2. FET Biasing(1)

64
Week 7 Chapter 3 FET Small Signal Analysis

Transcript of 2. FET Biasing(1)

Page 1: 2. FET Biasing(1)

Week 7 Chapter 3FET Small Signal Analysis

Page 2: 2. FET Biasing(1)

√Able to discuss and analyze the ac analysis for various MOSFET configuration using the FET ac

equivalent circuit

√Able to relate the dc analysis and ac analysis for FET and MOSFET configuration or

network system

Objective

Page 3: 2. FET Biasing(1)

FETs provide

• excellent voltage gain

• high input impedance

• low-power consumption

• good frequency range

• small in size and weight

Introduction

Page 4: 2. FET Biasing(1)

Transconductance

The relationship of VGS (input) to ID (output) is called transconductance.

The transconductance is denoted gm. Unit is siemens (S)

GS

Dm

V

Ig

Introduction

Page 5: 2. FET Biasing(1)

Graphical determination of gm

Introduction

Page 6: 2. FET Biasing(1)

GS

Dm

Ig

P

GS

P

DSSm

V

V1

V

2Ig

P

DSSm0

V

2Ig

P

GSm0m

V

V1gg

DSS

D

P

GS

I

I

V

V1

DSS

Dm0

P

GSm0m

I

Ig)

V

V(1gg

Using differential calculus

Maximum gm at VGS =0V:

Effect of ID on gm for

Mathematical Definition of gm

Introduction

Page 7: 2. FET Biasing(1)

Zi

osd

Y

1rZo

constantVI

Vr

GSD

DSd

FET Impedance

Input Impedance Zi:

Output Impedance Zo:

Yos: admittance equivalent circuit parameter listed on FET specification sheets.

Introduction

Page 8: 2. FET Biasing(1)

Yos: admittance equivalent circuit parameter listed on FET specification sheet.

Page 9: 2. FET Biasing(1)

FET AC Equivalent Circuit

Introduction

Page 10: 2. FET Biasing(1)

Introduction

To do the AC analysis, remember these 4 STEPs:

1) Set all the DC sources to zero and replace them by a short circuit equivalent.2) Replace all capacitors by a short circuit equivalent3) Remove all elements bypassed by the short circuit equivalents as introduced by Step 1 and Step 24) Redraw the network in a more convenient and logical form.

Page 11: 2. FET Biasing(1)

JFET Common-Source (CS) Fixed-Bias

The input is on the gate and the output is on the drain.

JFET CS Fixed-Bias

Page 12: 2. FET Biasing(1)

JFET Common-Source (CS) Fixed-Bias

JFET CS Fixed-Bias

Page 13: 2. FET Biasing(1)

AC Equivalent Circuit

JFET CS Fixed-Bias

Page 14: 2. FET Biasing(1)

Impedances

GRZi dD r||RZoDd

D 10RrRZo

JFET CS Fixed-Bias

Page 15: 2. FET Biasing(1)

)R||(rgVi

VoAv Ddm

Dd Dm 10RrRg

Vi

VoAv

Voltage Gain

JFET CS Fixed-Bias

Page 16: 2. FET Biasing(1)

A CS amplifier configuration has a 180-degree phase shift between input and output.

Phase Relationship

JFET CS Fixed-Bias

Page 17: 2. FET Biasing(1)

Fixed-bias configuration has an operating point defined by VGSQ = -2V and IDQ = 5.625 mA, with IDSS = 10mA and VP = -8V. The value of yos is provided as 40 µS. Determine:

a) gm

b) Zi

c) Zo

d) AV

e) AV ignoring the effects of rd

JFET Fixed-Bias

Example:

Page 18: 2. FET Biasing(1)

JFET Fixed-Bias

Solution:

Page 19: 2. FET Biasing(1)

JFET CS Self-Bias

Bypass capacitor

Page 20: 2. FET Biasing(1)

JFET CS Self-Bias

Page 21: 2. FET Biasing(1)

JFET CS Self-Bias

Page 22: 2. FET Biasing(1)

JFET CS Self-Bias

Input Impedance:

Output Impedance:

GRZi

Dd R||rZo DdD 10RrRZo

Page 23: 2. FET Biasing(1)

JFET CS Self-Bias

)R||(rgAv Ddm

Dd Dm 10RrRgAv

Voltage Gain

A CS amplifier configuration has a 180-degree phase shift between input and output.

Page 24: 2. FET Biasing(1)

If Cs is removed, it affects the gain of the circuit.

JFET CS Self-Bias Unbypassed C

Page 25: 2. FET Biasing(1)

AC Equivalent Circuit

JFET CS Self-Bias Unbypassed C

Page 26: 2. FET Biasing(1)

Input Impedance:

Output Impedance:

JFET CS Self-Bias Unbypassed C

Page 27: 2. FET Biasing(1)

JFET CS Self-Bias Unbypassed C

Page 28: 2. FET Biasing(1)

JFET CS Self-Bias Unbypassed C

Page 29: 2. FET Biasing(1)

JFET CS Self-Bias Unbypassed C

Voltage Gain

Page 30: 2. FET Biasing(1)

Example

Page 31: 2. FET Biasing(1)

Solution

Page 32: 2. FET Biasing(1)

Solution

Page 33: 2. FET Biasing(1)

JFET CS Voltage Divider

Page 34: 2. FET Biasing(1)

JFET CS Voltage Divider

AC Equivalent Circuit

Page 35: 2. FET Biasing(1)

Input Impedance: 21 R||RZi

Dd R||rZo

DdD 10RrRZo

Output Impedance:

JFET CS Voltage Divider

Impedance

Page 36: 2. FET Biasing(1)

)R||(rgAv Ddm

Dd Dm 10RrRgAv

JFET CS Voltage Divider

Voltage Gain

Page 37: 2. FET Biasing(1)

JFET CS Voltage Divider

EXAMPLE:

If Vi =20mV,determine:

(i) Zi

(ii)Zo

(iii)Vo

with CS and without CS.

Page 38: 2. FET Biasing(1)

1. D-MOSFETs have similar AC equivalent models.

2. D-MOSFETs has the same equation for gm as like JFET.

3. The only difference is that VGS can be positive for n-channel devices and negative for p-channel devices.

4. This means that gm can be greater than gm0.

Depletion-Type MOSFETs

Page 39: 2. FET Biasing(1)

Depletion-type MOSFET in Depletion Mode

Depletion mode The characteristics are similar to the JFET.When VGS = 0V, ID = IDSS

When VGS < 0V, ID < IDSS

The formula used to plot the Transfer Curve still applies:

Depletion mode The characteristics are similar to the JFET.When VGS = 0V, ID = IDSS

When VGS < 0V, ID < IDSS

The formula used to plot the Transfer Curve still applies:

2

P

GSDSSD )

V

V(1II

Page 40: 2. FET Biasing(1)

D-MOSFET AC Equivalent Model

Page 41: 2. FET Biasing(1)

D-MOSFET AC Equivalent Model

Example: Given VGSQ =0.35V and IDQ = 7.6mA, analyze the network given and calculate:

a. gm

b. rd

c. Zi

d. Zo

e. Av

Page 42: 2. FET Biasing(1)

D-MOSFET AC Equivalent Model

mS43

2(6m)

V

2Ig

P

DSSm0

Solution:

mS47.43-

35.01mS4

V

V1gg

P

GSm0m

kohm10010uS

1

Y

1r

osd

Mohm17.9M110//M10R//RZ 21i

kohm77.1k8.1//k100R//rZ Ddo

05.8RgA

thereforeR10r since

DmV

Dd

Page 43: 2. FET Biasing(1)

Enhancement-Type MOSFETs

There are two types of E-MOSFETs:

nMOS or n-channel MOSFETspMOS or p-channel MOSFETs

Page 44: 2. FET Biasing(1)

E-MOSFET AC Equivalent Model

gm and rd can be found in the specification sheet for the FET.

Forward transfer admittance

Page 45: 2. FET Biasing(1)

E-MOSFET CS Drain-Feedback Configuration

Page 46: 2. FET Biasing(1)

AC Equivalent Circuit

Page 47: 2. FET Biasing(1)

Impedances

Input Impedance:

)R||(rg1

R||rRZi

Ddm

DdF

DdDdFDm

F

10Rr,R||rR Rg1

RZi

DdF R||r||RZo

DdDdF D 10Rr,R||rRRZo

Output Impedance:

Page 48: 2. FET Biasing(1)

Voltage Gain

)R||r||(RgAv DdFm

DdDdF Dm 10Rr,R||rRRgAv

Page 49: 2. FET Biasing(1)

Phase Relationship

This is a CS amplifier configuration therefore it has 180-degree phase shift between input and output.

Page 50: 2. FET Biasing(1)

E-MOSFET CS Voltage-Divider Configuration

Page 51: 2. FET Biasing(1)

AC Equivalent Circuit

E-MOSFET CS Voltage-Divider Configuration

Page 52: 2. FET Biasing(1)

Impedances

Input Impedance:

Output Impedance:

21 R||RZi

Dd R||rZo

Dd D 10RrRZo

E-MOSFET CS Voltage-Divider Configuration

Page 53: 2. FET Biasing(1)

Voltage Gain

)R||(rgAv Ddm

Dd Dm 10RrRgAv

E-MOSFET CS Voltage-Divider Configuration

Page 54: 2. FET Biasing(1)

Summary Table

Page 55: 2. FET Biasing(1)

Summary Table

Page 56: 2. FET Biasing(1)

Example: Design the fixed bias network shown in the figure with AC gain equals to 10.

a. Determine value of RD

Design FET Amplifier Networks

Page 57: 2. FET Biasing(1)

mS54

2(10m)

V

2Ig

P

DSSm0

Solution:

mS53-

01mS5

V

V1gg

P

GSm0m

kohm5020uS

1

Y

1r

osd

kohm08.2Rtherefore

k2Rk50/)R(k50

k2Rr/Rr

kohm2R//r Z

D

DD

DdDd

Ddo

kohm2mS5/10)R//r(

10)R//r(gA

Dd

DdmV

Design FET Amplifier Networks

Page 58: 2. FET Biasing(1)

Effect of RL and Rsig

1. Effect of source resistance and load resistance on the AC gain

2. Analysis using AC model or two port equations.

3. The two-port equations for FET are exactly same as BJT because quantities of interest are at the input and output terminals (not the components).

4. The loaded gain is always less than the no-load gain.

5. AVNL > AV

Page 59: 2. FET Biasing(1)

Effect of RL and Rsig

TWO-PORT SYSTEM

VNLOL

LV A

R R

RA

AVNL is no load voltage gain

Page 60: 2. FET Biasing(1)

Effect of RL and Rsig

Rsig RL

)R//R//r(gV

VA LDdm

i

OV

Page 61: 2. FET Biasing(1)

Effect of RL and Rsig

Using two-port approach:

)R//R//r(g

)R//r(g)R//r( R

R

)R//r(gR R

RA

therefore

R//r Rbut

)R//r(gR R

RA

R R

RA

systemport -for twoagain Overall

LDdm

DdmDdL

L

DdmOL

LV

DdO

DdmOL

LVNL

OL

LV

Page 62: 2. FET Biasing(1)

Cascade Configuration

V2V1V AAA Voltage gain,

Page 63: 2. FET Biasing(1)

Cascade Configuration

D2o

g1i

RZ

RZ

Impedances

Page 64: 2. FET Biasing(1)

Practical Applications

• Three-Channel Audio Mixer

• Silent Switching

• Phase Shift Networks

• Motion Detection System