2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...•...

20
August 16 1 Structure of Crystalline Solids Instructor: Prof. Sujoy Kumar Kar 1 MT30001 Atumn 2016 S K Kar 2 MT30001 Atumn 2016 S K Kar What are we going to discuss? Atomic arrangement in the solid state Concepts of crystallinity and noncrystallinity Notion of crystal structure, specified in terms of a unit cell cell The scheme by which crystallographic directions and planes are designated 3 MT30001 Atumn 2016 S K Kar Fundamental Concepts Crystalline material: One in which the atoms/ molecules/ ions are situated in a 3dimensional repeating or periodic array over large atomic distances All metals, many ceramic materials, and certain polymers form crystalline structures under normal solidification conditions Noncrystalline or amorphous materials: Do not crystallize Long range atomic order absent 4 MT30001 Atumn 2016 S K Kar Fundamental Concepts (Continued….) Lattice: An imaginary pattern of points in which every point has an environment that is identical to that of any other point in the pattern. l h f b hf d ll l A lattice has no specific origin, as it can beshifted parallel to itself. Although it is an imaginary construct, the lattice is used to describe the structure of real materials. 5 MT30001 Atumn 2016 S K Kar Fundamental Concepts (Continued….) Unit cells: Small repeat units of lattice or, crystal structure Defines the lattice/ crystal structure by virtue of its geometry and the atom positions within Parallelepipeds having three sets of parallel faces Ch t t th t f th l tti / tl Chosen to represent the symmetry of the lattice/ crystal structure, Not unique. Generally use the unit cell having the highest level of geometrical symmetry All the lattice points or atom positions in the crystal may be generated by translations of the unit cell integral distances along each of its edges. 6 MT30001 Atumn 2016 S K Kar

Transcript of 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...•...

Page 1: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

1

Structure of Crystalline Solids

Instructor:Prof. Sujoy Kumar Kar 1MT30001 Atumn 2016 S K Kar 2MT30001 Atumn 2016 S K Kar

What are we going to discuss?• Atomic arrangement in the solid state

• Concepts of crystallinity and noncrystallinity

• Notion of crystal structure, specified in terms of a unit cellcell

• The scheme by which crystallographic directions and planes are designated

3MT30001 Atumn 2016 S K Kar

Fundamental Concepts

• Crystalline material: One in which the atoms/ molecules/ ions are situated in a 3‐dimensional repeating or periodic array over large atomic distances

– All metals, many ceramic materials, and certain polymers form crystalline structures under normal solidification conditions

• Noncrystalline or amorphous materials:

– Do not crystallize

– Long range atomic order absent4MT30001 Atumn 2016 S K Kar

Fundamental Concepts (Continued….)Lattice:

• An imaginary pattern of points in which every point hasan environment that is identical to that of any other pointin the pattern.

l h f b h f d ll l• A lattice has no specific origin, as it can be shifted parallelto itself.

• Although it is an imaginary construct, the lattice is used todescribe the structure of real materials.

5MT30001 Atumn 2016 S K Kar

Fundamental Concepts (Continued….)Unit cells:

• Small repeat units of lattice or, crystal structure

– Defines the lattice/ crystal structure by virtue of its geometry andthe atom positions within

• Parallelepipeds having three sets of parallel faces

Ch t t th t f th l tti / t l• Chosen to represent the symmetry of the lattice/ crystalstructure,

– Not unique. Generally use the unit cell having the highest level ofgeometrical symmetry

• All the lattice points or atom positions in the crystalmay be generated by translations of the unit cellintegral distances along each of its edges.

6MT30001 Atumn 2016 S K Kar

Page 2: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

2

Fundamental Concepts (Continued….)Lattice Parameters:

• An x, y, z coordinate system isestablished with its origin at oneof the unit cell corners; each ofthe x, y, and z axes coincides withone of the three parallelepipedone of the three parallelepipededges that extend from this corner

• The unit cell geometry iscompletely defined in terms of sixparameters: the three edgelengths a, b, and c, and the threeinter‐axial angles , , and . Theyare termed as Lattice Parameters 7MT30001 Atumn 2016 S K Kar

Fundamental Concepts (Continued….)Crystal systems:

• Classification of crystals according to unit cell geometry.

• There are seven different possible combinations of a, b,and c, and , , and , each of which represents adistinct crystal system

• Defined in terms of highest symmetry elements present

1. Cubic2. Hexagonal3. Tetragonal

4. Trigonal5. Orthorhombic6. Monoclinic7. Triclinic

8MT30001 Atumn 2016 S K Kar

9MT30001 Atumn 2016 S K Kar 10MT30001 Atumn 2016 S K Kar

Crystallographic Directions and Planes

• All directions and planes are represented in the crystallographic coordinate system.

• This is always a right-handed coordinate systemThis is always a right handed coordinate system based on the unit cell.

11MT30001 Atumn 2016 S K Kar

Labeling conventions of crystallographic planes and directions• Three integers or indices are used to designate

directions and planes. • The basis for determining index

values is the unit cell, with a coordinate system consisting ofcoordinate system consisting of three (x, y, and z) axes situated at one of the corners and coinciding with the unit cell edges

• For hexagonal, rhombohedral, monoclinic, and triclinic—the three axes are not mutually perpendicular

12MT30001 Atumn 2016 S K Kar

Page 3: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

3

Point Coordinates

13MT30001 Atumn 2016 S K Kar

Point Coordinates

14MT30001 Atumn 2016 S K Kar

Crystallographic Directions

1. Vector repositioned (if necessary) to pass  through origin.

2. Read off projections in terms of unit cell dimensions a, b, and c

3. Adjust to smallest integer values (Multiply or             divide by a common factor)

z Algorithm

y

4. Enclose in square brackets, no commas

[uvw]

ex: 1, 0, ½ =>   2, 0, 1 =>  [ 201 ]

‐1, 1, 1

x

where overbar represents a negative index[ 111 ]=>

15MT30001 Atumn 2016 S K Kar 16MT30001 Atumn 2016 S K Kar

17MT30001 Atumn 2016 S K Kar

f04_03_pg4618MT30001 Atumn 2016 S K Kar

Page 4: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

4

Miller Indices ‐ Directions

ba

c

-1/3

1/2-1

x1/2

y-1

z-1/3 (x 6)

263

1

1/4

1/2

x1

y1/4

z1/2 (x 4)

214

263

19MT30001 Atumn 2016 S K Kar

Equivalent directions

• Equivalent directions -- The spacing of atoms along each direction is the same.

• In cubic crystals, [100], [100], [010], [010], [001], and [001] are equivalent.

• Equivalent directions are grouped together into a family enclosed in angle brackets thus: <100>family, enclosed in angle brackets, thus: <100>.

• Directions in cubic crystals having the same indices without regard to order or sign, for example, [123] and [213], are equivalent.

• In general, not true for other crystal systems. In tetragonal crystal system, [100] and [010] directions are equivalent, whereas [100] and [001] are not.

20MT30001 Atumn 2016 S K Kar

Crystallographic Planes• Algorithm

1. If the plane passes through the selected origin, either another parallel plane must be constructed within the unit cell by an appropriate translation or, new origin must be established at the corner of another unit cell. At this point the crystallographic plane either intersects or parallels each of the three axes

2. Read off intercepts of plane with axes in terms of a, b, c

3. Take reciprocals of intercepts

4 Reduce to smallest integer values4. Reduce to smallest integer values

5. Enclose in parentheses, no commas i.e., (hkl) 

z

x

y

a b

c

4.     Miller Indices      (110)

1.     Intercepts 1         1        2.     Reciprocals 1/1      1/1     1/

1         1        03.     Reduction 1         1        0

example a b c

21MT30001 Atumn 2016 S K Kar

Crystallographic Planes

Any two planes parallel to each other are equivalent and have identical indices 22MT30001 Atumn 2016 S K Kar

Crystallographic Planes

example a b cz

y

c1.     Intercepts 1/2        2.     Reciprocals 1/½     1/ 1/

2        0         03.     Reduction 2        0         0

x

y

a b4.     Miller Indices      (200)

23MT30001 Atumn 2016 S K Kar

Crystallographic Planesz

y

a b

c

example

1.     Intercepts 1/2      1       3/4

a         b        c

2.     Reciprocals 1/½     1/1     1/¾

2 1      4/3

3. Reduction 6 3 4

x4.     Miller Indices      (634)

3.     Reduction 6 3        4

24MT30001 Atumn 2016 S K Kar

Page 5: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

5

Miller Indices ‐ Planes

41

21

ba

c

41

21

ba

c

x1/44

y0

z-1/2-2

204

interceptreciprocal

25MT30001 Atumn 2016 S K Kar

Miller Indices ‐ Planes

31

21

ba

c

41

31

21

ba

c

41

x1/44

y-1/3-3

z-1/2-2

234

interceptreciprocal

26MT30001 Atumn 2016 S K Kar

What is this plane?

27MT30001 Atumn 2016 S K Kar

Which one is the plane?011

Follow the steps in reverse order: 1) Take reciprocal 2) Determine the intercepts.

28MT30001 Atumn 2016 S K Kar

Miller Indices

Planes

Directions

(hkl)

{hkl}

[uvw]

<uvw>

specific

family

specific

family

- No commas- No fractions- Negative

indicated by bar over

bnumberReversing the directions of all indices specifies another plane parallel to, on the opposite side of and equidistant from, the origin.

(001)(010),

Family of Planes   {hkl}

(100), (010),(001),Ex:   {100} =            (100),

29MT30001 Atumn 2016 S K Kar

Equivalent Planes

A family of planes includes all planes which are equivalent by symmetry (Same atomic packing) -depends on crystal system.- For cubic: (110) (011) and (101) are all {110}- For cubic: (110),(011) and (101) are all {110}- For tetragonal: (011) and (101) are {101}

but (110) is not (ca)

• In the cubic system only, planes having the same indices, irrespective of order and sign, are equivalent

• Both and belong to the {123} family

30MT30001 Atumn 2016 S K Kar

Page 6: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

6

Cubic crystals

• One interesting and unique characteristic of cubic crystals is that planes and directions having the same indices are perpendicular to one anotherone another

• For other crystal systems there are no simple geometrical relationships between planes and directions having the same indices

31MT30001 Atumn 2016 S K Kar

Why 4‐index notation for Hexagonal crystals ?

The third index is included to emphasize the symmetry; if the third index were not included, you might not realize that, e.g., the (2 1 0) and (1 1 0)are crystallographically equivalentare crystallographically equivalent.

What are these planes in hexagonal unit cell? :(2 1 0) and (1 1 0)

32MT30001 Atumn 2016 S K Kar

Crystallographic Planes (Hexagonal)

• In hexagonal unit cells the same idea is used 

example a1 a2 a3    c

1.     Intercepts 1         ‐1 12.     Reciprocals 1      1/ ‐1 1

z

4.     Miller Indices (101)

1        0  ‐1 1

3.     Reduction 1        0 ‐1 1

a2

a3

a1

33MT30001 Atumn 2016 S K Kar

What is the Miller-Bravais indices of the plane?

(1 -1 0 1)

34MT30001 Atumn 2016 S K Kar

a2

a3

Examples to show the utility of the 4 index

notation

a1

Intercepts → 1 1

Plane → (1 1 0)

Intercepts → ½ –1

Plane → (2 1 0)

In 4 index system (2 11 0 ) In 4 index system Plane → (1 12 0)

These planes are crystallographically equivalent. – Not apparent from the 3 index notation

35MT30001 Atumn 2016 S K Kar

(hkl) (hkil)

Miller-Bravais indices

i = -(h+k)

36MT30001 Atumn 2016 S K Kar

Page 7: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

7

3-indices (Miller indices) and 4-indices (Miller–Bravaisindices), coordinate system

Directions in Hexagonal Crystal

Why we need 4 indexWhy we need 4 index system?

In 4 index system, Indices reveal crystallographicallyequivalent directions

37MT30001 Atumn 2016 S K Kar

3 index (Miller indices) to 4 index (Miller‐Bravais indices)

• Hexagonal Crystals

– 4 parameter Miller‐Bravais lattice coordinates are related to the direction indices (i.e., u'v'w') as follows.

]uvtw[]'w'v'u[ z

'ww

t

v

u

)vu( +‐

)'u'v2(3

1‐

)'v'u2(3

1‐

]uvtw[]wvu[

‐a3

a1

a2

38MT30001 Atumn 2016 S K Kar

What is this direction CF?

Finding perpendicular projections in Hexagonal crystal system is not always convenient

In three index system: [1 1 1]39MT30001 Atumn 2016 S K Kar

What is the index of the direction CE?

'

t

v

u

)vu( +‐

)'u'v2(3

1‐

)'v'u2(3

1‐

]uvtw[]'w'v'u[ [1 1 1]

In Four index system: 1123

'ww

40MT30001 Atumn 2016 S K Kar

MILLER INDICES OF SOME IMPORTANT PLANES

41MT30001 Atumn 2016 S K Kar

Angle between two cystallographic directions [u1 v1 w1] and [u2 v2 w2]

Worked ExampleFind the angle between the directions [2 1 1] and [1 1 2] in a cubic crystal

1 2 1 2 1 2

2 2 2 2 2 21 1 1 2 2 2

½ ½

u u v v w wcos

(u v w ) (u v w )

cubic crystal.

The two directions are [2 1 1] and [1 1 2]

In this case, u1 = 2, v1 = 1, w1 = 1, u2 = 1, v2 = 1, w2 = 2

(or) cos = 0.833 = 35° 3530.

2 2 2 2 2 2

(2 1) (1 1) (1 2) 5cos

62 1 l 1 1 2

42MT30001 Atumn 2016 S K Kar

Page 8: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

8

Interplanar Distance

222 lkh

adhkl

MT30001 Atumn 2016 S K Kar 43

If (h k l) is the Miller indices of a crystal plane then the intercepts made by the plane with the crystallographic axes are given as

where a, b and c are lattice parameters

a b c, and

h k l

Bravais Lattices

Named after named after Auguste Bravais

7 Crystal SystemsCentering

14 Bravais Lattices

• Primitive• Body Centering• Face Centering• Base Centering

44MT30001 Atumn 2016 S K Kar

BRAVAIS

LATTTICES

45MT30001 Atumn 2016 S K Kar

Bravais Lattices (14)

Crystal System

Parameters Primitive (Simple)

Body-Centered

Face-Centered

Base-Centered

Cubic abc

X X X

Tetragonal abc

X X

Orthorhombic abc

X X X X

Rhombohedral abc

X

Hexagonal abc

X

Monoclinic abc

X X

Triclinic abc

X

46MT30001 Atumn 2016 S K Kar

HCP Structure

Hexagonal unit cell

47MT30001 Atumn 2016 S K KarAtomic layer arrangement

48MT30001 Atumn 2016 S K Kar

Page 9: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

9

Hexagonal packing49MT30001 Atumn 2016 S K Kar

A sites

B B

B

BB

B BC C

CA

B

B sites

• ABCABC... Stacking Sequence• 2D Projection

Stacking Sequence

C C

CA

C C

C

A

C sites

• FCC Unit CellA

BC

50MT30001 Atumn 2016 S K Kar

Cubic closed packing51MT30001 Atumn 2016 S K Kar FCC unit cell BCC unit Cell 52MT30001 Atumn 2016 S K Kar

Atoms Per Unit Cell

• Corners ‐ shared by eight unit cells (x 1/8)

• Edges ‐ shared by four unit cells (x 1/4)(x 1/4)

• Faces ‐ shared by two unit cells (x 1/2)

53MT30001 Atumn 2016 S K Kar

Common Metal Structures

• Face‐Centered Cubic (FCC)

– 8 corners x 1/8 + 6 faces x 1/2 

– 1 + 3 = 4 atoms/u.c.

B d C t d C bi (BCC)• Body‐Centered Cubic (BCC)

– 8 corners x 1/8 + 1 center 

– 1 + 1 = 2 atoms/u.c.

• Hexagonal Close‐Packed (HCP)

– (4 x (1/6) + 4 x (1/12)) = 1 corner + 1 middle 

– 1 + 1 = 2 atoms/u.c. 54MT30001 Atumn 2016 S K Kar

Page 10: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

10

• Rare due to low packing density (only Po has this structure)• Close-packed directions are cube edges.

• Coordination # = 6(# nearest neighbors)

Simple Cubic Structure (SC)

55MT30001 Atumn 2016 S K Kar

• APF for a simple cubic structure = 0.52

volume

Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

APF =

a 3

4

3 (0.5a) 31

atoms

unit cell

atom

volume

unit cell

volume

close-packed directions

a

R=0.5a

contains 8 x 1/8 = 1 atom/unit cell

56MT30001 Atumn 2016 S K Kar

• Coordination # = 8

• Atoms touch each other along cube diagonals.

--Note: All atoms are identical; the center atom is shadeddifferently only for ease of viewing.

Body Centered Cubic Structure (BCC)

ex: Cr, W, Fe (), Tantalum, Molybdenum

2 atoms/unit cell: 1 center + 8 corners x 1/857MT30001 Atumn 2016 S K Kar

Atomic Packing Factor:  BCC

a

• APF for a body-centered cubic structure = 0.68

a2

a3

APF =

4

3 ( 3 a/4 ) 32

atoms

unit cell atom

volume

a 3

unit cell

volume

length = 4R =

Close-packed directions:

3 aaR

58MT30001 Atumn 2016 S K Kar

• Coordination # = 12

• Atoms touch each other along face diagonals.

--Note: All atoms are identical; the face-centered atoms are shadeddifferently only for ease of viewing.

Face Centered Cubic Structure (FCC)

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/859MT30001 Atumn 2016 S K Kar

• APF for a face-centered cubic structure = 0.74

Atomic Packing Factor:  FCC

maximum achievable APF

Close-packed directions:

length = 4R = 2 a

Unit cell contains:

6 1/2 8 1/8

2 a

APF =

4

3 ( 2 a/4 ) 34

atoms

unit cell atom

volume

a 3

unit cell

volume

6 x 1/2 + 8 x 1/8

= 4 atoms/unit cella

60MT30001 Atumn 2016 S K Kar

Page 11: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

11

• ABAB... Stacking Sequence

• 3D Projection • 2D Projection

Hexagonal Close‐Packed Structure (HCP)

c

A sites Top layer

• Coordination # = 12

• APF = 0.74

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

• c/a = 1.633

c

a

B sites

A sites Bottom layer

Middle layer

61MT30001 Atumn 2016 S K Kar

Spheres at: (0,0,0), (⅔, ⅓,½)

Note: Atoms are coloured differently but are the same

c/a = sqrt( 8/3 )

62MT30001 Atumn 2016 S K Kar

APF =

4

3 ( R ) 32

atoms

unit cell atom

volume

3/2 a c2

unit cell

volume

Close-packed directions:

length = 2R = a

Unit cell contains:

4 x 1/(3 x 2) + 4 x 1/(6 x 2) + 1

= 2 atoms/unit cell

c/a =( 8/3 )

Atomic Packing Factor:  HCP

63MT30001 Atumn 2016 S K Kar

Theoretical Density, 

Density = =

VC NA

n A =

CellUnitofVolumeTotal

CellUnitinAtomsofMass

where n = number of atoms/unit cellA = atomic weight VC = Volume of unit cell = a3 for cubicNA = Avogadro’s number

= 6.023 x 1023 atoms/mol

64MT30001 Atumn 2016 S K Kar

• Ex: Cr (BCC)  

A = 52.00 g/mol

R = 0.125 nm

2

Theoretical Density, 

65

n = 2

theoretical

a = 4R/ 3 = 0.2887 nm

actual

aR

= a 3

52.002

atoms

unit cellmol

g

unit cell

volume atoms

mol

6.023 x 1023

= 7.18 g/cm3

= 7.19 g/cm3

MT30001 Atumn 2016 S K Kar 66MT30001 Atumn 2016 S K Kar

Page 12: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

12

ex: linear density of Al in [110] direction

a = 0.405 nm

Linear Density

• Linear Density of Atoms  LD =

[110]

Unit length of direction vector

Number of atoms

a# atoms

length

13.5 nma2

2LD

67MT30001 Atumn 2016 S K Kar

Planar Density of (100) Iron

At T < 912C iron has the BCC structure.

(100) R3

34a

2D repeat unit

Radius of iron R = 0.1241 nm

= Planar Density =a2

1

atoms

2D repeat unit

= nm2

atoms12.1

m2

atoms= 1.2 x 1019

12

R3

34area

2D repeat unit 68MT30001 Atumn 2016 S K Kar

69MT30001 Atumn 2016 S K Kar

Class Work

Find out the Planar Density of (111) plane of Iron

70MT30001 Atumn 2016 S K Kar

Planar Density of (111) IronSolution (cont): (111) plane 1 atom in plane/ unit surface cell

atoms in plane

atoms above plane

atoms below plane

ah3

a2

333 2

2

R3

8R

342a323area ÷

÷

ah2

1/2= =

nm2

atoms7.0m2

atoms0.70 x 1019

3 2R3

8Planar Density =

atoms

2D repeat unit

area

2D repeat unit

4

2a2 2

71MT30001 Atumn 2016 S K Kar

Octahedral interstitial sites

FCC BCC

The space in the interstices between 6 regular atoms that form an octahedron.

Four regular atoms are positioned in a plane, the other two are in a symmetrical position just above or below.

12/4 +1 = 4 positions per unit cell

12/4 + 6/2 = 6

iti

Will Provide you this slide

unit cellpositions per unit cell

72MT30001 Atumn 2016 S K Kar

Page 13: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

13

Tetrahedral interstitial sites

FCC BCC

The center of a tetrahedra formed by four lattice atoms.

Three atoms, touching each other, are in plane; the fourth atom sits in the symmetrical position on top.

8 positions per unit cell(6 · 4)/2 = 12

iti

Will Provide you this slide

positions per unit cell

73MT30001 Atumn 2016 S K Kar

Ceramic Crystal Structures

•Greek word “Keramikos” (= burnt stuff) Ceramics •Desired properties obtained through a high temperature heat treatment process called “Firing”

• Composed of atleast two elements –• Crystal structures are more complex than metals

• Bonding is ionic to covalent•Depending on the electro-negativities of the atoms

74MT30001 Atumn 2016 S K Kar

Bond characters of ceramics

75MT30001 Atumn 2016 S K Kar

For ceramics having ionic bonding • Cation and anions• Charges on them and relative sizes determine the

crystal structure• Cations are smaller than anions• Ions prefer to have maximum number of oppositely

charged ion nearest neighbours • Stable ceramic structure forms when those anions

surrounding a cation are all in contact with that cationsurrounding a cation are all in contact with that cation

76MT30001 Atumn 2016 S K Kar

Radius Ratio Rules

•The coordination number (number of anion nearest neighbours for a cation) is related to the cation-anion radius ratio.

•For a specific coordination number, there is a critical or minimum rC/rA ratio for which the cation-anion contact is established.

77MT30001 Atumn 2016 S K Kar

Minimum rC/rA ratio for CN=3

cos30°=rA/(rC+rA) rC/rA = 0.155

78MT30001 Atumn 2016 S K Kar

Page 14: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

14

Radius Ratio Rules

79MT30001 Atumn 2016 S K Kar

Common Ceramic Crystal Structures

FCCFCCSC

80MT30001 Atumn 2016 S K Kar

Crystal = Bravais lattice + Base

• A crystal now is obtained by taking a Bravais latticeand adding a base! The base can just be one atom (as in the case of many elemental crystals, most noteworthy the metals), two identical atoms (e.g. Si Ge C(diamond)) two different atoms (NaClSi, Ge, C(diamond)), two different atoms (NaCl, GaAs, ...) three atoms, ... up to huge complex molecules as in the case of protein crystals.

81MT30001 Atumn 2016 S K Kar

Rock Salt (NaCl) Structure

(fcc), with twoatoms in the base: one at (0, 0, 0), the other one at (½, ½, ½)

Many salts and oxides have this structure, e.g. KCl, AgBr, KBr, PbS, ...orMgO, FeO, ...

82MT30001 Atumn 2016 S K Kar

CsCl Crystal Structure

cubic primitivewith two atoms in the base at (0,0,0)and (½, ½, ½)

Intermetalliccompounds (not p (necessarily ionic crystals), but also common salts assume this structure; e.g. CsCl, ..., or AlNi, CuZn

83MT30001 Atumn 2016 S K Kar

ZnS (Zinc Blende) Structure

(fcc) with two atoms in the base at (0,0,0) and (¼, ¼, ¼)

typical lattice of covalently bonded group IV semiconductors (C(diamond form), Si, Ge)

III V dor III-V compounds semiconductors (GaAs, GaP, InSb, InP, ..)

84MT30001 Atumn 2016 S K Kar

Page 15: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

15

CaF2 (Fluorite) Structure

(fcc) with three atoms in the base, one kind (the cations) at (0,0,0), and the other two (anions of the same kind) at (¼, ¼, ¼), and (-¼, -¼, -¼)

85MT30001 Atumn 2016 S K Kar

Perovskite crystal Structure

cubic primitive:three different atoms in the base. In the example it would be Ba at (0,0,0), O at (½, ½, ,0), at (½, 0, ½), at (0, ½, ½) and Ti at (½, ½, ½).

Barium titanate (BaTiO3) havingBarium titanate (BaTiO3), having both Ba2+ and Ti4+ cations

86MT30001 Atumn 2016 S K Kar

Rock Salt (NaCl) Structure

87MT30001 Atumn 2016 S K Kar

Close Packed Structure in ceramics

• Close packed planes of anions

• Cations reside at Tetrahedral and/ or Octrahedralinterstitial sites

88MT30001 Atumn 2016 S K Kar

Rock Salt (NaCl) Structure

• Close packed arrangement of Cl ions on {111} planes

• Na+ ions areNa ions are at Octahedral sites

89MT30001 Atumn 2016 S K Kar

DENSITY COMPUTATIONS—CERAMICS

90MT30001 Atumn 2016 S K Kar

Page 16: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

16

DENSITY COMPUTATIONS—CERAMICS

n’ = 4; FCC lattice

Experimental value: 2.16 gm/cc

91MT30001 Atumn 2016 S K Kar

Silicate Ceramics• Bulk of soils, rocks, clays, and sand come under the

silicate classification• Characterize crystal structure in terms of various

arrangements of an SiO44- tetrahedron

• Basic unit of the silicates

92MT30001 Atumn 2016 S K Kar

• Chemically, the most simple silicate• Structurally, it is a 3d network generated when every corner O

atom in each tetrahedron is shared by adjacent tetrahedra. • Electrically neutral• The ratio of Si to O atoms is 1 : 2, as indicated by the chemical

formula.

Silica (SiO2)

• Three primary polymorphic p y p y pcrystalline forms of silica: quartz, cristobalite and tridymite.

• Strong Si-O bonds high mp• Relatively open str. Low

density

93MT30001 Atumn 2016 S K Kar

Silicon dioxide (or silica, SiO2) in the noncrystalline state is called fused silica, or vitreous silicaOther oxides (e.g., B2O3 and GeO2) may also form glassy structures

SILICA GLASSES

Network formers

The common inorganic glasses used for containers Silica glasses to which ghave been added other oxides such as CaO and Na2OCations are incorporated within and modify the SiO4

4- networkNetwork modifiers

structure of a sodium–silicate glass

Lowers the mp and viscosity of glasses easy formation at low temp

94MT30001 Atumn 2016 S K Kar

One or two or three corner oxygen atoms are shared by other tetrahedra

Single chain structure Role of +ve

ions? 95MT30001 Atumn 2016 S K Kar

• A 2d sheet or layered structure • By sharing of 3 O ions in each of the tetrahedra• A second planar sheet structure having an excess of

cations Charge neutrality

Sheet or layered silicates

Their basic structure isTheir basic structure is characteristic of clays and other minerals

96MT30001 Atumn 2016 S K Kar

Page 17: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

17

Keolinite (Clay): 2 layer silicate sheet structureAl2(Si2O5)(OH)4

TalcMica

97MT30001 Atumn 2016 S K Kar

Diamond Cubic Structure

• Extremely hard

• Low electrical conductivity

• Optically Transparent

• High index of refraction

98MT30001 Atumn 2016 S K Kar

Graphite

Lubricative property

Electrical conductivity along sheet

99MT30001 Atumn 2016 S K Kar

Fullerenes

BuckminsterfullereneBuckyball

100MT30001 Atumn 2016 S K Kar

Carbon Nanotube

101MT30001 Atumn 2016 S K Kar

Chain Folded model of Polymer crystallite

102MT30001 Atumn 2016 S K Kar

Page 18: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

18

Spherulite sructure

103MT30001 Atumn 2016 S K Kar f33_04_pg97 104MT30001 Atumn 2016 S K Kar

105MT30001 Atumn 2016 S K Kar

f35_04_pg99

106MT30001 Atumn 2016 S K Kar

107MT30001 Atumn 2016 S K Kar

X‐Ray  Diffraction Pattern

(110)

(211)

z

x

ya b

c

y (r

elat

ive)

z

x

ya b

c

z

x

ya b

c

108

(200)

Diffraction angle 2

Diffraction pattern for polycrystalline -iron (BCC)

Inte

nsity

MT30001 Atumn 2016 S K Kar

Page 19: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

19

109MT30001 Atumn 2016 S K Kar

• Single Crystals

-Properties vary withdirection: anisotropic.

-Example: the modulusof elasticity (E) in BCC iron:

• Polycrystals

Single vs PolycrystalsE (diagonal) = 273 GPa

E (edge) = 125 GPa

110

y y

-Properties may/may notvary with direction.

-If grains are randomlyoriented: isotropic.(Epoly iron = 210 GPa)

-If grains are textured,anisotropic.

200 m

MT30001 Atumn 2016 S K Kar

111MT30001 Atumn 2016 S K Kar

Concept of Grains and Grain Boundary: Single crystal vs. polycrystalline

112MT30001 Atumn 2016 S K Kar

Modulus of Elasticity values for several metals at various crystallographic orientations

113MT30001 Atumn 2016 S K Kar

Questions1. If you are given plots of interatomic force vs. interatomic distance

for two different metal systems, then how would you determine which metal has higher stiffness among the two from the plots?

2. Why are metals electrically conductive while ceramics are not?

3. How is bond energy related to coefficient of thermal expansion?

4. How many valence electrons are there for Boron?

5. What are the relations between lattice parameters for Monoclinic system?

6. For which four crystal systems, the three axes along unit cell edges are not mutually perpendicular?

114MT30001 Atumn 2016 S K Kar

Page 20: 2 Structure of Crystalline Solids - MECH14mech14.weebly.com/uploads/6/1/0/6/61069591/chapter_2...• All directions and planes are represented in the crystallographic coordinate system.

August 16

20

Clarifications:Indexing of Crystallographic planes

• Convert to smallest integers (Optional step)

I d d ti i t i d t ( fIndex reduction is not carried out (e.g., for x-ray or electron diffraction studies); for example, (002) is not reduced to (001). In addition, for ceramic materials, the ionic arrangement for a reduced-index plane may be different from that for a nonreduced one.

115MT30001 Atumn 2016 S K Kar

Clarification

Can the indices representing directions be irrational numbers? YES

Can the directions represented by irrational numbers b l tti t ? NObe lattice vectors? NO

So, For lattice vectors, indices have to be integers Miller indices of the Crystallographic directions would be integers

116MT30001 Atumn 2016 S K Kar