1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de...

77
1 A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro lado. Define características mecânicas, elétricas e funcionais para ativar, manter e desativar conexões físicas para a transmissão de bits entre as entidades do nível superior. Regulamenta interfaces: Mecânicas - Número de pinos dos conectores, dimensões ... Elétricas - Níveis de tensão, corrente, balanceamento de carga ... Funcionais - Temporizações, controle, estabelecimento das conexões-

Transcript of 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de...

Page 1: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

1A Camada Física

O nível Físico

Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro lado.

Define características mecânicas, elétricas e funcionais para ativar, manter e desativar conexões físicas para a transmissão de bits entre as entidades do nível superior.   Regulamenta interfaces:  

Mecânicas - Número de pinos dos conectores, dimensões ...

Elétricas - Níveis de tensão, corrente, balanceamento de carga ...

Funcionais - Temporizações, controle, estabelecimento das conexões-físicas ...  

Page 2: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

2A Camada Física

Princípios da Comunicação de Dados

Nenhum recurso de transmissão é capaz de transmitir sinais sem perder parte da energia no processo.

Largura de Banda (Definição dos eletrônicos): Faixa de freqüências transmitidas sem serem fortemente atenuadas. Propriedade física do Meio de Transmissão medida em Hz.

Largura de Banda (Definição dos computeiros): taxa de dados máxima de um canal, medido em bps. É o resultado final do uso da largura de banda analógica.

Page 3: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

3A Camada Física

Suportes de Transmissão

Vários meios físicos podem ser utilizados para suportar a transmissão. Cada um com seu delay, custo, facilidade de instalação, manutenção, largura de banda, etc.

Suportes mais comuns: Meios Magnéticos (DVDs, fitas) ->caminhonete com

fitas: menor custo, maior capacidade de transmissão (Custo fita = meio centavo por gigabyte);

Par trançado; Cabo coaxial; Meios guiados Fibra óptica; Wireless – Rádio Terrestre Satélite.

Page 4: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

4A Camada Física

Par Trançado

Consiste de um par de fios enrolados em espiral fechados em uma borda protetora. O mais comum. Trançados para

diminuir a interferência elétrica. UTP – Unshielded Twisted Pair – o mais popular hoje, consiste de 4 pares de fios de cobre; As padronizações foram feitas pela EIA/TIA (Electronic Industries Association/Telecommunications Industries Association).

Categoria 3 – Largura de Banda 16 MHz;

Categoria 5 – Largura de Banda 100 MHz;

(100 Mbps usa 2 pares,1 Gbps usa os 4 pares).

Categoria 6 – Largura de Banda 250 MHz;

Categoria 7 – Largura de Banda 600 MHz: possuem blindagem:

STP – Shielded Twisted-Pair . Cada par possui uma malha metálica (blindagem).

Page 5: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

5A Camada Física

Exemplo Fast Ethernet sobre diferentes suportes

Page 6: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

6A Camada Física

Fibra óptica

Consiste de um cilindro finíssimo de vidro, o núcleo, circundado por uma camada concêntrica de vidro.

Sinais de dados são transmitidos na forma de pulsos de luz: não estão sujeitos a interferência elétrica, são rápidos e transmitem a grandes distâncias e ... são caros.

Um pulso de luz indica bit 1, ausência de luz indica bit 0.

Page 7: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

7A Camada Física

Fibra óptica – Componentes

O sistema de transmissão óptica tem 3 componentes: a fonte da luz, o meio de transmissão e o detector que gera um pulso elétrico quando entra em contato com a luz.

Um raio de luz incidente em um meio apropriado, com um ângulo de incidência apropriado, faz com que a luz seja refletida internamente e possa se propagar por kilômetros sem perda.

Page 8: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

8A Camada Física

Fibra óptica – Modos

Fibra multimodo – É possível que muitos raios acima do ângulo crítico estejam sendo refletidos internamente. Muitos raios diferentes em angulos diferentes. Cada raio em um modo diferente.Tem 50 mícrons de diâmetro (1 fio de cabelo humano)

Fibra monomodo – Ao reduzir o diâmetro da fibra, ela atua como guia de onda e a luz se propaga em linha reta. Tem entre 8 e 10 mícrons.É mais cara pelo processo de fabricação mais sofisticado, porém atinge distâncias maiores.Hoje chega a 100 Gpbs por 100km sem amplificação (?). Limitação devido à conversão elétrico-ótico.

Page 9: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

9A Camada Física

Wireless LAN

O princípio utilizado é a transmissão através de ondas eletromagnéticas que se propagam no ar. O número de oscilações por segundo é a frequência, medida em Hz. O espectro  eletromagnético:

Page 10: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

10A Camada Física

Rádio Ondas de rádio : fáceis de gerar, percorrem longas

distâncias, penetram em prédios; são omnidirecionais (viajam em todas as direções a partir da fonte) o que não exige que tx e rx estejam cuidadosamente alinhados

(a) Nas bandas VLF, LF e MF, as ondas obedecem a curvatura da terra.

(b) Nas bandas HF e VHF ricocheteiam na ionosfera.

Page 11: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

11A Camada Física

Microondas

Acima de 100Mhz, as ondas trafegam praticamente em linha reta o que exige o alinhamento preciso. Em grandes distâncias a terra ficaria entre as ondas.

Não atravessam bem paredes de edifícios, e acima de 4Ghz são absorvidas pela água. (Desligar os enlaces afetados pela chuva e criar rota alternativa);

Conveniente pelo custo para distâncias relativamente grandes.

Os governos dos países devem controlar o uso do espectro. Algumas bandas podem ser usadas sem controle, como para telefone sem fio, abertura de portas de garagens, pois com baixa potência o alcance é pequeno e é difícil a interferência.

Bluetooth e 802.11 operam na banda de 2,4 Ghz.

Page 12: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

12A Camada Física

Bandas ISMISM – Industrial, Scientific, Medical – Bandas reservadas

pelos governos para uso sem licença, regulando a potência utilizada.

Banda ISM no Brasil, tem muita coincidênciacom EUA.

2,4GHz – usadas pelo 802.11b/g5 GHz – usadas pelo 802.11a - Ambas usadas pelo 802.11n

Page 13: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

13A Camada Física

Modulação Digital e Multiplexação

Modulação Digital: processo de conversão entre bits e sinais que os representam;

Transmissão de Banda Base: o sinal ocupa frequências de zero até um máximo (depende da taxa de sinalização) – os bits são convertidos diretamente em sinais – comum para fios;

Transmissão de Banda Passante: o sinal ocupa uma banda de frequências em torno da frequência do sinal da portadora; regulam amplitude, fase ou frequência de um sinal da portadora para transportar bits.

Page 14: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

14A Camada Física

Transmissão em Banda Passante

(a) Sinal binário;

(b) Modulação por mudança de amplitude (ASK – Amplitude Shift Keying)

(c) Modulação por mudança de frequência (FSK – Frequency Shift Keying)

(d) Modulação por mudança de fase (BPSK – Binary Phase Shift Keying)

Modulação: Processo de variar periodicamente uma forma de onda para utilizar aquele sinal para transportar uma mensagem. Realizado pelo modem.

Page 15: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

15A Camada Física

Taxa de bits

Baud: Número de amostras por segundo. Durante cada baud é enviado um símbolo. Uma linha de 2400 bauds, envia 2400 símbolos/s.

Taxa de bits: Se o símbolo consiste em 0 volts para indicar 0 lógico, e 1 volt para indicar valor 1 lógico, a taxa de bits é 2400 bps. Se usar as voltagens 0,1,2,3 cada símbolo consiste em 2 bits, e assim uma linha de 2400 bauds pode transmitir 2400 símbolos/s a uma taxa de bits de 4800 bps. Utiliza-se técnicas avançadas para transmitir vários bits por baud.

Taxa de bits (bps) = símbolos/s * bits/símbolo

Page 16: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

16A Camada Física

Modulações mais eficientes

(a) QPSK (Quadrature Phase Shift Keying) 4 combinações de fase => 2 bits por símbolo.

(b) QAM-16 (Quadrature Amplitude Modulation )16 combinações de amplitude e fase => 4 bits por símbolo.

(c) QAM-64 - 64 combinações de amplitude e fase => 6 bits por símbolo.

Page 17: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

17A Camada Física

Multiplexação

Multiplexar: Combinar em um único sinal vários fluxos de dados para compartilhar uma mesma linha com vários usuários.

FDM (Frequency Division Multiplexing) Muliplexação por Divisão de Frequência: o espectro é dividido em bandas de frequência, tendo cada usuário a posse exclusiva de alguma banda. Ex: 3 canais de voz, limitados a 3100Hz multiplexados OFDM – Orthogonal Frequency

Division Multiplexing: usada no 802.11 e 802.16.

Page 18: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

18A Camada Física

TDM e CDM

TDM (Time Division Multiplexing): Cada usuário obtém a largura de banda inteira por determinado período de tempo;

CDM (Code Division Multiplexing): cada estação usa o espectro de frequência o tempo todo: as txs são separadas usando codificação. Por isto chamada de CDMA (Code Division Multiple Access).

Comparação: Suponha um saguão de aeroporto com pares de pessoas conversando. TDM: um par fala de cada vez. FDM: grupos separados falam simultaneamente em tons de voz diferentes. CDM: Todos falam simultaneamente em idiomas diferentes (o que não é francês é ruído…).

Page 19: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

19A Camada Física

Rede Pública de Telefonia Comutada

PSTN – Public Switched Telephone Network : é útil aproveitar a infra-estrutura existente para o envio de dados.

O Circuito Terminal: Modems

O uso de transmissão analógica e digital para uma chamada de computador a computador. A conversação é feita usando modems (Modulador-demodulador) e codecs (Codificador-decodificador : para atingir certa medida de compressão).

Page 20: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

20A Camada Física

O Sistema de Telefonia Móvel

Primeira Geração - Voz Analógica; Em operação desde a década de 60; Criou a ideia de célula: utiliza um conjunto de frequências não utilizado por células vizinhas para evitar interferência. No centro da célula há a estação base (BS) - retransmissora de rádio.

Segunda Geração: Voz Digital: D-AMPS (Digital AMPS); GSM - usado na Europa – acabou dominando; CDMA - usado nos EUA: base p/ 3G;

Page 21: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

21A Camada Física

O Sistema de Telefonia Móvel

Terceira Geração: Voz Digital e Dados (smart phones). Há 2 propostas: W-CDMA - Wideband CMDA (Ericsson) - união européia o chamou de UMTS; CDMA2000 dos EUA (Qualcomm).

Quarta Geração: LTE (Long Term Evolution) . Alguns dos requisitos especificados pela ITU para usar o termo 4G:

Comutação de Pacotes (não circuitos); RTT abaixo de 10ms Alta Largura de Banda: Taxa de pico de Uplink – até 50Mbps; Taxa de pico de downlink – até 100Mbps com alta mobilidade; Conectividade em todo lugar; Integração uniforme com IP; (e outros requisitos...)

Page 22: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

O nível de Enlace de Dados

Nível Enlace22

• Obter uma linha de transmissão e oferecê-la livres de erros para o nível 3.

• Questões típicas:– Quantos bits serão transmitidos de cada vez?

(Definição dos quadros de dados)– Como delimitar estes bits?– Se um quadro foi destruído como corrigir? (Retransm.)– Se o reconhecimento de um quadro for destruído como

corrigir? (Lidar com duplicação de quadros)– Como regular o tráfego se o tx é mais rápido que o rx?– Como controlar o acesso a um canal compartilhado em

redes de difusão?

Page 23: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 23

Nível enlace – Fornece ao nível superior (Rede) a capacidade de pedir o estabelecimento ou liberação dos meios físicos associados ao Nível Físico.

Permite comunicação eficiente e confiável entre dois computadores adjacentes, ou conectados por meio de um canal de comunicação que funciona conceitualmente como um fio (pode ser cabo coaxial, ou canal sem fio): os bits são entregues na ordem exata em que são

enviados.

Papel do Nível Enlace

Page 24: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Quadro

As unidades de informação transferidas chamam-se quadros. Cada protocolo tem um formato de quadro próprio. Relação entre pacotes (N3) e quadros (N2):

Dividir um fluxo de bits em quadros: permitir que o receptor encontre o início de um quadro sem gastar muita banda para isto.

Nível Enlace24

Page 25: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Serviços fornecidos a camada de Rede

Fluxo de dados em um roteador.

Nível Enlace25

Page 26: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 26

Serviços oferecidos com freqüência pelo Nível 2:

Serviço sem conexão e sem confirmação; Ex: Ethernet.

Serviço sem conexão com confirmação; Ex: WiFi

Serviço com conexão e confirmação. (Quando enlaces são longos, não confiáveis); Ex: Satélites

C

O

N

F

I

A

B

I

L

I

D

A

D

E

Serviços fornecidos a camada de Rede

Page 27: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Serviços oferecidos - 2

Nível Enlace 27

Controle de erro: Detecta e possivelmente corrige erros que possam ocorrer na troca de informações do Nível Físico. O nível de Rede é notificado de erros não recuperáveis. Tarefas importantes: gerência de timers e número de seqüência de quadro;

Controle de fluxo: manter regras bem definidas sobre quando o transmissor pode enviar o quadro seguinte. Controla a taxa de transferência na interface com o Nível de Rede. Ex: smartphone pede página a servidor Web potente

Page 28: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Detecção e Correção de Erros

Nível Enlace 28

Há 2 estratégias para tratar erros:Código de correção de erros (FEC-Forward Error

Correction). Incluir informação redundante em cada bloco de dados para que o rx deduza os dados transmitidos. Utilizado em canais que geram muitos erros. Ex: wireless.

Código de detecção de erros: Incluir redundância apenas para permitir que o rx deduza que houve um erro, mas sem identificar qual. Em canais altamente confiáveis basta detectar o erro (Ex: fibra); É acrescentada à mensagem, um código (CRC) montado a partir de uma combinação polinomial dos dados que compõem o quadro. O recebedor confere o CRC, realizando a mesma combinação e comparando o CRC obtido com o recebido.

Page 29: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Protocolos Básicos

Uma implementação comum: na NIC (Network Interface Card) funcionam o processo da camada física e parte da camada de enlace. O restante da camada de enlace e rede são parte do SO.

Nível Enlace29

Page 30: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Sub-Camada de Controle de Acesso ao Meio

Nível Enlace 30

Em redes de difusão, normalmente utilizadas em LANs, é necessário determinar quem tem direito de usar o canal quando há uma disputa por ele.

A subcamada da Camada de Enlace que cuida desta tarefa é chamada de subcamada MAC (Medium Access Control).

Nenhum dos métodos estáticos tradicionais de alocação de canais funciona bem com tráfego de rajadas. Se dividir a banda (ou tempo) entre N usuários e tiver mais ou menos que N?

Page 31: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Alocação Dinâmica de canais

Nível Enlace 31

Premissas fundamentais para formular problema de alocação: Tráfego Independente: Há N estações independentes que

geram quadros para transmissão. Canal Único: Todas as estações podem transmitir e

receber por um único canal; Colisão: Dois quadros transmitidos simultaneamente se

sobrepõem no tempo e o sinal resultante é adulterado. Quadros que colidiram devem ser retransmitidos;

Tempo: Contínuo – tx começa a qualquer instanteSegmentado - Tempo dividido em slots ;

Detecção de portadora: As estações podem ou não detectar se o canal está sendo usado.

Estas premissas estão envolvidas nos métodos de alocação de canais, dos quais veremos CSMA/CD e CSMA/CA.

Page 32: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

CSMA / CD - Apresentação

Nível Enlace 32

CSMA/CD – Carrier Sense Multiple Access with Collision Detection.

Comparação:

Um jantar em uma sala escura. As pessoas ao redor da mesa devem escutar, aguardando um período de silêncio, antes de falar (Carrier Sense). Quando há espaço, qualquer pessoa tem chance igual de falar (Multiple Access). Se duas pessoas falarem ao mesmo tempo, detectam o fato (Collision Detection) e param de falar.

Quando uma estação detecta uma colisão e interrompe a transmissão, deve esperar um tempo aleatório para tentar retransmitir o pacote.

Page 33: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

CSMA / CD

Nível Enlace 33

O CSMA/CD pode estar em um destes tres estados: disputa, transmissão ou inatividade.

As colisões podem ser detectadas verificando-se a potência e a largura do pulso do sinal recebido e comparando-o com o sinal transmitido.

Page 34: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

IEEE 802

Nível Enlace 34

O IEEE padronizou várias redes locais e metropolitanas com o nome de IEEE 802.

Alguns sobreviveram, outros não. Difícil prever:

Entre os sobreviventes: 802.3 (Ethernet), 802.11 (WiFi). 802.15 (Bluetooth) 802.16 (WiMax).

Page 35: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

802.3 – O quadro (1)

Nível Enlace 35

Endereço Ethernet – (MAC address) – contém 6 bytes: Os 3 primeiros atribuídos pela IEEE às organizações

que constroem interfaces Ethernet; Os 3 últimos bytes são atribuídos pela organização. Exemplo: 06-0A-00-19-BC-24 O primeiro bit é 0 para endereços comuns e 1 para

endereços de grupos (Multicast). Endereço com todos os bits em 1 são recebidos por

todas as estações (Broadcast).

Page 36: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

802.3 – O quadro (2)

Nível Enlace 36

Formato do quadro (a) Formato Ethernet (DIX) (b) Formato 802.3.

(as 2 maneiras podem ser usadas pois muito difundidas)

Preâmbulo: 7 bytes 10101010 – sinalização de ocupação do meio. Permite sincronização entre clock do receptor e do transmissor (a nível de bit).

IdQ (Início de quadro) – 1 byte para sincronismo a nível de quadro.

Page 37: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

802.3 – O quadro (3)

Nível Enlace 37

Felizmente, todos os valores do campo tipo usados até 1997, eram maiores que 1500, o tamanho máximo do quadro, e assim, IEEE padronizou que se o campo contiver um número menor ou igual a 0x600 (1536) bytes é interpretado como tamanho

Page 38: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

802.3 - Colisão

Nível Enlace 38

Há um comprimento mínimo de quadro

Page 39: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

802-3 –Recuo Binário Exponencial

Nível Enlace 39

O tempo é dividido em slots discretos de tamanho igual ao pior tempo de propagação de viagem de ida e volta (2t).

Depois da primeira colisão, cada estação espera 0 ou 1 slot antes de tentar novamente.

Depois da segunda colisão, cada estação espera 0,1,2 ou 3 tempos de slot.

Se ocorrer uma terceira colisão (cuja probabilidade é 0,25), na próxima vez o número de slots que deverá esperar é escolhido ao acaso entre 0 e 23-1.

Após i colisões, é escolhido um número aleatório entre 0 e 2i-1. Acontece um congelamento em 1023 após 10 colisões.

Page 40: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Fast Ethernet – 802.3u

Nível Enlace 40

Decisão IEEE: Manter o 802.3 apenas tornando-o mais rápido. Motivação: Manter o cabeamento existente – compatibilidade com

as redes existentes; Medo de protocolo novo trazer problemas inesperados; Manter o emprego.

Assim, mantém o formato dos pacotes, interfaces, regras e reduz o tempo do bit.

Para não abandonar as placas existentes de 10Mbps, o switch permite que duas estações negociem automaticamente a velocidade ideal ou o tipo de duplex. O comum hoje é o switch 10/100/1000.

Page 41: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

GigabitEthernet

Nível Enlace 41

Objetivo: tornar a Ethernet 10 vezes mais rápida, mantendo a compatibilidade retroativa com os padrões Ethernet existentes. A padronização mais popular foi chamada IEEE 802.3ab

Configurações ponto-a-ponto e não multiponto como no padrão original.

Page 42: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

802.3ae – 10Gigabit Ethernet

Nível Enlace 42

Funciona apenas em fibra, só opera em modo full-duplex, os protocolos de detecção de colisão são desnecessários;

Expandiu o padrão Ethernet para uso em redes metropolitanas (MAN) e redes de longa distância (WAN), mantendo princípios de operação e administração de redes;

Ainda há autonegociação para ser flexível

Page 43: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

ARP – Address Resolution Protocol

Nível Enlace 43

ARP mapeia endereços IP em endereços de enlace. Responde à pergunta: A quem pertence tal endereço IP? Há broadcast na rede perguntando o MAC de tal IP.

Caso 1: Hosts na mesma rede. Ex: Host 1 tx para Host 2

Page 44: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

ARP em redes diferentes

Nível Enlace 44

Caso 2: Hosts em redes diferentes. Ex: Host 1 (65.7) tx para Host 4 (63.8): não é IP de sua rede, coloca MAC do rot.

Roteador pega o quadro e procura IP em suas tabelas, descobre para que roteador mandar (talvez ARP na sua rede para descobrir o MAC deste roteador);

Último roteador troca seu MAC pelo MAC de destino do host 4 (talvez ARP na sua rede para descobrir).

Page 45: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Redes sem Fio

Nível Enlace 45

• Tipos de Redes– Redes Infra-estruturadas

A Estação Móvel está em contato direto com um Ponto de Acesso.

– Redes Ad-HocOs nós são capazes de trocar, diretamente, informações entre si.

– Redes MeshOs nós são capazes de trocar, diretamente, informações entre si, mas contam com uma infraestrutura de apoio.

Page 46: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Tipos de Redes

Nível Enlace 46

MH – Mobile Host

AP – Access PointFH – Fixed Host

AP

MH

MH

MH

FH

FH

FH

<= Infra-Estruturadas

Ad Hoc =>

Page 47: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Redes Mesh

Nível Enlace 47

Page 48: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Tecnologias de Redes sem Fio

Padrão IEEE Freqüência Alcance (outdoor)

Taxa

802.15.1 (Bluetooth) 2.4GHz <10m 723 Kbps

802.15.3 (UWB) 2.4GHz 30-50m 10-55Mbps

802.15.3a 3.1-10.6 GHz <10m 110-480Mbps

802.15.4 (Zig Bee) 868M, 915M, 2.4 G 10-75m 20-250Kbps

802.11a (WiFi) 5GHz < 50m 6-54Mbps

802.11b 2.4GHz <100m 2-11Mbps

802.11g 2.4GHz <100m 20-54Mbps

802.11n 2.4GHz, 5GHz <250m 150Mbps-300Mbps

802.16 (WiMAX) 10-66GHz 10km 60-100Mbps

802.16e (100km/h) 2-6GHz 10km 70 MbpsNível Enlace 48

Page 49: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Alcance das Redes sem Fio

Nível Enlace 49

WWANIEEE 802.20

(MBWA)

WMANIEEE 802.16

(WiMAX)

WLANIEEE 802.11a/b/g

0-10m 50m 75m 100m 10km

WPANIEEE 802.15

Bluetooth, WUWB, ZigBee

15km

Page 50: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

WPAN – Wireless Personal Area Networks

Nível Enlace 50

• Bluetooth (IEEE 802.15.1)• Ultra Wide Band (IEEE 802.15.3) • Zigbee (IEEE 802.15.4).

• Conjunto de dispositivos de uma pessoa dispostos, ao redor desta, como uma bolha, dispositivos que podem se mover e se conectar entre si.

Page 51: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace51

Derivados do IEEE 802.15.4 e disseminados na indústria para Redes de Sensores.

“The reason both standards were developed is that there exists no IEEE standard that directly fits the use cases for process automation. Both ISA100.11a and IEC62591 (WirelessHart) are developments based on IEEE 802.15.4...”Walt BoyesLife Fellow, International Society of AutomationEditor in Chief, Control and ControlGlobal.com

ISA100.11a e WirelessHart

Page 52: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 52

WLAN – IEEE 802.11 a/b/g/n/ac

Originário de uma aliança de empresas foi padronizado pelo IEEE. A Wi-Fi Alliance é um fórum de empresas para certificação de produtos 802.11 quanto à interoperabilidade.

A Marca Wi-FiTM indica produtos certificados.

Padrão IEEE 802.11 especifica: controle de acesso ao meio (MAC) protocolos de camada física (PHY)

PHY

MAC

IP

LLC IEEE 802.2

IEEE 802.11

Page 53: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 53

Wireless – Características

Uma estação em uma mesma LAN pode não ser capaz de transmitir ou receber quadros de todas as estações devido ao alcance limitado do rádio.

O que importa é a interferência no receptor e não no transmissor – um receptor dentro do alcance de dois transmissores terá o sinal resultante com interferência => Várias conversas podem ocorrer ao mesmo tempo em uma sala grande, desde que não dirigidas para a mesma pessoa (“re-uso espacial”);

Não há como detectar colisões durante uma transmissão: o sinal recebido pode ser um milhão de vezes mais fraco que o sinal que está sendo transmitido e não pode ser detectado ao mesmo tempo => os rádios são half-duplex;

Page 54: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 54

Wireless – Estação Oculta

A e B estão no alcance um do outro; B e C também, porém A não alcança C. Se A transmite para B e C detectar o meio, não perceberá a transmissão. Se transmitir para o próprio B, ou para D, arruinará a transmissão de A para B. Queremos um MAC que impeça esta colisão. (Colisão desperdiça banda).

O problema da estação oculta: A e C ocultos ao transmitirem para B.

Page 55: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 55

Wireless – Estação Exposta

A e B estão no alcance um do outro; B e C também, porém A não alcança C. Se B transmite para A e C desejar transmitir para D, ao detectar o meio ouvirá uma transmissão em andamento e concluirá incorretamente que não pode transmitir. Queremos um MAC que permita esta transmissão (adiar desperdiça banda).

O problema da estação exposta: B e C estão expostos ao transmitir para A e D.

Page 56: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 56

CSMA/CAQuem tem um quadro a transmitir começa com um backoff

aleatório (de 0 a 15 slots). Espera até que o canal esteja inoperante, conta slots inoperantes,interrompendo a contagem quando houver envio;

Envia seu quadro quando contador chega a 0. Se não houver confirmação, deduz colisão, aplica algoritmo de recuo binário exponencial.

Page 57: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 57

WiFi – Modos de Operação

PCF (Point Coordination Function) - opcional: Ponto de Acesso efetua polling, perguntando quem

quer transmitir => não há colisão, mas não permite reuso espacial. (não usado na prática)

DCF (Distributed Coordination Function) não utiliza nenhum controle central: CSMA/CA (CSMA with Collision Avoidance) tem 2

modos de operação: Detecção de Canal Físico– verifica o meio para

ver se há sinal válido. Detecção de Canal Virtual – manter registro lógico

de quando o canal está em uso.

Page 58: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 58

Detecção de Canal Virtual

Rastrear vetor de alocação de rede, ou NAV (Network Allocation Vector). Todo o quadro transporta um campo que fornece quanto tempo levará para concluir a sequência da qual este quadro faz parte. As estações que escutam o quadro sabem que o canal estará ocupado pelo período indicado pelo NAV, independente de detectar o meio físico.

O NAV de dados inclui o tempo necessário para a confirmação. Quem escutar o quadro de dados adia a transmissão para depois da confirmação.

Um mecanismo opcional(RTS/CTS) usa o NAV para impedir transmissões de terminais ocultos.

Page 59: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 59

RTS/CTS

RTS (Request to Send): Quadro de controle curto que contém o comprimento do quadro de dados que possivelmente será enviado em seguida.

CTS (Clear to Send): Quadro de controle curto que contém o tamanho dos dados (copiado do RTS).

Após o recebimento de CTS, a estação A pode transmitir.

Page 60: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 60

Detecção de Canal Virtual com RTS/CTS

C A B D

Posicionamento das estações no espaço

Uso de detecção de Canal Virtual com RTS/CTS

Não resolve o problema do terminal exposto.

Page 61: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 61

Redes sem fio são ruidosas e pouco confiáveis. Quanto maior o quadro, maior a probabilidade de fracasso. Solução: Os quadros podem ser fragmentados em pedaços menores, assim só se retransmitiria o fragmento defeituoso.

Se C e D param o NAV após primeiro ACK, como enviar toda a rajada? Definição de Mecanismo de Controle de tempo.

WiFi – Rajada de Fragmentos

Page 62: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 62

Se estiver sendo usado o PCF, a distribuição de tempo seria de acordo com esta figura.

DIFS : Tenta adquirir o canal se o meio ficar ocioso por DIFS

EIFS : para não interferir em diálogos em andamento

WiFi – Controle de Tempo

Page 63: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 63

Suponha as seguintes aplicações em uma rede:

• VoIP: baixa largura de banda necessária, admite pequeno atraso.

• Peer-to-peer: alta largura de banda consumida, admite atraso maior que VoIP.

Na competição a voz seria degradada. Utilizar o mecanismo de controle de tempo para dar prioridade ao VoIP.

Diferentes intervalos para diferentes tipos de quadros.

Qualidade de Serviço

Page 64: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 64

Espaçamento entre quadros

SIFS – Short InterFrame Spacing

AIFS1 – Arbitration Interframe Spacing – pode ser usado pelo AP para o tráfego de voz;

AIFS4 – pode ser usado pelo AP para o tráfego peer-to-peer

Page 65: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 65

O mecanismo utiliza quadros de baliza (Beacon Frame) transmitidas periodicamente (ex: 100ms) pelo AP com parâmetros do sistema.

• Cliente: seta bit de gerenciamento de energia - informa entrada no modo de economia de energia. Cochila e aguarda a próxima baliza para verificar se há tráfego para ele. Se houver, recebe e pode voltar a dormir até próxima baliza.

• AP: guarda os quadros do cliente em buffer, envia baliza com mapa do tráfego. Se requisitado, envia o tráfego armazenado.

• APSD (Automatic Power Save Delivery): AP envia quadros para o cliente assim que o cliente enviou algo para o AP (indicando que está acordado). Bom para aplicação com tráfego nos 2 sentidos.

Economia de Energia

Page 66: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 66

Formato do Quadro de dados - 1

Tipo: Dados, controle ou gerenciamento; Subtipo: Ex: RTS ou CTS;

Para DS, de DS: o quadro está indo ou vindo do Sistema de Distribuição entre Célula ( Distribution System, ou seja, do AP);

MF: More Fragments; Repetir: =1 indica que é retransmissão;

Ger. Energ.: Estado que estará após envio deste quadro (economia ou não);

Mais dados: AP indica que tem mais dados em seu buffer (guia economia);

Protegido: Corpo do quadro criptografado com WEP;

Page 67: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 67

Quadro de dados - 2

Ordem: Seqüência de quadros deve ser processada em ordem (unicast e multicast)

Duração: Por quanto tempo o quadro e confirmação ocuparão canal – em ms (para cálculo do NAV);

Endereços: Endereço de origem, destino, e endereços das célula-base de origem e destino;

Seqüência: Numera o quadro (12 bits) e o fragmento (4 bits);

Dados: Carga útil de até 2312; Total de verificação: CRC.

Page 68: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 68

Exemplos de Quadros

Os quadros trazem muitas informações associadas aos serviços. Ex de quadros:

Type Value Description Subtype Value Subtype Description00 Management 0000 Association Request00 Management 0001 Association Response00 Management 0010 Reassociation Request00 Management 0011 Reassociation Response00 Management 0100 Probe Request00 Management 0101 Probe Response00 Management 0110-0111 Reserved00 Management 1000 Beacon00 Management 1010 Disassociation00 Management 1011 Authentication00 Management 1100 Deauthentication00 Management 1101-1111 Reserved01 Control 1011 Request To Send (RTS)01 Control 1100 Clear To Send (CTS)01 Control 1101 ACK e controle (Beacon frame) do AP;

Page 69: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

69Nível Enlace

ISM – Industrial, Scientific and Medical

24835 MHz2400 MHz

Banda ISM

2401 1 2423

2412

2426 6 2448

2437

2451 11 2473

2462

2406 2 2428

2417

2431 7 2453

2442

2436 8 2458

2447

2411 3 2433

2422

2416 4 2438

2427

2441 9 2463

2452

2421 5 2443

2432

2446 10 2468

2457

Limite Inferior Limite SuperiorNúmero do CanalFrequência Central

Uso dos canais na faixa ISM

Page 70: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 70

WiFi – IEEE 802.11n

Aprovado em 2009--Compatível com o IEEE 802.11b/g Alto desempenho na faixa de 2.4GHz ou 5GHz: Utiliza OFDM

e MIMO (Multiple Input, Multiple Output) que aproveita a característica de múltiplos caminhos da onda (multipath): a informação transmitida reflete nos objetos e atinge a antena de recepção por diferentes ângulos e em instantes pouco diferentes; as antenas de recepção selecionam o melhor sinal, ou tem algum circuito para combinar os sinais recebidos fornecendo um sinal de melhor qualidade.

Waves that travel along two different paths will arrive with phase shift, hence interfering with each other.

Page 71: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 71

Riscos• Má-configuração• Clientes / Pontos de Acesso não autorizados• Interceptação de tráfego• Interferência / Interrupção• Ataque entre clientes• Ataque contra ponto de acesso• Quebra da informação criptografada

Warchalking: Marcar pontos com alcance 802.11

Page 72: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 72

Spanning Tree Bridges - 1

Por confiabilidade poder-se-ia conectar bridges com enlaces paralelos.Quadro F0 de A é inundado por B1 como quadros F1 e F2.Quando chegam a B2, B2 inunda com quadros F3 e F4. Quando chegam a B1...

Page 73: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 73

Spanning Tree Bridges - 2

Sobrepor à topologia real uma Spanning Tree que alcance cada bridge: ignorar conexões potenciais que possam criar loops. (Na figura ignoram-se os enlaces pontilhados).

Algoritmo spanning tree (IEEE 802.1D): Nós escolhem uma raíz (menor MAC); encontrar shortest path da raíz a cada bridge ( em caso de empate, menor MAC)

Page 74: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 74

Virtual LAN - VLAN

No início a geografia superava a lógica. Se dois funcionários trabalhassem na mesma sala estavam na mesma LAN; além disso, uma mudança física de um funcionário implicava em mudança de LAN;

Deseja-se flexibilidade: é interessante desacoplar a rede física da lógica (via software!).

Razões para organizar quem está em qual LAN: Segurança; Carga; Tráfego de Broadcast – consome banda. (tempestade

de broadcast derrubam a rede);

Page 75: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 75

Exemplo de 2 VLANs

Duas VLANs cinza e branca em uma LAN com bridges. Tabelas informam quais as VLANs são acessíveis em qual porta. No caso de inundação ou broadcast só se copia o quadro para as portas da mesma VLAN. No caso de um quadro vindo do hub, encaminhar para VLAN G ou W? Alterar o cabeçalho do quadro Ethernet para conter a identificação da VLAN a que o quadro pertence.

Page 76: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 76

IEEE 802.1Q

“Colorir” o quadro, a fim de que o switch identifique para onde encaminhá-lo. No lugar de Tipo: 0x8100 + Prioridade (3 bits) para QoS + Bit CFI (Canonical Format Indicator) para compatibilidade com rede Token Ring; CFI=1, não encaminhe para porta que não usa 802.1Q até chegar a uma rede TokenRing + Identificador de VLAN (12 bits)

Page 77: 1A Camada Física O nível Físico Relacionado a transmissão de bits sobre um canal de comunicação. Enviar um bit 1 e garantir que se receba um bit 1 do outro.

Nível Enlace 77

802.1Q x 802.3

A Ethernet clássica, 802.3 não reconhece uma VLAN como o B6. Os switches que reconhecem 802.1Q podem inserir ou retirar a tag.

Ex: (1) Maquina 802.1Q de B1 tem pacote p/ máquina 802.3 de B5: B5 precisa retirar a tag para entregar;

(2) Mesma maq. tem pacote para máquina 802.3 de B6: B4 precisa retirar a tag.