2 CUHK (Prof Wu) [Compatibility Mode]

download 2 CUHK (Prof Wu) [Compatibility Mode]

of 51

Transcript of 2 CUHK (Prof Wu) [Compatibility Mode]

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    1/51

    Introduction to MacromoleculesIntroduction to MacromoleculesCHM5080 (CUHK)CHM5080 (CUHK)CHEM588/324 (HKUST)CHEM588/324 (HKUST)CHEM6108 (HKU)CHEM6108 (HKU)

    Lecturers: Chi WU (CUHK), E-mail: [email protected]

    Ben Zhong TANG (HKUST), E-mail: [email protected]

    Wai Kin CHAN (HKU), E-mail: [email protected]

    Time/date: CUHK: L2 Science Centre Feb 18 &March 4;(10:30am-12:30pm, 2:00-4:00 pm)

    HKUST: Rm 2306 (near lifts 17/18) March 18 &April 1;(10:00am-12:30pm, 2:00-5:00 pm)

    HKU: Lecture Theatre P1 April 8 &April 22 ;LG1 Chemistry Building (10:30am-12:30pm, 2:00-4:00 pm)

    Final Exam: CUHK/HKUST/HKU May 6(Saturday)

    Textbooks:

    Introduction to Polymers, 2nd edition

    Introduction to Macromolecular ScienceBy Petr Munk, 1989, John Wiley & Sons, QD381.M85

    y . . oung an . . ove , , apman a , .

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    2/51

    OutlinesCUHK

    .2. Structures of macromolecules

    .

    HKUST4. Classification of polymerization reactions5. Step (or condensation) polymerization

    . a n or a on po ymer za on7. Copolymerization

    HKU

    8. Ionic polymerization

    9. Coordination polymerization10. Controlled radical polymerization

    2005/2006 Macromolecules11. Synthesis of polymers with special properties

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    3/51

    Detailed Outline-HKU

    8. Ionic polymerizationAnionic polymerizations

    Initiators, Choice of monomers, Synthesis of block

    copolymers at on c o ymer zat on

    Initiators, Monomers, Reaction mechanism and molecular

    Ring opening polymerizations involving ionic intermediate

    . oor na on po ymer za on

    Ziegler-Natta Catalysts for the polymerization of olefins

    properties

    Other initiators for coordination ol merizations e. .

    2005/2006 Macromolecules

    metallocene catalysts)

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    4/51

    Detailed Outline-HKU Cont

    10. Controlled radical polymerization

    Overview of polymerization mechanism and kinetics

    Nitroxide mediated polymerization (NMP)

    Radical addition fragmentation Transfer (RAFT)

    A lications of CRP in the s nthesis of functional block

    copolymers

    .Conjugated polymer

    Ring Opening Metathesis Polymerizations

    A lications of these ol mers

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    5/51

    The Basics of Macromolecules

    Natural Macromolecules Synthetic Macromolecules

    Proteins, DNA, RNA

    Polysaccharides cellulose: lants & animals

    Polystyrene, polyethylene

    Poly(vinyl chloride) Pol esters ol urethane ...

    Sma mo ecu es

    Macromo ecu es

    The difference between small molecules and macromolecules

    *Homogeneous

    * No swellin in dissolution

    * Inhomogeneous (size & mass)

    * Swellin in dissolution* Purification methods

    * Low viscosity

    * Precipitation, GPC,

    * High viscosity

    2005/2006 Macromolecules

    mp e s ruc ures omp ca e s ruc ures.

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    6/51

    Structures of macromolecules

    *

    Configuration:how they are connectedHomopolymer & heteropolymers:

    block, seqential, graft, random, ... linear, branching, star, grafting, ladder, ...

    * Secondary structures Comformation: folding, helix, sheet, ...

    * Special arrangementsof larger segments(helix & sheet) to form a complicate structure

    * Quaternary structures Spatial multi-chain aggregates, intra- andinter-chain interaction, e.g., triplethelix and enzyme

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    7/51

    * Backbone contains only carbon atoms

    - Polymeric hydrocarbons: PolyethylenePolypropylene isotactic, syndiotactic & atactic

    Pol butadiene 1,2 addition and 1,4 addition cis & trans)

    Low (H.P.) and high (L.P.) density PE

    tures

    Polyisoprene -(CH2C(CH3)=CHCH2)n-natural rubber

    Polystyrene The most representative polymer

    struc - Halogen-containing: Poly(vinyl chloride)

    Polytetrafluoroethylene

    -(CH2CCl)n- common polymer

    Teflon, The king of plastic

    Polytrifluorochloroethylene Tou h and inert

    rima - With polar side groups: Poly(methyl methacrylate) Organic glass

    Poly(hydroxyethyl methacrylate) Gel contains 35% water

    Polyacrylamide Typical water soluble polymer

    Polyacrylic acid Washing power, useful polymers

    Pol vin l alcohol Pol vin l rrolidone .

    - Polymers with heteroatoms in the backbone:

    Polyether - PEO; Polyesters -(O-(CH ) -CO) -, PCL; Polycarbonates -(O-R-O-CO) -;

    2005/2006 Macromolecules

    Polyamides -(NH-(CH2)a-CO)n-;Polyurethanes -(NH-R1-NH-CO-O-R2-O)n-;Polyureas; ...

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    8/51

    Structures of macromolecules

    *

    Configuration:how they are connectedHomopolymer & heteropolymers:

    block, seqential, graft, random, ... linear, branching, star, grafting, laddle, ...

    * Secondary structures Conformation: folding, helix, sheet, ...

    * Special arrangementsof larger segmentsto form a complicate structure, e.g., helix

    * Quaternary structures Spatial multi-chain aggregates, intra- andinter-chain interaction, e.g., triplethelix and enzyme

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    9/51

    Structure of a protein chain: Primary: Secondary and Tertiary Structures

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    10/51

    *. Helical structure - Proteins am lose and nucleic acids

    tion

    Energy vs Entropy Random coil vs Ordered conformation

    It re uires two h dro en bonds in the ormation o the helix not roline .

    forma

    It contains 3.6 amino acid residues per turn; subsequent residues are

    rotated 100o

    with a pitch of 5.4 A; and the translation is 1.5 A per residue.

    s-Co *. Chain folding of some regulated heteropolymer chains

    Stickers moverandomly like a

    uctur

    gas

    Stickers move ina more correlatedfashion like a

    liquid Stickers are

    a

    ryst

    heat heat

    res r c elike a

    solid

    Secon

    Collapsedcore-shell

    2005/2006 Macromolecules

    Random coil

    nanoparticle

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    11/51

    T < ~32 oCA single polymer chain

    Tincreases

    core-s e nanos ruc ure

    dcreases

    PNIPAM-g-PEO

    , , ,

    79, 620 (1998);Macromolecules, 30, 7921

    1.8 80yrene: an imitated drug

    Applications

    1.4

    1.6

    40

    60

    1/I3

    T

    /o

    ne o e env s one

    applications is the smart

    temperature-sensitive1.2

    20

    I C

    . 010 20 30 40 50

    t / min

    2005/2006 Macromolecules

    Protein denaturation Heat denatured & chemical denatured

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    12/51

    Structures of macromolecules

    *

    Configuration:how they are connectedHomopolymer & heteropolymers:

    block, seqential, graft, random, ... linear, branching, star, grafting, laddle, ...

    * Secondary structures Conformation: folding, helix, sheet, ...

    * Special arrangements of larger segmentsto form a complicate structure, e.g., helix

    * Quaternary structures Spatial multi-chain aggregates, intra- andinter-chain interaction, e.g., triplethelix and enzyme

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    13/51

    eat

    Secondar structure - helix

    em ca

    Particular spatial arrangement

    Specific & fast Energy - adenosine triphosphate (ATP)

    Chymotrypsin - a hydrophobic pocket - aromatic amino acids

    Tr sin - an ioni ed carbox l - interacted with the basic rou s

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    14/51

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    15/51

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    16/51

    A zig-zag chain A thread chain A random coil

    Let us start with a polymer chain in one dimensional space.

    It hasN e ments and each se ment has a len th o b.o

    b-b

    After N steps and ifn steps are positive, R = bn + (-b)(N-n) = b(2n-N)2/Nn

    NIf

    The chance (probability) to findnpositive steps is a binomial

    distribution because Pn is related to (p + q)Nwhen p = q = 1/2. !)(!

    !

    nNn

    NP

    N

    n

    =2

    1

    NN

    nNn N! +The mean value ofncan be calculated as

    22

    2

    1

    1

    1

    2

    1

    2

    1 1 NNnNn

    NN

    nNn

    nNnPn

    NN NNNNN

    n =

    =

    =

    =

    = !! !)(!! !n

    qp

    nNn

    qp

    !)(!

    +=0

    = 0=

    4

    1

    11

    1

    2

    1

    2

    1

    1 10

    2

    0

    22 )(

    !)(!)(

    !

    !)(!)(

    !)(

    !)(!

    ! +=

    =

    =

    = =NN

    nNn

    N

    nNn

    Nn

    nNn

    NnPnn

    N

    n

    N

    n

    NN

    n

    NN

    n

    n

    4

    2 Nn =

    N

    Step motion: Rn = b or -b nmmn bRR 2= 21

    2

    11

    2NbRRRR

    N

    n

    n

    N

    m

    m

    N

    n

    n = =11

    2005/2006 Macromolecules

    ( ) 20

    222)]2([ NbPNnbRRR

    n

    n=

    ===22 NbR =bNRRRMS

    222 =

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    17/51

    N

    !)(! nNn2

    Pn = ?,

    =nP

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    18/51

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    19/51

    In a good solvent, a chain is in the random coil state.

    Radius of gyrationHydrodynamicRadius (Rh)

    End-to-End

    Distant

    R = rN - ro

    R 121

    21 N /rr 212005/2006 Macromolecules

    .hR 0

    NR

    i

    iRMS =

    =

    =r

    6

    = bRg

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    20/51

    Radius of gyration (Rg) i i+1i+2

    =

    = Ni

    i

    N

    i

    ii mm11

    /rrGrr

    The gravity center:

    1

    Nri

    r1rN

    0

    NmmRN

    i

    i

    N

    i

    i

    N

    i

    iig /)rr(/)rr( GG2

    11

    2

    1

    2 rrrr = 234

    5

    Thin rod: Rg2 = L2/12

    S here: R 2 = 3/5 R2= ===

    N

    N

    i

    ii

    N

    N

    i

    jii

    N

    j

    N

    i

    ii mmm

    R 1

    2

    1

    22

    12

    )rr()]rr()rr[()rr( GGGrrrrrrrr

    Thin disk: Rg2 = (1/2)R2=i ii ii immm

    111

    22

    For an idea chain ( ) jibjiij 222 rrR rrr2 NN NN

    bNRRRMS21

    212 /

    / =

    )(

    )(

    16

    2

    22

    211 112 ++==

    ==

    ==N

    NNb

    NNm

    m

    R ii j

    N

    i

    i

    i

    g

    4526 .RSM

    R

    R

    2005/2006 Macromolecules

    =

    ( ) 66,2

    12 bN

    bRRNAs gg ===

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    21/51

    bDimensions of chains with short-range interaction

    The end-to-end distance: =

    = Ni

    i

    1

    bRrr

    i-1 i

    ri+1 b( ) 212 /NbRFJ =

    ( ) 2122111

    21

    1

    1//

    /

    cos

    cosbbRRR

    +=

    = bb

    N

    J

    J

    N

    i

    iFR NbR rrrrr

    cos1

    cos1

    +

    =b

    b

    FJ

    FR

    R

    R

    If the rotation is restricted,

    2121

    2

    1

    1

    1

    1//

    cos

    cos

    +

    +=

    b

    bRR NbR

    b ~ 70 043.1

    FJ

    FR

    R

    R

    In the state 7.0= FRR

    R) 21276 NbR . )(6.27.6 PER

    R

    FJ

    Statistical coil chain ( ) 212''bNRS = where b = mb, N = N/m and Nb = Nb = LSome defined parameters

    M

    RA =

    2

    2

    2

    2

    Nb

    R

    R

    RC

    FJ

    == 1

    2=

    b

    LC

    P

    PP: 6 PEO: 4 PE: 7

    LP: is the length

    of persistence.

    2005/2006 Macromolecules

    For linear chains:

    5.053=

    MNR PS: 10; PMMA: atactic: 7;

    syndiotatic: ~7; isotatic: 4.

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    22/51

    Worm-like polymer chain

    cos1

    cos1cos...coscos

    12

    =++++=

    NN

    bbbbbXx

    dLd =rr

    ===

    =

    = cos1cos

    1

    11

    1

    bb

    bL

    i

    i

    i

    iP rr ( ) ( )[ ]

    ===P

    P

    N

    P

    N

    PL

    LLLLX exp1)cos1(exp1cos1

    The rigidity of a worm-like polymer chain depends on its chemical structure, the short and

    long range interactions between chain segments, and ... e.g., PPTA and polyelectrolytes ...

    2/1

    =

    =

    PPLP

    P

    LL

    Pe

    L

    LLLdLeLR 11212

    0

    2

    dLXrd 22 = 2 311

    2

    +

    +=

    P

    L

    P

    P

    PG

    L

    Le

    L

    L

    L

    LLR P

    For flexible chains 0/ >> PLL

    PeLLQ LLLLLR PPP 222

    22 =63

    ...1

    3

    R

    L

    RPPP

    G=

    +=

    Short ran e 1) IR: vibration and rotation; 2) NMR: chemical shift;

    Experimental Methods

    Configuration 3) chemical analysis, GC, UV and MS; and .

    1) viscometry: ~ Vhor Rh; 2) laser light scattering: Rg

    2005/2006 Macromolecules

    Conformation

    n h ; uorescence: ; x-ray an neu ron sca er ng

    & diffraction; 5) relaxation: mechanical, electrial, optical, ...

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    23/51

    Structures of macromolecules

    *

    Configuration:how they are connectedHomopolymer & heteropolymers:

    block, seqential, graft, random, ... linear, branching, star, grafting, laddle, ...

    * Secondary structures Conformation: folding, helix, sheet, ...

    * Special arrangementsof larger segmentsto form a complicate structure, e.g., helix

    * Quaternary structures Spatial multi-chain aggregates, intra- andinter-chain interaction, e.g., triplethelix & enzyme

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    24/51

    Small molecules Conventional colloidsassembly Physical methods

    Chemical methods

    Macromolecules Polymeric colloids (supramolecules)assembly

    Poly(phenyl vinyl

    sulfoxide)(PVSO)Polyacetylene (PA)Poly(p-methyl styrene)

    n PhSOH

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    25/51

    SelSel --assembl o rodassembl o rod--coil diblockcoil diblock

    copolymers in dilute solutioncopolymers in dilute solution

    Assembled

    Rc

    RR

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    26/51

    Molar mass distributons Mn ,Mw ,Mz, M, ... fn(M); fw(M); fz(M)

    Absolute methodsT e end-group, co igative properties

    MS, light scattering, ultracentrifuge.

    Relative methods viscosity, chromatography, FFF

    f M Mf M w n( ) ( ) f Mf M M f M z w n=( ) ( )2 f MM

    f Mwn

    n ( )iii nMW =2

    iiiii nMnWZ ==

    The n-average molar mass M Mf M dM

    f M dM n

    no

    no

    =

    ( )

    ( )

    M

    M N

    Nn

    ii

    i

    ii

    = =

    =

    1

    1

    The w-average molar mass M M f M dM

    Mf M dM

    Mf M dM

    f M dM w

    no

    n

    wo

    w

    = =

    2 ( )

    ( )

    ( )

    ( )M

    M W

    W

    M N

    M Nw

    ii

    i

    i

    ii

    i

    i i

    = =

    =

    1

    2

    1 = =The z-average molar mass M

    M f M dM M f M dM

    z

    wo

    no= =

    2 3( ) ( )

    M

    M W M N

    z

    i

    i

    i i

    i

    i

    = =

    =

    2

    1

    3

    1

    Mf M dM M f M dM wo

    no( ) ( ) M W M N i ii i ii= 1 21

    Schulz-Zimm Distribution+

    Poisson Distribution Logarithmic normal distribution

    2005/2006 Macromolecules

    f M

    z

    M ew z bM ( )

    ( )

    =++

    1f M

    M

    w

    ( ) ( ) exp[( )

    ]/= 22

    1 2

    2

    f M A

    z

    nM

    Pw

    M

    ( ) exp[ ( ( )] 1 l

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    27/51

    Review MacromoleculesNatural: DNA, protein,Polysaccharides...

    Synthetic: i erent po ymers ...

    Difference between small and macro-moleculesHigh-order structures

    The statistic nature of chain conformations

    R = 1/2 = N1/2b

    Rg = 1/2 = (N/6)1/2b

    Rh

    ~ Rhard

    with the same D

    - - -

    31~Different scaling relationships between the

    size and mass of linear flexible coiled chains

    53g

    [ ] 41 withM~

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    28/51

    Experimental Methods

    For polymer chains,molar mass distribution, conformation

    chain size distribution are im ortant because M and R

    are directly related to properties and performance.

    Absolute methodsfor low molar mass chains :

    end-group; vapor pressure osmometry; NMR;

    which does not require at

    least two or more narrowly

    distributed standards with

    co ga ve proper es; an - -

    for high molar mass chains :

    known molar masses

    and static laser light scattering,

    Relative methodsfractionation; translational diffusion;

    viscocity; chromatographic methods;

    2005/2006 Macromolecules

    which requires ca ibration dynamic laser light scattering; and

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    29/51

    In solutionthermodynamics

    hydrodynamics

    In bulk (solid) amorphouscrystalline-

    In solution:In solution: dissolution process G G n G mix i

    N

    i o

    G

    n i=

    *The Flory-Huggins TheorySimple & Effective: ~1940s developed

    G = H - TS when T = constant

    G H T S mix mix mix )( pspsmix VH = solubility equationCondition : no volume change in the mixing

    i iF=

    = e1/2and e is the cohesive energy density,i.e., the vaporization energy of unit volume

    F is the attraction

    force per molar

    2005/2006 Macromolecules

    m liquid under zero pressure.chemical groups.

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    30/51

    The end-group analysis Mn < 10,000 g/mol

    e.g., Nylon-6 H2N(CH2)5CO-(-NH(CH2)5CO-)n-NH(CH2)5COOH

    We can titrate the number of ends H2N- and -COOH

    For a monodisperse sample : M = W/n ;

    For a polydispersed sample, W = niMi; n = ni, andMn = W/n

    Colligative properties

    The boiling or freezing point change

    limC

    b or f

    v or f n

    T

    C

    RT

    H M=

    0

    2 1

    why Mn ?

    Membrane osmometry popo+

    /C = RTMfor small molecules

    solution solvent

    /C = RT/Mfor macromolecules

    CRT

    MA C A C + + +( )1 2 3 2 L

    2005/2006 Macromolecules

    MALDI-TOF-MS and NMR

    Here we only ontline their basic principles.

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    31/51

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    32/51

    Laser light scattering (LLS)

    E = Eosin(2 vt - )Es = k (d

    2P/dt2) = E = 4 P = p + H = ocE i = = oc

    i

    r

    c E

    r

    Io

    o o

    o

    o< > =16 164 2

    4 2

    2

    4 2

    4 2

    ' '

    ( )i ~ -4 i ~ r --2

    i ~ 2 ~ V2For N particles

    I = Ni

    Rayleigh ratio : Rvv(q) =Ir2/Io = KCM K

    ndn

    dC

    N

    o

    AV o

    = 42 2 2

    4

    ( )Rvv(q) =KCMw

    For a large particle : Rqr

    r

    i jNN= 16 44 2

    sin( ), KCA C+1 2 2

    j

    o vv w

    qn

    o

    = 42

    sin p q

    R q q

    R q

    q Rvv

    vv

    g( )( )

    ( )

    = == < > +0

    11

    3

    2 2L

    i KCR M

    q R A C g Z( )+ < > +1 1 13 22 2 2

    2005/2006 Macromoleculeswhy Z ? The z-average ?

    400 pin holeCuvette

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    33/51

    Focus Lens400 pin-hole

    Position-sensitive

    Spectra-Physics Helium Neon Laser632.8 nm WavelengthLaser

    Monitor diode

    o e aser umpe : aser532nm Wavelength

    Cell housing and

    Laser

    Encoder Stepping motor

    index matching vat

    Photon

    Static, Classic LLS(time average intensity)Rotating Arm

    CounterDynamic, Modern LLS(digital time correlator)

    Polymer : 5x103 - 107 g/mol

    Particles : 2 - 2000 nm

    Photomultiplier tube

    Preamplifier/DiscriminatorDilute solution / suspension

    C = 10-3 - 10-6 g/ml

    2005/2006 MacromoleculesLaser Light Scattering Spectrometer incorporated with differential refractometer

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    34/51

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    35/51

    Static LLS Angular and Concentration dependence of

    CAqRKC g

    22

    211 + SII

    MqR WVV 3)(+

    222

    )/(4 dCdnn= 4n=

    )()()(

    oo

    rro

    VVVV

    n

    n

    I

    IIqRqR =

    4oAN o r

    A plot ofR q

    vs C AVV

    q"[

    ( )] "

    0 2

    A plot ofKC

    R qvs q R

    VV

    C g"[( )

    ] "

    02 2

    2

    TheextroplationofKC

    R qM

    VV

    C q W[( )

    ] ., 0 0

    z1/21/Mw

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    36/51

    Dynamic laser light scattering

    * Intensity fluctuation :

    I

    slow fastDynamic LLS

    I

    t

    The ast the movements,

    the fast the fluctuation

    * Doppler frequency shift :

    +

    0 0+0 ~ 1015Hz ; 10 510 7HzIt is rather difficult to detect . 202 )(

    )( =

    S

    - 0 0+0

    * Time correlation function: deSEE i )()()0( * deEES i= )()0(1)( * deGg )()(0)E(E)( *)1( 1=

    ),q()0,q(),q(

    |)2( IIG =The Siegert relation

    2005/2006 Macromolecules

    )0(0)E(E 0

    c]|),q(|1[)0,q( gI

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    37/51

    A typical time correlation function of the chains in solution

    0.8012.00

    0.604.00

    8.00

    G

    (

    )

    0.40A]/A 0.00

    -2

    10-1

    10 -1

    2)

    (t,q)

    )1)(1( 222 qRfCkDq gd +0.20

    [g Dq

    Cq

    =

    00

    2

    0.0 20.0 40.0 60.0 80.0 100.00.00

    2005/2006 Macromoleculest / ms

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    38/51

    Size exclusion chromatorgraphy

    V = V0 + Vifor small M : Ve = V0 + Vifor large M : Ve = V0

    In general : Ve = V0 + ViV = A + B lo M V = A + B lo M standards e

    In practice , one can obtain Veand calculate []M . If knowing [], one can findM.Detectors

    * differential refractometer ; * viscometer ;

    * UV ; and * small angle light scattering from Veto M

    Field flow fractionation (FFF)wflow Tk

    D

    fuF

    B

    =

    =

    x = 0 exp -x w ere = u =

    If d > l > 2 m, it will be a steric FFF - Larger ones come out first.

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    39/51

    Viscoelastic Properties of Bulk Polymers Temperature

    Small molecules (liquid) Crystals and glass

    viscoelastic

    Macromolecules (melts) Crystalline and amorphous

    Stress : F/A = Shear stress

    F

    Strain : L/L = = L

    L = = E E : the Youngs modulus Elasticity

    The tensile strength : The elongation at break F

    = omp ance

    E = 2G (1 + )

    Viscosity () LL

    d =

    2005/2006 Macromolecules

    = -( / ) / ( L/ )

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    40/51

    The Maxwell Model The stress relaxation T = constantElastic

    viselT + el = G vis = (d/dt)sinceViscous0

    11=+=+=

    dt

    d

    Gdtdtdt

    dviselT

    )exp(0

    t=

    where

    =

    CBBC +For a dynamic experiment

    CBBC)sin()cos(assuming&)sin(If 0 tCtBtT +==

    coss ncos0GG

    22 G ("

    0= GanG

    ++ )sin()1()cos()1()( 22220 ttt

    G G

    =m00 1)("G

    2005/2006 Macromolecules

    Storage modulus Loss modulus )(' =G

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    41/51

    The Voigt Model The creep experiment T = constant

    viselT + el = G vis = (d/dt)since

    dt

    dGT

    +

    )exp(1)(

    tG

    t Twhere

    =

    astic

    co

    us

    E Vi

    + CGB +0For a dynamic experiment )sin()cos(assuming&)cos(If

    0tCtBt

    T +==

    0 BGC 0

    =G )(" ++ )sin()1()cos()1()( 22220 ttt

    G G

    =00

    =)("G2005/2006 Macromolecules

    Storage modulus Loss modulus

    =)('G

    E l Polycarbonate with

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    42/51

    Example Polycarbonate with

    two molar masses.

    The time domain can be divided intofour regions, I, II, III and IV.

    I: t

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    43/51

    logGThe Time-Temperature Equivalency

    log a1

    G(t, T) = G(t, T) G(t2, T1) = G(t1, T2)

    G(t3, T1) = G(t2, T2)The Williams-Landel-

    log a2

    4, 1 = 2, 3

    log t1 + log a = log t2

    Ferry (WLF) equation

    )(1 oTTC

    aog

    l log t1 log t3log t2 log t4

    2 o t1 = t2 a

    logGIf Tg is taken as T0 , VSP

    The glass transition temperature (Tg)

    log t2 - log a1log t3 - log a1

    11

    2

    C

    TT

    C

    C

    aog

    TT gg l

    T

    a

    log t3 - log a2

    The universal

    values of C1and C2

    C1 = 17.4

    Tg,2

    ,

    ec

    2005/2006 Macromolecules

    log t1 log t2

    4 - 2C2 = 51.6 T

    g, true

    T > T Plastic materials

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    44/51

    The Glass Trenasition Temperature (Tg)Tg > Troom Plastic materials

    or < T nd T , , , ,

    3. The chain length Tg

    2005/2006 Macromolecules

    4. The cross in ing o the chains. . e m x ng o erent po ymers.

    m

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    45/51

    The Avrami equation )exp(1m

    Kt

    Crystallization is the crystallized fraction and can be determined by any property,such as volume, diffraction intensity, . M depends on geometry,crystallization rate, & nucleation mode so that m is in the range 0.5-4.

    P

    PcP = Pa + (Pc - Pa) 0VVt =e.g.,

    0 1Pa

    0

    In practice, plot ln [ ln [1/(1- )] ] versus ln t The glassy polymers

    Non-equilibrium

    The specific volume depends on how fast a sample was cooled

    down and how long it remains at a particular temperature.

    = 0 + free 0 : t e core an v rat on free : t e trans at onVfree ~ 2.5%V

    S 22 vkB 1Tvke e as c ne wor sPTL ,

    2 + 20 L1

    TvkF

    B dLTvk 2 2RT RT3 RT

    2005/2006 Macromolecules

    2

    VA LV

    +2 2

    +CM C

    M

    CM

    H

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    46/51

    The Crystalline Polymers fm

    HT

    =STHG f

    Folding chains and Spherulites G is continuous at Tm, but not S or V.

    G = H - ST; H = U + PV; U = Q - PdV;

    Q = TdS dG = VdP - SdTS

    T

    G

    P

    V

    P

    G

    T

    =

    dTT

    dPP

    dGPT

    +

    =

    T

    eT?

    T

    eT

    ,

    T < Tg; Tg < T < Tm ; andT > Tm

    Tg is related to the cooling rate, but not Tm.

    In reality, the process of Crystal < > Melts is a kinetic process. For example,

    Tmdecreases with Tcr; Tm is higher than Tcr, the crytal size decreases as thecooling rate increases; and Tm < Te (infinite size), .

    Amorphous - it can be viewed as a supercooled liquid

    2005/2006 Macromolecules

    assy s a eCrystalline (0-100%) - it can be viewed as crosslinking points

    M h l f lli l

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    47/51

    Morphology of crystalline polymers

    The chain folding: 10-20 nm thicknessSpherulites in a concentrated solution.

    Mechanical properties ofcrystalline polymers Drawn in fibers

    0.5 < Tg/Tm < 0.8 Below Tg => Glassy and above Tm => Melts

    If Tg < T < Tm,the crystalline regions act as crosslinking points, so that the

    2005/2006 Macromolecules

    mater a s w e ar an toug . uc a structure can a so e ac eve y

    copolymering some hard segments into flexible chain backbone.

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    48/51

    Multicomponent and multiphase materials

    Plasticization of polymers

    nt sma mo ecu es to ecrease g.

    Heterophase polymers

    Blending of different polymers

    Block and other structure copolymers

    To obtain different Tg

    and toughness.

    2221 VnVnV

    G mixmixV

    mix +==

    222,12

    2

    21

    1

    1 lnln BVV

    RTGVmix + +

    2005/2006 Macromolecules

    1

    2,1

    2,1V

    B=where

    MD2 MD3 MD4

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    49/51

    MD2 MD3 MD4

    A ol mer el is a three-

    dimensional networkswollen by a large amount

    MD5 MD6 MD7p = . of solvent. It has some

    properties betweensolutions and solids.

    SEM micro ra h of H-

    MD2 MD3 MD4

    sensitive copolymer

    P(DEAM-co-MAA)MD5 MD6 MD7

    pH = 9.5

    hydrogels obtained at

    different pH values.

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    50/51

    25 oC 37 oC

    mixingswelling state shrinking state

    2005/2006 Macromolecules

  • 8/3/2019 2 CUHK (Prof Wu) [Compatibility Mode]

    51/51