2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los...

24
2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    1

Transcript of 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los...

Page 1: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

2-D Ultrasonic Imaging with Circular Array Data

Youli Quan

Stanford University

Lianjie Huang

Los Alamos National Laboratory

February, 2007

Page 2: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

2

Objectives

• Study of sound-speed reconstruction capability

of an efficient time-of-flight tomography method

using synthetic data

• Lab data sound-speed reconstruction

• Reflectivity reconstruction using synthetic data

Page 3: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

3

Circular Array

• Many research groups have developed circular transducer arrays for acoustic imaging:

Schreiman, Gisvold, Greenleaf & Bahn (1984)Waag & Fedewa (2006)Duric, Littrup, Poulo, Babkin, … (2007)

• Full apertures to improve image resolution.

Page 4: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

4

Ultrasonic Wave Simulation for a Ring Array

• Simulate ultrasonic wave propagation through numerical breast phantoms.

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1440

1460

1480

1500

1520

1540

1560

1580

Page 5: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

5

Ultrasonic Wave Simulation for a Ring Array

• Use finite-difference time-domain acoustic-wave equation in heterogeneous media.

• Source central frequency: 0.5 MHz

• Grid size of the numerical phantom: 0.1 mm

• 2D grid: 2051 x 2051

• Time signal length: 150 s

• Ring diameter: 20 cm

• Take 1 hour to generate 256 common-channel data on a 128-CPU computer cluster.

Page 6: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

6

Simulated Ring-Array Data

Channel Number

Tim

e (m

icro

seco

nd)

50 100 150 200 250

0

20

40

60

80

100

120

140

Direct Wave

Reflected Wave

Page 7: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

7

Data Analysis and Travel-Time Picking

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

Channel NumberT

ime

(mic

rose

cond

)50 100 150 200 250

0

20

40

60

80

100

120

140

Page 8: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

8

Cross-Correlation Picking and First-Break Picking

130 132 134 136 138 140 142

-1

-0.5

0

0.5

1

Travel time (microsecond)

Am

pli

tud

e

WaterTarget

dT

130 132 134 136 138 140 142-1

-0.5

0

0.5

1

Travel time (microsecond)

Am

pli

tud

e

WaterTarget

130 132 134 136 138 140 142-1

-0.5

0

0.5

1

Travel time (microsecond)

Am

pli

tud

e

WaterTarget

110 115 120 125 130 135 140 145 150-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Channel Number

Tim

e D

iffe

ren

ce (

mic

rose

con

d)

CorrelationFirst beak

Page 9: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

9

Tomographic Reconstruction of Sound-Speed

• Obtain L by tracing bent-rays using a finite-difference scheme to solve the eikonal equation.

• Solve the system using an algorithm for sparse linear equations and sparse least squares.

SC

LC

SC

TC

r

d

r

d2/1

0

2/1

SLT

Page 10: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

10

Reconstruction of a Circular Object

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

0

0.05

0.1

0.15

0.2

0.25

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

0 50 100 150 2001430

1440

1450

1460

1470

1480

1490

1500

1510

1520

x(mm)

spee

d (m

/s)

GivenReconstruction

Page 11: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

11

Reconstruction of a Square Object

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

0

0.05

0.1

0.15

0.2

0.25

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

0 50 100 150 2001430

1440

1450

1460

1470

1480

1490

1500

1510

1520

x(mm)

soun

d sp

eed

(m/s

)

GivenReconstruction

Page 12: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

12

Reconstruction of Small Circular Object

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1470

1480

1490

1500

1510

1520

1530

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1490

1495

1500

1505

1510

0 50 100 150 2001430

1440

1450

1460

1470

1480

1490

1500

1510

1520

x(mm)

soun

d sp

eed

(m/s

)

Page 13: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

13

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

0

0.05

0.1

0.15

0.2

0.25

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1460

1470

1480

1490

1500

1510

1520

1530

1540

0 50 100 150 2001430

1440

1450

1460

1470

1480

1490

1500

1510

1520

x(mm)

spee

d (m

/s)

GivenReconstruction

Reconstruction of an Off-Center Object

Page 14: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

14

Reconstruction of a Numerical Phantom

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1480

1500

1520

1540

1560

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1460

1480

1500

1520

1540

1560

0 50 100 150 2001480

1490

1500

1510

1520

1530

x(mm)

soun

d sp

eed

(m/s

)

GivenReconstruction

Page 15: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

15

Reconstruction of a Numerical Phantom

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1480

1500

1520

1540

1560

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

-0.8

-0.6

-0.4

-0.2

0

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1460

1480

1500

1520

1540

1560

Page 16: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

16

Reconstruction of a Numerical Phantom

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1480

1500

1520

1540

1560

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1490

1500

1510

1520

1530

1540

1550

1560

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

-0.8

-0.6

-0.4

-0.2

0

Page 17: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

17

Reconstruction of a Numerical Phantom

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1460

1480

1500

1520

1540

1560

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

-0.6

-0.4

-0.2

0

0.2

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1460

1480

1500

1520

1540

1560

Page 18: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

18

Lab Data: First-break Picks

Page 19: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

19

Lab Data: Sound-speed Reconstruction

Page 20: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

20

Reconstruction of a Numerical Phantom

x(mm)

y(m

m)

0 50 100 150 2000

50

100

150

200

1440

1460

1480

1500

1520

1540

1560

1580

Receiver

Tra

nsm

itter

50 100 150 200 250

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

1.2

x (mm)

y (m

m)

50 100 150 200

50

100

150

200

1440

1460

1480

1500

1520

1540

1560

1580

Page 21: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

21

Patient Data: Sound-speed Reconstruction

Page 22: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

22

Computational Time

Using 1 mm grid spacing, the Tomographic

reconstructions with 10 iterations take less than two

minutes of CPU times on a Dell xeon 3.0GHz

desktop PC.

Page 23: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

23

Conclusions

• The ring transducer array provides an ideal aperture for sound-speed transmission tomography.

• TOF transmission tomography can accurately reconstruct the sound speed for an object > 5

• For objects < 2 , the reconstruction may indicate the existence of the object, but does not recover the absolute value of the sound speed.

• Reflectivity reconstruction has higher resolution than the sound-speed reconstruction

Page 24: 2-D Ultrasonic Imaging with Circular Array Data Youli Quan Stanford University Lianjie Huang Los Alamos National Laboratory February, 2007.

24

Acknowledgements

• Work was supported by U.S. DOE Laboratory-Directed Research and Development program.

• Data were generated using the computer clusters at Stanford Center for Computational Earth and Environmental Science (CEES).

• Numerical breast phantoms were derived from phantom and in-vivo breast data provided by Karmanos Cancer Institute through Neb Duric.