@ 45)Gain: > 46 dB

• Transmit/Receive ModulesWavelength: 10 cm (2.7–2.9 GHz)Bandwidth/channel: 1 MHzFrequency channels: 3Pulse length: 30 sPeak power/element: 2 W

• ArchitectureOverlapped subarrayNumber of subarrays: 300–400Maximum concurrent beams: ~160

Aircraft Surveillance

Non cooperative target tracking and characterizationWeather

Surveillance

334 MPARS required to duplicate today’s airspace coverage. Half of these are scaled “Terminal MPARS”

MIT Lincoln Laboratory2007 ICNS-19MEW 5/2/2007

Concept MPAR Capability Summary

• Airspace coverage equal to today’s operational radar networks.

• Angular resolution, minimum detectible reflectivity and volume scan update rate equal or exceed today’s operational weather radars

– Ancillary benefits from improved data integrity and cross-beam wind measurement

• Can easily support 3-5 nmi separation standards required for ADS-B backup

• Can provide non-cooperative aircraft surveillance data of significantly higher quality that today’s surveillance radars

– Altitude information– Substantially lower minimum RCS threshold

MIT Lincoln Laboratory2007 ICNS-20MEW 5/2/2007

2W Dual Mode T/R Module Parts Costs

• Parts costs driven by SP2T switches and multi-layer PC board fabrication

• Packaging / test costs not included

• Parts costs driven by SP2T switches and multi-layer PC board fabrication

• Packaging / test costs not included

Item Quantity Unit Cost Total CostHPA 2 $2.37 $4.74SP2T 3 $4.00 $12.00LNA 1 $1.69 $1.69BPF 1 $3.00 $3.00Diplx 1 $1.50 $1.50Vect Mod 3 $2.14 $6.42Load 1 $2.00 $2.00Board 1 $20.00 $20.00 Total = $51.35

v

MIT Lincoln Laboratory2007 ICNS-21MEW 5/2/2007

Preliminary Parts Cost Estimates

Component Pre-Prototype Full Scale MPAR

Antenna Element $1.25 $1.25

T/R Module $115.00* $51.00**

Power, Timing and Control $18.00 $18.00

Digital Transceiver $12.50 $6.25

Analog Beamformer $186.00*** $55.00****

Digital Beamformer $18.00 $8.00

Mechanical/Packaging $105.00 $25.00

Equivalent Cost per Element - Parts Only

$455.75 $164.50Totals:

* Assumes 8W module incl RF board with sequential polarization

** Assumes 2W module and sequential polarization (updated 18 Sept 2007)*** Assumes standard beamformer in azimuth**** Assumes hybrid tile/brick architecture with RFIC overlapped subarray beamformer

MIT Lincoln Laboratory2007 ICNS-22MEW 5/2/2007

Summary

• As a community, we are making substantial progress in exposing requirements for the Next Generation surveillance radar network

– Multifunction, active array (MPAR) approach continues to be a leading candidate

• Low cost is the key to success of MPAR– ‘Commercial’ approach needed to achieve extremely low

cost goals

• We are ready to solicit input from industry on specific design concepts and cost

• Need to sell concept to policy makers– Compelling operational application demonstration– Business case substantiating agency cost savings