2006 Michelson Summer Workshop Frontiers of...

54
Stellar diameters, rotation and pulsation 2006 Michelson Summer Workshop Frontiers of interferometry: stars, disks, and terrestrial planets Caltech, Pasadena July 25, 2006 Guy Perrin

Transcript of 2006 Michelson Summer Workshop Frontiers of...

Stellar diameters, rotation and pulsation

2006 Michelson Summer Workshop

Frontiers of interferometry: stars, disks, and terrestrial planets

Caltech, PasadenaJuly 25, 2006

Guy Perrin

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 2July 25, 2006

OutlineOutline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 3July 25, 2006

OutlineOutline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 4July 25, 2006

The uniform disk visibility functionThe uniform disk visibility function

Brightness distribution: with Ø the angular diameter and S thespatial coordinates

Visibility function:

Modulus of the visibility function:

I(

r S ) = Π

⎛ ⎝ ⎜

⎞ ⎠ ⎟

V (r B ) =

2J1πØB

λ⎛ ⎝ ⎜

⎞ ⎠ ⎟

πØBλ

0

0,2

0,4

0,6

0,8

1

Vis

ibili

Base B1,22 λ/θ

Ø

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 5July 25, 2006

The Michelson interferometer at Mount Wilson (1921)

The Michelson interferometer at Mount Wilson (1921)

Top of the 100’’ telescope(telescope = beam combiner + delay line)

The baseline couldeasily be varied

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 6July 25, 2006

Examples of modern diameter measurementsExamples of modern diameter measurements

Ridgway et al. (1992, IRMA)

Mira in the K band

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 7July 25, 2006

Examples of modern diameter measurementsExamples of modern diameter measurements

Perrin et al. (2003, IOTA)

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

Vis

ibil

ité

Fréquence spatiale (cycles/arcsec)

SW VirginisM7.3 III semi-regular variable in 1996 & 1997

φUD

= 16,53±0,14 mas

χ2=0,81

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 8July 25, 2006

How to efficiently constrain stellar diametersHow to efficiently constrain stellar diametersThe diameter is best constrained when the derivative of the diameter wrt

visibility is minimum:

Let’s use the product ØxB/λ (a normalized diameter) instead of Ø.

∂Ø∂V Vopt ?

Vopt = 0.47Øopt = 0.73

Var Ø( )= Var V( )×∂Ø∂V

⎡ ⎣ ⎢

⎤ ⎦ ⎥

2

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 9July 25, 2006

How to efficiently constrain stellar diametersHow to efficiently constrain stellar diametersIn practice, measurements close to the first null of the visibility function

provide an excellent constraint

Why ?

1. Multiplicative errors and biases (those produced by turbulence for example) are larger at higher visibilities

Multiplicative errors and biases close to the first null therefore tend towards 0.

2. Multiple measurements around the first null are efficient to explore thestar (e.g. limb-darkening, wait a little bit)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 10July 25, 2006

Diameter measurement and visibility noiseDiameter measurement and visibility noise

Lacour et al. (≥ 2006, IOTA)

Arcturus data taken at IOTA with IONIC

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 11July 25, 2006

Accuracy of diameter measurementsAccuracy of diameter measurements

Demonstrated accuracy ~ 0.5% in K e.g. Kervella et al. (2003) with a 60 m baseline on α Cen A

(ØLD=8.5 mas) and α Cen B (ØLD=6.0 mas) at VLTI

What sets the limit is probably the ability of the UD model or of othersimple models to well describe the star.

Extrapolated to a 330 m baseline and in the J band this means that CHARA should be able to measure all stellar diameters larger than 0.6 mas with an accuracy better than 0.5%

This is a few thousand stars !

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 12July 25, 2006

Measurement of the α Cen componentsMeasurement of the α Cen components

α Cen A

α Cen B

Kervella et al. (2003, VLTI)

V=42%

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 13July 25, 2006

Limb darkeningLimb darkening

A limit to the accuracy of the measurementThe uniform disk model provides the apparent size of an objectLimb darkening makes a star appear smaller than it is in reality.

Limb darkened diskUniform disk Limb darkening of

the solarphotosphere in thevisible

The apparent star diameter is smaller by a few percentsSee J. Aufdenberg talkLimb darkening needs to be modeled or directly measured

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 14July 25, 2006

Limb-darkening, apparent diameter, visibilityLimb-darkening, apparent diameter, visibility

Apparent diameterLinear limb darkeningI(μ) =1− A(1− μ)

A=0 0.25 0.5 0.75 1

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 15July 25, 2006

OutlineOutline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 16July 25, 2006

What are diameters useful for ?What are diameters useful for ?

• Diameters are useful to constrain fundamental parameters: mass, radius, Teff, …

• Comparison of (R,Teff) with evolutionary models

• Differences between Teff and Tc are illustrative of the complex atmosphericstructure of a star (diverges above M0 III (Ridgway et al. 1980))

• Temperatures and diameters are useful to generate synthetic models of galaxies

• Temperatures and diameters are useful to generate models of parent stars of pulsating giants

• Prediction of diameters from models at ~ 1% precision

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 17July 25, 2006

The fundamental parameters of α Cen BThe fundamental parameters of α Cen B

Kervella et al. (2003)

α Cen B diameter larger than the prediction reduce the mixing length increasethe mass agreement with asteroseismic estimate

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 18July 25, 2006

Measurement of Limb darkeningMeasurement of Limb darkening

Quirrenbach

et al. (1996, Mark III)

Wittkowski et al. (2004, VINCI)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 19July 25, 2006

Measurement of Limb darkeningMeasurement of Limb darkening

Lacour et al. (≥ 2006, IOTA)

Uniform disk model Lim-darkened disk model

α Boo α Boo

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 20July 25, 2006

The effective temperature scale of giantsThe effective temperature scale of giants

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 21July 25, 2006

Diameters inside and outside TiO bands of late-type stars

Diameters inside and outside TiO bands of late-type stars

Quirrenbach et al. (1993, Mark III)

β PegM2.5 III

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 22July 25, 2006

Life storyLife story

Giant

Molecularcloud

Protostar Main sequencestar

Supernova

Planetary nebula

Evolved starsM < 5-8 M

M > 5-8 M

Supergiant

AGB

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 23July 25, 2006

The atmosphere of Mira starsThe atmosphere of Mira stars

Reid & Menten (1997)

• Issue: to define and to measure a diameter

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 24July 25, 2006

Measuring Mira star diametersMeasuring Mira star diameters

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 25July 25, 2006

Measuring Mira star diametersMeasuring Mira star diameters

TiO

COCOH2O

Scholz & Takeda (1987)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 26July 25, 2006

Measuring Mira star diametersMeasuring Mira star diameters

Ø*

Tuthill et al. (2000, Keck I)

R Aqr

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 27July 25, 2006

Measuring Mira star diametersMeasuring Mira star diameters

Mennesson et al. (2002, IOTA)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 28July 25, 2006

Multi-λ observations of R LeoMulti-λ observations of R Leo

Phase K: 0.79Phase L: 0.64

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70

R LeoNovember 2000 - November 2001

2.03 µm (H2O)

2.15 µm (continuum 1)

2.22 µm (continuum 2)

2.39 µm (CO & H2O)

L

Vis

ibil

ity

Spatial Frequency (cycles/arcsec)Perr

in e

t al.

(200

4, IO

TA)

τ2.03µm = 1.19±0.01

τ 2.15µm = 0.51±0.01

τ 2.22µm = 0.33±0.01

τ 2.39µm = 1.37±0.01

τ L = 0.63±0.01

Type: M0-M1

TlayerRlayerτ

T*R*

layer

photosphere

R* = 10.94±0.85 mas Rlayer = 25.00±0.17masT* = 3856±119 K Tlayer = 1598±24 K

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 29July 25, 2006

A possible sketch for Mira starsA possible sketch for Mira stars

Photosphere

IR molecular layer

SiO masers

Inner edge of the dust envelope

1 R*

2 R*

3 R*

4 R*

TiO

Scattering at short λ

Thermal emission in the IR

See B. Mennesson’s talk

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 30July 25, 2006

Radius and pulsation modeRadius and pulsation mode

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 31July 25, 2006

OutlineOutline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 32July 25, 2006

Meausuring the pulsation of starsMeausuring the pulsation of stars

• A difficult task

• Either stars are well approximated by uniform or slightly darkened disks but have small amplitude pulsations

• Or stars have large amplitude pulsations but have complex structures that (may) evolve with time

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 33July 25, 2006

Diameter variations of Mira starsDiameter variations of Mira stars

Young et al. (2000, COAST)

χ Cyg 905 nm

Almost no variations at 1290 nm

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 34July 25, 2006

Diameter variations of Mira starsDiameter variations of Mira stars

Thompson et al. (2002, PTI)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 35July 25, 2006

Diameter variations of Mira starsDiameter variations of Mira stars

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70 80

R LeoSingle baseline 1996 measurement

Vis

ibil

ity

Spatial frequency (cycles/arcsec)

φUD 1996

=28.18±0.05 mas

Perrin et al. (1999, IOTA)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 36July 25, 2006

Diameter variations of Mira starsDiameter variations of Mira stars

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70 80

R Leo4 baseline 1997 measurement

Vis

ibil

ity

Spatial frequency (cycles/arcsec)

φUD 1997

=30.68±0.05 mas

φUD 1996

=28.18±0.05 mas

Direct detection of pulsation ?(Perrin et al. 1999)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 37July 25, 2006

Simple ad-hoc model: photosphere + molecularlayer

Simple ad-hoc model: photosphere + molecularlayer

TlayerRlayerτ(λ)

T*R*

molecularlayer

photosphere

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 38July 25, 2006

Apparent diameter variations of MiraApparent diameter variations of Mira

τ2.03µm = 0.14±0.02

τ 2.15µm = 0.01±0.01

τ 2.22µm = 0.01±0.01

τ 2.39µm = 0.21±0.01

τ L = 0.08±0.01

R* = 12.29±0.02 mas Rlayer = 26.84±0.06 mas Phase K: 0.01 T* = 3263±105 K Tlayer = 2105±53 K Phase L: 0.10

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70

MiraOctober-November 2000

2.03 µm (H2O)

2.15 µm (continuum 1)

2.22 µm (continuum 2)

2.39 µm (CO & H2O)

L

Vis

ibil

ity

Spatial Frequency (cycles/arcsec)

Type: M6

Photospherediameter

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 39July 25, 2006

Apparent diameter variations of MiraApparent diameter variations of Mira

τ2.03µm = 0.63±0.21

τ 2.15µm = 0.19±0.05

τ 2.22µm = 0.12±0.04

τ 2.39µm = 0.76±0.50

R* = 12.71±0.15 mas Rlayer = 24.95±0.10 mas Phase: 0.19 T* = 3600±67 K Tlayer = 1961±17 K

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70

MiraNovember 2001

2.03 µm (H2O)

2.15 µm (continuum 1)

2.22 µm (continuum 2)

2.39 µm (CO & H2O)

Vis

ibil

ity

Spatial Frequency (cycles/arcsec)

Type: M3-M4

Photospherediameter

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 40July 25, 2006

Apparent diameter variations of MiraApparent diameter variations of Mira

R* = 12.71±0.15 mas Rlayer = 24.95±0.10 mas

τ 2.03µm = 0.63±0.21

τ 2.15µm = 0.19±0.05

τ 2.22µm = 0.12±0.04

τ 2.39µm = 0.76±0.50

R* = 12.29±0.02 mas Rlayer = 26.84±0.06 mas

τ 2.03µm = 0.14±0.02

τ 2.15µm = 0.01±0.01

τ 2.22µm = 0.01±0.01

τ 2.39µm = 0.21±0.01

R* 0.37 mas (3%) Rlayer 1.89 mas (7.3%)

Although the apparent diameter increased by 20%…

Phase 0 (October 2000) Phase 0.2 (November 2001)

… the apparent diameter change may be a pure optical depth variation effect

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 41July 25, 2006

The Cepheid stars and the distance scaleThe Cepheid stars and the distance scale

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.QuickTime™ et un

décompresseur TIFF (non compressé)sont requis pour visionner cette image.

Henrietta S. Leavitt

LEarth =1

4πD2Earth−Cepheid

× LCepheidInterferometric measurements are useful to calibrate this law

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 42July 25, 2006

Unsuccessful attemptsUnsuccessful attempts

0.0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6 0.8 1

Phase

FLUOR/IOTA

ζ Gem Kervella et al. (2001)

δ Cep Mourard et al. (1997)

Baselines were just too short !GI2T

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 43July 25, 2006

FLUOR/CHARA

δ Cep, P = 5.4 days

Mérand et al. (2005)

Measurement of pulsation by spectroscopy/Doppler effect:

Measurement of the pulsation by interferometry :

ΔRCepheid

ΔRCepheid /DEarth−Cepheid

⇒ DEarth−Cepheid

Success !Success !

Lane et al. (2001)

PTI

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 44July 25, 2006

Cepheid measurements:VINCI (7),PTI (2), NPOI (3), GI2T

(1), IOTA/FLUOR (1), CHARA/FLUOR (1) …

Kervella

et al. (2004)

P-L

The Cepheid law calibrationThe Cepheid law calibration

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 45July 25, 2006

OutlineOutline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 46July 25, 2006

How to measure rotation ?How to measure rotation ?

It should be easy:

make an image of the star and watch the motion of spots with rotation

Maybe a little too difficult for now.

Another idea:

measure a quantity which is a consequence of rotation

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 47July 25, 2006

Flattening ... in a simplified wayFlattening ... in a simplified way

• A particle at the equator of the star is subject to its weight P, the pressure reaction R and the centrifugal force C created by rotation

• For a given central mass, the flattening is then simply given by (Huyghensapproximation):

Req

Rpol

=1+C2P

For the matter to stay on the star, we have C < P , and therefore Req/Rpol < 1.5

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 48July 25, 2006

AltairAltair

Van Belle et al. (2001, PTI)

REq/RPol = 1.14 ± 0.03

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 49July 25, 2006

AchernarAchernar

UD 1.63 mas

K band

Domiciano et al. (2003, VLTI)Obviously, Achernar is not a uniform disk !

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 50July 25, 2006

ModelingModeling

• The Von Zeippel effect needs to be taken into account to interpret visibilities (darkeningat the equator)

• Models fail to explain Achernar

• Breakup speed is reached

REq/RPol = 1.56 ± 0.05

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 51July 25, 2006

The incredible case of Vega (K band)The incredible case of Vega (K band)

Classical LD models

High rotation model

Aufdenberg et al. (2006, CHARA)Teff

pole =10150 K

Teffequa = 7900 K

i = 4.7°

Subsolar point

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 52July 25, 2006

Closure phase imaging of Vega (500 nm)Closure phase imaging of Vega (500 nm)

The asymmetry predicted by CHARA/FLUOR is detected with NPOI

i=4.6° 93% of the breakup speed !

Peterson et al. (2006, NPOI)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 53July 25, 2006

Fast rotating stars observed by interferometryFast rotating stars observed by interferometry

Altaïr (PTI, NPOI)Alderamin (CHARA)Achernar (VLTI)

Regulus (CHARA) Vega (CHARA, NPOI)

G. Perrin -- Diameters, rotation, pulsation 2006 MSW 54July 25, 2006

A brief conclusionA brief conclusion

• Meausuring stellar diameters is a classical sport for interferometrists (theAustralian intensity interferometer could have been mentioned here)

• Diameters can be measured with very high accuracies (~ 0.5%)

• Measuring diameters is useful for both stellar and extragalactic physics

• Measuring diameter spatial and temporal variations is useful for cosmology (distance scale) and also for fundamental physics (e.g. the Von Zeippel effect)

• Care should be taken when measuring diameters of non-ordinary stars

Thanks to P. Kervella for the stellar rotation slide fund