=1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf ·...

53
Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge 10 th Rencontres du Vietnam Very High Energy Phenomena in the Universe Quy Nhon, 8 th August 2014 U. Sperhake (DAMTP, University of Cambridge) Numerical simulations of coalescing binaries 08/08/2014 1 / 53

Transcript of =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf ·...

Page 1: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Numerical simulations of coalescing binaries

U. Sperhake

DAMTP, University of Cambridge

10th Rencontres du VietnamVery High Energy Phenomena in the Universe

Quy Nhon, 8th August 2014

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 1 / 53

Page 2: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Overview

Introduction

Modelling of NSs, BHs in GR

Gravitational Wave Physics

Kicks and electromagnetic counterparts

Conclusions

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 2 / 53

Page 3: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

1. Introduction

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 3 / 53

Page 4: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Neutron stars and stellar-mass BHs

NSsProgenitors stars

M? ∼ 8 . . . 40 (80?) M�

MNS & 1.4 . . . 2 M�

BHsProgenitor stars

M? & 20 M�

MBH ∼ 3 . . . 50 M�

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 4 / 53

Page 5: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Supermassive BHs

Galaxies ubiquitously

harbor SMBHs

MBH ∼ 106 . . . 1010 M�

BH properties correlated

with bulge properties

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 5 / 53

Page 6: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Evidence for astrophysical black holes

X-ray binaries

e. g. Cygnus X-1 (1964)

MS star + compact star

⇒ Stellar Mass BHs∼ 5 . . . 50 M�

Stellar dynamics

near galactic centers,

iron emission line profiles

⇒ Supermassive BHs

∼ 106 . . . 1010 M�

AGN engines

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 6 / 53

Page 7: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Conjectured BHs

Intermediate mass BHs

∼ 102 . . . 105 M�

Primordial BHs

≤ MEarth

Mini BHs, LHC

∼ TeV

Note: BH solution is scale invariant!U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 7 / 53

Page 8: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Research areas of compact stars

Astrophysics

GW physics

Gauge-gravity duality

High-energy physics

Fundamental studies

Equation of state

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 8 / 53

Page 9: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Luminosities

Lasers: . 1018 W

Tsar Bomba: ∼ 1026 W

GRB: ∼ 1045 W

Universe in electromagnetic radiation: ∼ 1049 W

Planck luminosity: 3.7× 1052 W

One BH binary can outshine the entire electromagnetic universe

Energy from 109 M� BH binary: EGW ∼ 1061 erg

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 9 / 53

Page 10: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

2. Modelling of NSs, BHs

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 10 / 53

Page 11: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

General Relativity: Curvature

Curvature generatesacceleration

“geodesic deviation”

No “force”!!

Description of geometry

Metric gαβ

Connection Γαβγ

Riemann Tensor Rαβγδ

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 11 / 53

Page 12: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

How to get the metric?

Train cemeteryUyuni, Bolivia

Solve for the metric gαβ

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 12 / 53

Page 13: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

How to get the metric?

Ricci-Tensor, Einstein Tensor, Matter Tensor

Rαβ ≡ Rµαµβ

Gαβ ≡ Rαβ − 12gαβRµ

µ “Trace reversed” Ricci

Tαβ “Matter”

Equations Gαβ = 8πTαβ , ∇µTµα = 0

2nd order PDEs for gαβ, matter Eqs.

Solutions: Easy! Take metric

⇒ Calculate Gαβ

⇒ Use that as matter tensor

Physically meaningful solutions: Difficult!

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 13 / 53

Page 14: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Solving Einstein’s equations: Different methods

Analytic solutionsSymmetry: Schwarzschild, Kerr, FLRW, Oppenheimer-Snyder dust

Perturbation theoryAssume solution is close to known solution gαβ

Expand gαβ = gαβ + εh(1)αβ + ε2h(2)

αβ + . . . ⇒ linear system

Regge-Wheeler-Zerilli-Moncrief, Teukolsky, QNMs, EOB,...

Post-Newtonian TheoryAssume small velocities⇒ expansion in v

c

N th order expressions for GWs, momenta, orbits,...

Blanchet, Buonanno, Damour, Kidder, Will,...

Numerical RelativityBreakthroughs: Pretorius ’05, UT Brownsville ’05, NASA Goddard ’05

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 14 / 53

Page 15: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

A list of tasks

Matter: High-resolution shock capturing, Microphysics

Einstein equations: 1) Cast as evolution system

2) Choose specific formulation: BSSN, GHG

3) Discretize for computer

Choose coordinate conditions: Gauge

Fix technical aspects: 1) Mesh refinement / spectral domains

2) Singularity handling / excision

3) Parallelization

Construct realistic initial data

Start evolution...

Extract physics from the dataU. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 15 / 53

Page 16: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

3. GW physics

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 16 / 53

Page 17: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Gravitational wave detectors

Accelerated masses⇒ GWs

Weak interaction!

Laser interferometric detectors

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 17 / 53

Page 18: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

The gravitational wave spectrum

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 18 / 53

Page 19: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Some targets of GW physics

Tests of GR

Hulse & Taylor 1993 Nobel Prize

Parameter determination

of BHs: M, ~S

Optical counter parts

Standard sirens (candles)

Test Kerr Nature of BHs

Neutron stars: EOS

BH formation scenarios

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 19 / 53

Page 20: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Morphology of a BBH inspiral

Thanks to Caltech, CITA, Cornell

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 20 / 53

Page 21: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Matched filtering

BH binaries have 7 parameters: 1 mass ratio, 2× 3 for spins

Sample parameter space, generate waveform for each point

NR + PN

Effective one body

GEO 600 noise

chirp signal

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 21 / 53

Page 22: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Template construction

Stitch together PN and NR waveforms

EOB or phenomenological templates for ≥ 7-dim. par. space

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 22 / 53

Page 23: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Template construction

Phenomenological waveform modelsModel phase, amplitude with simple functions→ Model parameters

Create map between physical and model parameters

Time or frequency domain

Ajith et al. 0704.3764, 0710.2335, 0712.0343, 0909.2867, Santamaria etal. 1005.3306, Sturani et al. 1012.5172, Hannam et al. 1308.3271

Effective-one-body (EOB) modelsParticle in effective metric, PN, ringdown modelBuonanno & Damour PRD ‘99, gr-qc/0001013

Resum PN, calibrate pseudo PN parameters using NRBuonanno et al. 0709.3839, Pan et al. 0912.3466, 1106.1021,1307.6232, Damour et al. 0712.202, 0803.3162, 1009.5998, 1406.6913

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 23 / 53

Page 24: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

The Ninja project

https://www.ninja-project.org/

Aylott et al, CQG 26 165008, CQG 26 114008

Ajith et al, CQG 29 124001

Use PN/NR hybrid waveforms in GW data analysis

Ninja2: 56 hybrid waveforms from 8 NR groups

Details on hybridization procedures

Overlap and mass bias study:Take one waveform as signal, fixing Mtot

Search with other waveform (same config.) varying t0, φ0, Mtot

Mass bias < 0.5 %

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 24 / 53

Page 25: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

The NRAR project

https://www.ninja-project.org/doku.php?id=nrar:home

Hinder, Buonanno et al. 1307.5307

Pool efforts from 9 NR groups

22 + 3 waveforms, including precessing runs

Standardize analysis, comparison with analytic models

Test EOB models with NR

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 25 / 53

Page 26: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Tools of mass production

SpEC catalog: 171 waveforms: q ≤ 8, 90 precessing, ≤ 34 orbits

Mroué et al. 1304.6077

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 26 / 53

Page 27: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Constraining the EOS of NSs with GWs

Step 1: Binary NS coalescence → char. frequency peaks

Takami et al. 1403.5672, Bauswein & Janka 1106.1616

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 27 / 53

Page 28: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Constraining the EOS of NSs with GWs

Step 2: Relations f1 vs. M/R and f2 vs. M/R3

Takami et al. 1403.5672, Bauswein & Janka 1106.1616

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 28 / 53

Page 29: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Constraining the EOS of NSs with GWs

Step 3: Combine with MTOV / RTOV curve and measured M

Takami et al. 1403.5672, Bauswein & Janka 1106.1616

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 29 / 53

Page 30: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

4. Kicks and electromagneticcounterparts

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 30 / 53

Page 31: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

SMBH formation

Most widely accepted scenario for galaxy formation:

hierarchical growth; “bottom-up”

Galaxies undergo frequent mergers⇒ BH merger

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 31 / 53

Page 32: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Gravitational recoil

Anisotropic GW emission⇒ recoil of remnant BHBonnor & Rotenburg ’61, Peres ’62, Bekenstein ’73

Escape velocities: Globular clusters 30 km/s

dSph 20− 100 km/s

dE 100− 300 km/s

Giant galaxies ∼ 1000 km/s

Ejection / displacement of BH⇒

Growth history of SMBHs

BH populations, IMBHs

Displaced QSOs

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 32 / 53

Page 33: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Kicks from non-spinning BHs

Max. kick: ∼ 180 km/s, harmless!

González et al., PRL 98, 091101 (2009)

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 33 / 53

Page 34: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Spinning BHs: Superkicks

Kidder ’95, UTB-RIT ’07: maximum kick expected for

Kicks up to vmax ≈ 4 000 km/s

González et al. ’07, Campanelli et al. ’07

“Hang-up kicks” of up to 5 000 km/s Lousto & Zlochower ’12

Suppression via spin alignment and Resonance effects in inspiralSchnittman ’04, Bogdanovic et al. ’07, Kesden, US & Berti ’10, ’10a, ’12

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 34 / 53

Page 35: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Neutron stars and γ-ray bursts

NS binaries can generate GRBs

Search for coincidence GRB + GW eventsU. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 35 / 53

Page 36: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Double jets and spin flips

BH binary with plasma

Jets driven by L

Optical signature: double jets

Palenzuela, Lehner & Liebling ’10

Spin re-alignment

⇒ new + old jet

⇒ X-shaped radio sources

Campanelli et al. ’06

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 36 / 53

Page 37: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

5. Conclusions

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 37 / 53

Page 38: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Conclusions

NR can reliably evolve compact binaries

PN results good for early inspiral of BHs, NSs

NR needed for merger

BHs, NSs important source of GWs

Some goals of GW physics:

EOS of NS matter, Standard Sirens, BH formation

Astrophysical studies: BH Kicks, Elm. signatures

Other physics: TeV Gravity, AdS/CFT, Fundamental physics

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 38 / 53

Page 39: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Additional material forquestions

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 39 / 53

Page 40: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

3+1 Decomposition

GR: “Space and time exist as a unity: Spacetime”

NR: ADM 3+1 split Arnowitt, Deser & Misner ’62York ’79, Choquet-Bruhat & York ’80

gαβ =

(−α2 + βmβ

m βjβi γij

)3-Metric γijLapse αShift β i

lapse, shift⇒ Gauge

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 40 / 53

Page 41: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

ADM Equations

The Einstein equations Rαβ = 0 become6 Evolution equations

(∂t − Lβ)γij = −2αKij

(∂t − Lβ)Kij = −DiDjα + α[Rij − 2KimK mj + KijK ]

4 Constraints

R + K 2 − KijK ij = 0

−DjK ij + DiK = 0

preserved under evolution!

Evolution

1) Solve constraints

2) Evolve dataU. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 41 / 53

Page 42: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Formulations I: BSSN

One can easily change variables. E. g. wave equation

∂ttu − c∂xxu = 0 ⇔ ∂tF − c∂xG = 0

∂xF − ∂tG = 0

BSSN: rearrange degrees of freedom

χ = (det γ)−1/3 γij = χγij

K = γijK ij Aij = χ(Kij − 1

3γijK)

Γi = γmnΓimn = −∂mγ

im

Shibata & Nakamura ’95, Baumgarte & Shapiro ’98

BSSN strongly hyperbolic, but depends on details...

Sarbach et al.’02, Gundlach & Martín-García ’06

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 42 / 53

Page 43: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Formulations I: BSSN

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 43 / 53

Page 44: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Formulations II: Generalized harmonic (GHG)

Harmonic gauge: choose coordinates such that

∇µ∇µxα = 0

4-dim. version of Einstein equations

Rαβ = −12gµν∂µ∂νgαβ + . . .

Principal part of wave equation

Generalized harmonic gauge: Hα ≡ gαν∇µ∇µxν

⇒ Rαβ = −12gµν∂µ∂νgαβ + . . .− 1

2 (∂αHβ + ∂βHα)

Still principal part of wave equation !!! Manifestly hyperbolic

Friedrich ’85, Garfinkle ’02, Pretorius ’05

Constraint preservation; constraint satisfying BCs

Gundlach et al. ’05, Lindblom et al. ’06

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 44 / 53

Page 45: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Discretization of the time evolution

Finite differencing (FD)

Pretorius, RIT, Goddard, Georgia Tech, LEAN, BAM, UIUC,...

Spectral Caltech-Cornell-CITA

Parallelization with MPI, ∼ 128 cores, ∼ 256 Gb RAM

Example: advection equation ∂t f = ∂x f , FD

Array f nk for fixed n

f n+1k = f n

k + ∆tf nk+1−f n

k−12∆x

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 45 / 53

Page 46: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Initial data

Two problems: Constraints, realistic data

Rearrange degrees of freedom

York-Lichnerowicz split: γij = ψ4γij

Kij = Aij + 13γijK

York & Lichnerozwicz, O’Murchadha & York,

Wilson & Mathews, York

Make simplifying assumptions

Conformal flatness: γij = δij , and K = 0

Find good elliptic solvers, e. g. Ansorg et al. ’04

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 46 / 53

Page 47: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

Mesh refinement

3 Length scales : BH ∼ 1 M

Wavelength ∼ 10...100 M

Wave zone ∼ 100...1000 M

Critical phenomena

Choptuik ’93

First used for BBHs

Brügmann ’96

Available Packages:

Paramesh MacNeice et al. ’00

Carpet Schnetter et al. ’03

SAMRAI MacNeice et al. ’00

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 47 / 53

Page 48: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

The gauge freedom

Remember: Einstein equations say nothing about α, β i

Any choice of lapse and shift gives a solution

This represents the coordinate freedom of GR

Physics do not depend on α, β i

So why bother?

The performance of the numerics DO depend strongly on thegauge!

How do we get good gauge?

Singularity avoidance, avoid coordinate stretching, well posedness

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 48 / 53

Page 49: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

What goes wrong with bad gauge?

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 49 / 53

Page 50: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

What goes wrong with bad gauge?

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 50 / 53

Page 51: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

What goes wrong with bad gauge?

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 51 / 53

Page 52: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

What goes wrong with bad gauge?

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 52 / 53

Page 53: =1=Numerical simulations of coalescing binariessperhake/Talks/Slides/201408_QuyNhon.pdf · Numerical simulations of coalescing binaries U. Sperhake DAMTP, University of Cambridge

A brief history of BH simulations

Pioneers: Hahn & Lindquist ’60s, Eppley, Smarr et al. ’70s

Grand Challenge: First 3D Code Anninos et al. ’90s

Further attempts: Bona & Massó, Pitt-PSU-Texas

AEI-Potsdam, Alcubierre et al.

PSU: first orbit Brügmann et al. ’04

Codes unstable!

Breakthrough: Pretorius ’05 GHG

UTB, Goddard’05 Moving Punctures

Currently about 10 codes world wide

U. Sperhake (DAMTP, University of Cambridge)Numerical simulations of coalescing binaries 08/08/2014 53 / 53