16th Annual Conference - economics.byu.edu/brightspotcdn.byu.edu/6b/61/4ed21… · 6/23/2009  ·...

159
16 th Annual Conference Multinational Finance Society in Crete (2009)

Transcript of 16th Annual Conference - economics.byu.edu/brightspotcdn.byu.edu/6b/61/4ed21… · 6/23/2009  ·...

  • 16th Annual Conference

    Multinational Finance

    Society in Crete (2009)

  • Statistical Distributions in

    Finance

    (invited presentation)

    James B. McDonald

    Brigham Young University

    June 28- July 1, 2009

    The research assistance of Brad Larsen and Patrick Turley is

    gratefully acknowledged as are comments from Richard

    Michelfelder and Panayiotis Theodossiou.

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    a. Families

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Some families of statistical

    distributions

    a. Families f(y;θ), θ = vector of parameters

    i. GB: GB1, GB2, GG (0

  • GB distribution tree

  • Probability Density Functions

    ( )( )( )( )

    ( ) ( )( )( )

    11 1 1 /

    ; , , , , , 0 / 1

    , 1 /

    qaap

    a a

    p qaap

    a y c y bGB y a b c p q y b c

    b B p q c y b

    −−

    +

    − −= −

    +

    ( ) ( )( )( )( )

    11 1 /

    1 ; , , , ; , , 0, ,,

    qaap

    ap

    a y y bGB y a b p q GB y a b c p q

    b B p q

    −− −

    = = =

  • Probability Density Functions

    ( ) ( )( ) ( )( )

    1

    2 ; , , , ; , , 1, ,

    , 1 /

    ap

    p qaap

    a yGB y a b p q GB y a b c p q

    b B p q y b

    += = =

    +

    ( )( )

    ( )

    /1

    ; , ,

    ayap

    ap

    a y eGG y a p

    p

    −−

    =

    ( )

    0 / 1

    ,

    a a

    a controls peakedness

    b is a scale parameter

    c domain y b c

    p q shape parameters

  • Probability Density FunctionsGB2 PDF evaluated at different parameter values:

  • Some families of statistical

    distributions

    a. Families

    i. GB: GB1, GB2, GG

    ii. EGB: EGB1, EGB2, EGG (Y is real valued)

  • EGB distribution tree

  • Probability Density Functions

    ( )( ) ( ) ( )( )

    ( ) ( )( )

    1/ /

    /

    1 1; , , , ,

    , 1

    qp y m y m

    p qy m

    e c eEGB y m c p q

    B p q ce

    −− −

    +−

    − −=

    +

    - 1 - <

    1

    y mfor n

    c

    ( )( ) ( )( )

    ( )

    1/ /

    11 ; , , ,

    ,

    qp y m y m

    e eEGB y m p q

    B p q

    −− −

    −=

  • Probability Density Functions

    ( )( )

    ( ) ( )( )

    /

    /2 ; , , ,

    , 1

    p y m

    p qy m

    eEGB y m p q

    B p q e

    +−

    =+

    ( )( ) ( )

    ( )

    //

    ; , ,

    y mp y m ee eEGG y m p

    p

    −− −

    =

    ,

    m controls location

    is a scale parameter

    c defines the domain

    p q are shape parameters

  • Probability Density FunctionsEGB2 PDF evaluated at different parameter values:

  • Some families of statistical

    distributions

    a. Families

    i. GB: GB1, GB2, GG

    ii. EGB: EGB1, EGB2, EGG

    iii. SGT (Skewed generalized t): SGED, GT, ST,

    t, normal (Y is real valued)

  • SGT distribution tree

    SGT5 parameter

    SGED GT

    SLaplace SNormal t SCauchy

    Laplace Uniform Normal Cauchy

    4 parameter

    3 parameter

    2 parameter

    λ=0 p=2q→∞

    ST

    GED

    λ=0λ=0

    λ=0 λ=0λ=0

    p=2 p=2

    p=2

    p=1

    p=1

    q→∞ q→∞

    q=1/2

    q→∞ q=1/2

    p→∞

  • Probability Density Functions

    ( ); , , , ,SGT y m p q ( )

    ( )( )( )1/

    1/

    2 1/ , 11

    p

    p

    p p

    q p

    p

    y mq B p q

    sign y m q

    +

    −+

    + −

    =

    ( )( )( )( )

    ( )

    / 1

    ; , , ,2 1/

    ppy m sign y m

    peSGED y m p

    p

    − − + −

    =

    ( )

    = ( )

    =

    1 , -1 < < 1

    2

    , ,

    m mode location parameter

    scale

    skewness area to left of m

    p q shape parameters tail thickness moments of order pq df

    − = =

    = =

  • Probability Density FunctionsSGT PDF evaluated at different parameter values:

  • Some families of statistical

    distributions

    a. Families

    i. GB: GB1, GB2, GG

    ii. EGB: EGB1, EGB2, EGG

    iii. SGT (Skewed generalized t): SGED, GT, ST, t,

    normal

    iv. IHS

  • Probability Density Functions

    ( )( )( ) sinh 0,1 /Y a b N k= + +

    ( )

    ( ) ( ) ( )

    ( )( )

    22 22 2ln / / ln

    2

    22 2 2

    ; , , ,

    2 /

    ky y

    keIHS y k

    y

    − − + + + − + − +

    =

    + − +

    ( ) ( ) ( )2 2 2 2.5 .5.5 2 21/ , / , .5 , and .5 2 1k k k kw w w w we e e e e e

    − − − −− + − += = = − = + + −

    2

    k

    mean

    variance

    skewness parameter

    tail thickness

    =

    =

    =

    =

    ( ); , lim ; , , , 0kN y IHS y k →= =

    where

    IHS

  • Probability Density FunctionsIHS PDF evaluated at different parameter values:

  • Some families of statistical

    distributions

    a. Families

    i. GB: GB1, GB2, GG

    ii. EGB: EGB1, EGB2, EGG

    iii. SGT (Skewed generalized t): SGED, GT, ST, t,

    normal

    iv. IHS

    v. g-and-h distribution (Y is real valued)

  • g-and-h distribution

    Definition:

    where Z ~ N[0,1]

    ( )2 / 2

    ,

    1gZ hZg h

    eY Z a b e

    g

    −= +

    h>0 h

  • g-and-h distribution

    ( ) 2 20,0 ~ ,Y Z a bZ N a b = + =

    ( ), 01gZ

    g h

    eY Z a b

    g=

    −= +

    ( )2 / 2

    0,

    gZ

    g hY Z a bZe= = +

    Is known as the g distribution

    where the parameter g allows

    for skewness.

    Is known as the h distribution

    • Symmetric

    • Allows for thick tails

  • Probability Density Functionsg-and-h PDF evaluated at different parameter values with h>0:

  • Probability Density Functionsg-and-h PDF evaluated at different parameter values with h

  • Some families of statistical

    distributions

    a. Families f(y;θ)

    i. GB: GB1, GB2, GG

    ii. EGB: EGB1, EGB2, EGG

    iii. SGT (Skewed generalized t): SGED, GT, ST, t,

    normal

    iv. IHS

    v. g-and-h distribution

    vi. Other distributions: extreme value, Pearson

    family, …

  • Some families of statistical

    distributions

    a. Families f(y;θ)

    i. GB: GB1, GB2, GG

    ii. EGB: EGB1, EGB2, EGG

    iii. SGT (Skewed generalized t): SGED, GT, ST, t, normal

    iv. IHS

    v. g- and h-distribution

    vi. Other distributions: extreme value, Pearson family, …

    vii. Extensions: ( )( )1. x = , 2. Multivariate

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    a. Families

    b. Properties

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    1. GB family

    ( )( )( ) 2 1

    / , / ; / , F

    / ;,

    h

    h

    GB

    p h a h a cb B p h a qE Y

    p q h aB p q

    ++ =

    + +

    for h < aq with c=1

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    1. GB family

    a. GB1

    ( )( )( )1

    / ,

    ,

    h

    h

    GB

    b B p h a qE Y

    B p q

    +=

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    1. GB family

    a. GB1

    b. GB2

    ( )( )

    ( )2/ , /

    - / ,

    h

    h

    GB

    b B p h a q h aE Y p h a q

    B p q

    + −=

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    1. GB family

    a. GB1

    b. GB2

    c. GG

    ( )( )( )

    / /

    h

    h

    GG

    p h aE Y for h a p

    p

    −=

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    1. GB family

    2. EGB family

    ( ) ( )( )( ) 2 1

    , ; c,

    p+q+t,

    t

    ty

    EGB

    p t te B p t qM t E e F

    B p q

    ++ = =

    / σ with 1for t q c =

  • EGB moments

    ( )p + ( ) ( )p p q + − + ( ) ( )p q + −

    ( )2 ' p ( ) ( )2 ' 'p p q − + ( ) ( )

    2 ' 'p q +

    ( )3 '' p ( ) ( )3 '' ''p p q − + ( ) ( )

    3 '' ''p q −

    ( )4 ''' p ( ) ( )4 ''' '''p p q − + ( ) ( )

    4 ''' '''p q +

    EGG EGB1 EGB2

    Mean

    Variance

    Skewness

    Excess kurtosis

    ( )( )d n s

    sds

    =

  • EGB2 moment space

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    1. GB family

    2. EGB family

    3. SGT family

  • SGT family

    ( ) ( ) ( ) ( )( )/

    1 1

    1,

    1 1 12 1

    ,

    h p

    hh h h h

    SGT

    h hq B q

    p pE y m

    B qp

    + +

    +−

    − = + + − −

    ( ) ( ) ( ) ( )( )1 11

    1 1 12 1

    hh h h h

    SGED

    h

    pE y m

    p

    + +

    +

    − = + + − −

    for h < pq=d.f.

  • SGT moment space

  • SGT family moment space

  • Some families of statistical

    distributions

    a. Families

    b. Properties

    i. Moments

    1. GB family

    2. EGB family

    3. SGT family

    4. IHS

  • IHS moment space

  • Some families of statistical

    distributions

    a. Families

    b. Properties

    i. Moments

    1. GB family

    2. EGB family

    3. SGT family

    4. IHS

    5. g-and-h family

  • g- and h-family

    ( )( )

    ( )

    ( )

    2

    2 1

    0

    ,

    1

    1

    i j gi ihj

    njn n i i

    g h ii

    ie

    n jE X a b

    i g ih

    − −

    =−

    =

    = −

    Moments exist up to order 1/h (0

  • g-and-h moment space (h>0)(visually equivalent to the IHS)

  • Moment space for g-and-h (h>0)

    and g-and-h (h real)

  • Moment space of SGT, EGB2,

    IHS, and g-and-h

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    ii. Cumulative distribution functions (see

    appendix)

    • Involve the incomplete gamma and beta

    functions

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    ii. Cumulative distribution functions (see appendix)

    • Involve the incomplete gamma and beta functions

    iii. Gini coefficients (G)

  • Gini Coefficients (G)

    Definition:

    ( ) ( )0 0

    1: :

    2G x y f x f y dxdy

    = −

    ( )( )

    ( )( )

    2

    0

    0

    11

    1

    F y dy

    F y dy

    −−

    ( )G =

    ( )G = (Dorfman, 1979, RESTAT)

  • Gini Coefficients

    Interpretation:

    G = 2A

  • Gini Coefficients

    Application: Stochastic Dominance

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    ii. Cumulative distribution functions (see appendix)

    iii. Gini coefficients (G)

    iv. Incomplete moments

  • Incomplete moments

    Definition: ( )( )

    ( );

    y

    h

    h

    s f s ds

    y hE Y

    −=

    Applications:

    Option pricing formulas

    Lorenz Curves

  • Incomplete moments

    Convenient theoretical results:

    ( );y h

    ( )2 2; ,LN y h +

    ( ); , , /GG y a p h a +

    ( )2 ; , , / , /GB y a b p h a q h a+ −

    Distribution

    LN

    GG

    GB2

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    ii. Cumulative distribution functions (see appendix)

    iii. Gini coefficients (G)

    iv. Incomplete moments

    v. Mixture models

  • Mixture Models

    Let denote a structural or conditional

    density of the random variable Y where

    and denote vectors of distributional

    parameters. Let the density of be given by

    the mixing distribution . The observed

    or mixed distribution can be written as

    ( ); ,f y

    ( );g

    ( ) ( ) ( ); , ; , ;h y f y g d =

  • Mixture Models

    Observed model Structural

    model

    Mixing

    distribution

    ( ); , , , ,SGT y m p q

    ( ); , ,GT y p q

    ( )2 ; , , ,EGB y p q

    ( )2 ; , , ,GB y a b p q

    ( ); , ,LT y q

    ( ); ,t y q

    ( ); , , ,SGED y m s p

    ( ); ,GED y s p

    ( )( ); , ln ,EGG y s p

    ( ); , ,GG y a s p

    ( ); ,LN y s

    ( ); ,N y s

    ( )1/; , ,pIGG s p q q

    ( )1/; , ,pIGG s p q q

    1; , ,IGG s e q

    ( ); , ,IGG s a b q

    ( )1/ 2; 1,IGG s a q =

    ( )1/ 2;IGA s q

  • Some families of statistical

    distributions

    b. Properties

    i. Moments

    ii. Cumulative distribution functions (see appendix)

    iii. Gini coefficients (G)

    iv. Incomplete moments

    v. Mixture models

    vi. Hazard functions (Duration dependence)

  • Hazard functions

    Definition:

    Let denote the pdf of a spell (S) or duration of an

    event.

    is the probability that that S>s.

    The corresponding hazard function is defined by

    which can be thought of as representing the rate or

    likelihood that a spell will be completed after surviving

    s periods.

    ( )f s

    ( )1 F s−

    ( )( )

    ( )1

    f sh s

    F s=

  • Hazard functions

    Applications:

    ⚫ Does the probability of ending a strike, unemployment spell, expansion, or stock run depend on the length of the strike, unemployment spell, or of the run?

    ⚫ With unemployment,⚫ A job seeker might lower their reservation wage and become more likely to find a

    job Increasing hazard function

    ⚫ However, if being out of work is a signal of damaged goods, the longer they are out of work might decrease employment opportunities Decreasing hazard function.

    ⚫ An alternative example might deal with attempts to model the time between stock trades. ⚫ Engle and Russell (1998) Autoregressive conditional duration: a new model for

    irregularly spaced transaction data. Econometrica 66: 1127-1162

    ⚫ Hazard function of time between trades is decreasing as t increases or the longer the time between trades the less likely the next trade will occur.

  • Hazard functions

    Applications:

    ⚫ Bubbles⚫ McQueen and Thorley (1994) Bubbles, stock returns, and duration dependence.

    Journal of Financial and Quantitative Analysis, 29:379-401

    ⚫ Efficient markets hypothesis, stock runs should not exhibit duration dependence (constant hazard function)

    ⚫ McQueen and Thorley argue that asset prices may contain “bubbles” which grow each period until they “burst” causing the stock market to crash. Hence, bubbles cause runs of positive stock returns to exhibit duration dependence—the longer the run the less likely it will end (decreasing hazard function), but runs of negative stock returns exhibit no duration dependence

    ⚫ Grimshaw, McDonald, McQueen, and Thorley. 2005, Communications in Statistics—Simulation and Computation, 34: 451-463.

    ⚫ What model should we use to characterize duration dependence?⚫ Exponential—constant

    ⚫ Gamma—the hazard function can increase, decrease, or be constant

    ⚫ Weibull—the hazard function can increase, decrease, or be constant

    ⚫ Generalized Gamma: the hazard function can be increasing, decreasing, constant, -shaped, or -shaped

  • Hazard functions

    Possible shapes for the GG hazard functions

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    a. Families

    b. Properties

    c. Model selection

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Some families of statistical

    distributionsc. Model selection

    i. Goodness of fit statistics

    • Log-likelihood values

    o for individual data

    o for grouped data

    Partition the data into g groups,

    Empirical frequency:

    Theoretical frequency:

    ( ) ( )( )1

    :n

    i

    i

    n f y =

    =

    ( ) ( ) ( )( ) ( ) 1

    !g

    i i i

    i

    n n n n p n n =

    = + −

    )1, , 1,2,...,i i iI Y Y i g−= =

    1

    / , g

    i i i

    i

    p n n n n=

    = =

    ( ) ( );i

    i

    I

    p f y dy =

  • Model Selection

    i. Goodness of fit statistics

    • Log-likelihood values

    • Possible Measures

    ( )1

    g

    i i

    i

    SAE p p =

    = −

    ( )( )2

    1

    g

    i i

    i

    SSE p p =

    = −

    ( ) ( ) ( )2

    2 2

    1

    / ~ # 1g

    ii i

    i

    nn p p g parameters

    n

    =

    = − − −

  • Model Selection

    i. Goodness of fit statistics

    • Log-likelihood values

    • Possible Measures

    • Akaike Information Criterion (AIC)

    • A tool for model selection

    • Attaches a penalty to over-fitting a model

    ( )( )2AIC k= −

  • Model Selection

    i. Goodness of fit statistics

    ii. Testing nested models

    Examples:

    1.

    2.

    ( ): 0OH g =

    : : 0O OH SGT GT H = =

    : : 2, 0, O OH SGT Normal H p and q= = = →

  • Testing nested models

    Likelihood ratio tests

    where r denotes the number

    of independent restrictions

    Wald test

    ( ) ( )22 * ~aLR r= −

    ( ) ( )21 2 * ~ 1a

    SGT GTLR = −

    ( ) ( )22 2 * ~ 3a

    SGT NormalLR = −

    ( )( ) ( )( )( ) ( ) ( )1

    2' var ~aMLE MLE MLEW g g g r −

    =

    ( ) ( )( ) ( ) ( )1

    2

    1ˆ ˆ ˆ0 0 ~ 1aW Var

    = − −

  • Statistical Distributions in

    Finance1. Introduction

    2. Some families of statistical distributions

    a. Families

    b. Properties

    c. Model selection

    d. An example: the distribution of stock returns

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • An example: the distribution of

    stock returns

    ( ) 1 11/ ~ 1t t t

    t t t

    t t

    P P Py n P P

    P P

    + +−

    −= = −

    Daily, weekly, and monthly excess returns (1/2/2002 –

    12/29/2006) from CRSP database (NYSE, AMEX, and

    NASDAQ)— 4547 companies

    H0: skewness = 0

    H0: excess kurtosis = 0

    H0: returns ~ N(μ, σ2)

    JB =

    ( ).95 2 6/ , 2 6/CI n n= −( ).95 2 24/ , 2 24/CI n n= −

    ( )( )

    222

    .05

    ~ 2 5.99

    6 24

    excess kurtosisskewn

    + =

    ( ).95 0 5.99CI JB=

  • An example: the distribution of

    stock returns (continued)

    % of stocks for which excess returns statistics are in 95% C.I.

    HO: Skewness=0 HO:Excess kurtosis=0 HO: Normal

    Daily 16.38% 0.04% 0.09%

    Weekly 30.61% 4.88% 4.75%

    Monthly 66.79% 56.65% 53.77%

  • An example: the distribution of

    stock returns (continued)

    Daily excess returns plotted with admissible moment space of flexible distributions

    -4 -3 -2 -1 0 1 2 3 40

    10

    20

    30

    40

    50

    60

    Skewness

    Kurt

    osis

    CRSP daily stocks--excess returns

    CRSP stock

    EGB2

    SGT

    IHS

    bound

  • An example: the distribution of

    stock returns (continued)

    Weekly excess returns plotted with admissible moment space of flexible distributions

    -4 -3 -2 -1 0 1 2 3 40

    10

    20

    30

    40

    50

    60

    Skewness

    Kurt

    osis

    CRSP weekly stocks--excess returns

    CRSP stock

    EGB2

    SGT

    IHS

    bound

  • An example: the distribution of

    stock returns (continued)

    Monthly excess returns plotted with admissible moment space of flexible distributions

    -4 -3 -2 -1 0 1 2 3 40

    10

    20

    30

    40

    50

    60

    Skewness

    Kurt

    osis

    CRSP monthly stocks--excess returns

    CRSP stock

    EGB2

    SGT

    IHS

    bound

  • An example: the distribution of

    stock returns (continued)

    Fraction of stocks in the admissible skewness-kurtosis

    space

    daily weekly monthly

    EGB2 15.48% 43.81% 50.80%

    IHS 83.92% 84.39% 61.97%

    SGT 87.62% 89.00% 95.10%

    g-and-h 100.00% 99.98% 98.99%

  • An example: the distribution of

    stock returns (continued)

    Fitting a PDF to normal excess returns

    Company Name Skew Kurtosis Jb Stat

    US Steel 0.06 3.308 5.62

    Estimated PDF logL SSE SAE Chi^2

    Normal 2753.52 0.001 0.12 27.81

    EGB2 2756.83 0.001 0.11 23.38

    IHS 2756.76 0.001 0.11 23.46

    SGT 2758.78 0.001 0.12 28.19

    -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.20

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Excess returns

    Estimated PDFs for US Steel daily excess returns

    Returns

    Normal

    EGB2

    IHS

    SGT

  • An example: the distribution of

    stock returns (continued)

    Company Name Skew Kurtosis Jb Stat

    iShares -29.06 965.09 48733899.02

    Fitting a PDF to leptokurtic excess returns

    Estimated PDF logL SSE SAE Chi^2

    Normal 2516.86 0.099 0.93 1433.33

    EGB2 3713.99 0.002 0.13 43.47

    IHS 3795.21 0.001 0.12 33.43

    SGT 3810.07 0.003 0.21 79.35

    -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.080

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Excess returns

    Estimated PDFs for iShares daily excess returns

    Returns

    Normal

    EGB2

    IHS

    SGT

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applicationsa. Background

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Regression applications--

    background

    Model:

    1xK vector of observations on the explanatory

    variables

    Kx1 vector of unknown coefficients

    independently and identically distributed random

    disturbances with pdf

    t t tY X = +

    tX

    t( );f

  • Regression applications--

    background

    ⚫ If the errors are normally distributed

    ⚫ OLS will be unbiased and minimum variance

    ⚫ However, if the errors are not normally distributed

    ⚫ OLS will still be BLUE

    ⚫ There may be more efficient nonlinear estimators

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applicationsa. Background

    b. Alternative estimators

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Alternative Estimators

    i. Estimation

    OLS

    LAD

    Lp

    ( )2

    1

    arg minn

    OLS t t

    t

    Y X =

    = = −

    1

    arg minn

    LAD t t

    t

    Y X =

    = = −

    1

    arg minp

    pn

    L t t

    t

    Y X =

    = = −

  • Alternative Estimators

    (continued)

    i. Estimation (continued)

    M-estimators:

    ⚫ Includes OLS, LAD, and Lp as special cases

    ⚫ Includes MLE (QMLE or partially adaptive estimators) as a special case where

    ▪ SGT

    ▪ SGED

    ▪ EGB2

    ▪ IHS

    ( ) ( ); ;n f = −

    ( ),1

    arg min ;n

    MLE t t

    t

    Y X =

    = = −

    ( )1

    arg minn

    M t t

    t

    Y X =

    = = −

  • Alternative Estimators

    (continued)

    i. Estimation

    ii. Influence functions: ( ) '( ) =

    OLS LADRedescending

    influence function

  • Alternative Estimators

    (continued)

    i. Estimation

    ii. Influence functions

    iii. Asymptotic distribution of extremum

    estimators

    where

    ( )min H

    1 1ˆ ~ ;a sandwichN A BA − − =

    ( )2 and

    ' '

    d H dH dHA E B E

    d d d d

    = =

  • Alternative Estimators

    (continued)

    i. Estimation

    ii. Influence functions

    iii. Asymptotic distribution of extremum estimators

    iv. Other estimators

    ⚫ Semiparametric (Kernel estimator, Adaptive MLE)

    where

    denotes a kernel, and h is the window width

    ( )1

    arg min n

    SP K t t

    t

    n f Y X =

    = − = −

    ( )1

    1 n iK

    i

    ef K

    nh h

    =

    − =

    i i i OLSe Y X = −

    ( )K

  • Regression applications

    (continued)

    iv. Other estimators (continued)

    ⚫ Generalized Method of Moments (GMM)

    where

    Z denotes a vector of instruments (can be X)

    Q is a positive definite matrix

    ( ) ( )arg min 'GMM g Qg =

    ( ) ( )1

    n

    i i i i

    i

    g Z h Y X =

    = = −

    ( )1( )Q Var g −=

  • Statistical Distributions in

    Finance1. Introduction

    2. Some families of statistical distributions

    3. Regression applicationsa. Background

    b. Alternative estimators

    c. A Monte Carlo comparison of alternative estimators

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • A Monte Carlo comparison of

    alternative estimators

    c. A Monte Carlo comparison of alternative estimators

    ⚫ Model:

    ⚫ Error distributions: (zero mean and unitary variance)

    Normal:

    Mixture:

    Skewness =0

    Kurtosis =24.3

    Skewed:

    Skewness=6.18

    Kurtosis=113.9

    0;1N

    .9* 0,1/ 9 .1* 0,9N N+

    ( )( ) ( ).50,1 / 1LN e e e− −

    1t t ty X = − + +

  • A Monte Carlo comparison of

    alternative estimators

    Skewness

    Kurtosis

    Skewed

    Mixture

    Normal

  • A Monte Carlo comparison of

    alternative estimators

    Estimators Normal Mixture-thick tails Skewed

    OLS .275 .287 .280

    LAD .332 .122 .159

    SGED .335 .128 .060

    ST .293 .112 .054

    GT .314 .133 .135

    SGT .335 .125 .073

    EGB2 .287 .125 .049

    IHS .285 .119 .054

    SP = AML .285 .114 .128

    GMM .319 .115 .088

    Sample size = 50, T=1000 replications

    RMSE for slope estimators

  • Statistical Distributions in

    Finance1. Introduction

    2. Some families of statistical distributions

    3. Regression applicationsa. Background

    b. Alternative estimators

    c. A Monte Carlo comparison of alternative estimators

    d. An application: CAPM i. Error distribution effects

    ii. ARCH effects

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • An application: CAPM

    i. CAPM and the error distribution

    Daily, weekly, and monthly excess returns

    (1/2/2002 – 12/29/2006) from CRSP database

    (NYSE, AMEX, and NASDAQ)— 4547

    companies

    HO: Skewness=0 HO:Excess kurtosis=0 HO: Normal (JB)

    Daily 14.14% 0.02% 0%

    Weekly 28.13% 3.91% 3.43%

    Monthly 67.56% 57.14% 54.76%

    Percent of stocks for which OLS residual statistics are in 95% C.I.

  • An application: CAPM with and

    without ARCH effects (ST)

    i. CAPM and the error distribution

    Daily, weekly, and monthly excess returns

    (1/2/2002 – 12/29/2006) from CRSP database

    (NYSE, AMEX, and NASDAQ)— 4547

    companies

    HO: Skewness=0 HO:Excess kurtosis=0 HO: Normal (JB)

    Daily 14.05% 0.02% 0%

    Weekly 28.82% 3.83% 3.39%

    Monthly 64.04% 54.72% 51.48%

    Percent of stocks for which ST residual statistics are in 95% C.I.

  • An application: CAPM with and

    without ARCH effects (IHS)

    i. CAPM and the error distribution

    Daily, weekly, and monthly excess returns

    (1/2/2002 – 12/29/2006) from CRSP database

    (NYSE, AMEX, and NASDAQ)— 4547

    companies

    HO: Skewness=0 HO:Excess kurtosis=0 HO: Normal (JB)

    Daily 13.99% 0.02% 0%

    Weekly 27.89% 3.83% 3.36%

    Monthly 65.54% 55.71% 52.32%

    Percent of stocks for which IHS residual statistics are in 95% C.I.

  • An application: CAPM with

    alternative error distributions

    Company Name Skewness Kurtosis JB stat

    UNITED NATURAL FOODS INC -0.074 2.8004 0.1543

    99 CENTS ONLY STORES 1.7541 7.6594 85.0456

    Statistics of OLS residuals

    Company Name OLS T GT SGED EGB2 IHS ST SGT

    UNITED NATURAL FOODS INC 0.313 0.313 0.335 0.334 0.303 0.302 0.314 0.335

    99 CENTS ONLY STORES 0.184 0.125 0.125 0.110 0.109 0.106 0.110 0.110

    Estimated Betas

  • An application: CAPM with and

    without ARCH effects

    i. CAPM and the error distribution

    ii. CAPM: how about ARCH effects?

    ⚫ Review:

    ⚫ If errors are normal and no ARCH effects, OLS is MLE

    ⚫ If errors are not normal and no ARCH effects OLS is

    BLUE, but not MLE nor efficient

    ⚫ If errors are normal and have ARCH effects OLS is

    BLUE, but not efficient

    ⚫ If errors are not normal and have ARCH effects OLS

    is BLUE,but not efficient

  • An application: CAPM with and

    without ARCH effects

    ii. CAPM: ARCH effects (continued)

    ⚫ Model:

    Percent of stocks exhibiting ARCH(1) effects (OLS)

    (% rejecting )1: 0OH =

    0.10 level 0.05 level

    Daily 63.2% 60.0%

    Weekly 29.2% 24.1%

    Monthly 18.7% 13.7%

    t t tY X = +

    .52

    0 1 1t t tu − = +

  • An application: CAPM with and

    without ARCH effects

    Percent of stocks exhibiting ARCH(1) effects (ST)

    (% rejecting )

    Percent of stocks exhibiting ARCH(1) effects (IHS)

    (% rejecting )

    0.10 level 0.05 level

    Daily 63.2% 59.9%

    Weekly 29.1% 23.9%

    Monthly 16.9% 12.3%

    1: 0OH =

    0.10 level 0.05 level

    Daily 63.3% 60.0%

    Weekly 29.3% 24.1%

    Monthly 18.9% 13.9%

    1: 0OH =

  • An application: CAPM with and

    without ARCH effects

    ii. CAPM: ARCH effects (continued)

    ⚫ ARCH Simulations▪ , t= 1, …, 60

    ▪ X monthly excess market returns, 1/2002 to 12/31/2006

    ▪ Error distributions

    ( ) 0 .9 t t ty X excess market return = + = +

    2~ 0,t N

    ( ) ( ) 1

    .52

    0 11 : where ~ 0,1tN t t tARCH u u N −= +

    ( ) ( )1

    .52

    0 11 : where ~ (5)tt t t tARCH u u t −= +

  • An application: CAPM with and

    without ARCH effects

    ARCH Simulations (continued)

    Errors

    Est imat ion N on- A R C H A R C H N on- A R C H A R C H N on- A R C H A R C H

    OLS/Normal 0.352 0.356 0.347 0.291 0.353 0.300

    LAD 0.444 0.446 0.397 0.369 0.315 0.297

    T 0.358 0.363 0.338 0.293 0.283 0.265

    GED 0.381 0.389 0.357 0.318 0.306 0.285

    GT 0.387 0.396 0.362 0.322 0.306 0.286

    SGED 0.406 0.417 0.374 0.341 0.318 0.297

    EGB2 0.371 0.376 0.352 0.312 0.300 0.281

    IHS 0.368 0.377 0.348 0.319 0.291 0.275

    ST 0.375 0.382 0.350 0.310 0.293 0.277

    SGT 0.409 0.420 0.376 0.344 0.316 0.297

    Root Mean Square Error (RMSE) for 10,000 replications

    N ( 0 ,σ^2 ) N ( 0 ,1) , A rch( 1) t ( 5) , A rch( 1)

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Qualitative Response Models

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    a. Basic framework

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Qualitative Response—

    Basic Framework

    ⚫ Model:

    if and 0 otherwise

    ⚫ Log-likelihood function:

    *

    i i iy X = −

    1 iy =* 0iy

    ( ) ( )*Pr 1 Pri i i i i iy X y X X = = = −

    ( ) ( ) ( )Pr ; ;iX

    i i iX f s ds F X

    = = =

    ( ) ( )( ) ( ) ( )( ) 1

    , ; 1 1 ;n

    i i i i

    i

    y n F X y n F X =

    = + − −

  • Qualitative Response—

    Basic Framework (continued)

    ⚫ MLE of will be consistent and asymptotically distributed as

    if the model is correctly specified.

    ⚫ Probit and logit estimators will be inconsistent if⚫ The error distribution is incorrectly specified

    ⚫ heteroskedasticity exists, e.g. unmeasured heterogeneity is present

    ⚫ relevant variables have been omitted

    ⚫ The index appears in a nonlinear form

    ⚫ Similar results are associated with Censored & Truncated regression models

    12

    ˆ ~ ;'

    a dN Ed d

    − = −

    ̂

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    a. Basic framework

    b. An application: fraud detection

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • ⚫ Prediction of corporate fraud (Y=1 fraud)

    ⚫ Compare financial ratios of companies with averages

    of five largest companies (“virtual” firm)

    ⚫ 228 companies (114 fraud and 114 non-fraud)

    ⚫ Variables: accruals to assets, asset quality, asset

    turnover, days sales in receivables, deferred charges

    to assets, depreciation, gross margin, increase in

    intangibles, inventory growth, leverage, operating

    performance margin, percent uncollectables,

    receivables growth, sales growth, working capital

    turnover.

    ⚫ SGT, EGB2, & IHS formulations improve predictions

    Qualitative response—

    An application: fraud detection

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    a. Basic framework

    b. An application

    c. Some related issues

    5. Option pricing

    6. VaR (value at risk)

    7. Conclusion

  • Qualitative response—

    Some related issues

    ⚫ Cost of misclassification

    ⚫ Choice-based sampling

    ⚫ Heterogeneity

    ⚫ Semi-parametric estimation procedures

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    6. VaR (value at risk)

    7. Conclusion

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    a. The Black-Scholes option pricing formula

    6. VaR (value at risk)

    7. Conclusion

  • Option pricing—

    Black-Scholes

    a. The Black Scholes option pricing formula

    The equilibrium price of a European call option is equal to the present value of its expected return at expiration:

    where involve “normalized

    incomplete” moments

    ( ) ( )( ) ( ) ( )0, , ,0 ,

    ;1 ;0

    rT rt

    f T T

    X

    rT

    T

    T t

    C S T X e E C S e S X f S S T dS

    X XS e X

    S S

    − −

    = = −

    = −

    ( )( )

    ( )

    ( )

    ( ); 1

    yhh

    y

    h h

    s f s dss f s ds

    y hE y E y

    −= − =

    ( ) ( )( ); 1 ;y h y h = −

    .

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    a. The Black-Scholes option pricing formula

    b. Some background and alternative formulations

    6. VaR (value at risk)

    7. Conclusion

  • Option pricing– Some background

    and alternative formulations

    ⚫ The Black Scholes (1973) option pricing formula corresponds to being the lognormal

    ⚫ , the cdf for the lognormal

    ⚫ The Black Scholes formula (Bookstaber and McDonald, 1991) corresponding to the Generalized Gamma is obtained from

    ⚫ , the cdf for the GG

    ⚫ The Black Scholes formula ( Bookstaber and McDonald, 1991) corresponding to the GB2 is obtained from

    ⚫ , the cdf for the GB2

    ⚫ Rebonato (1999) applied to the Deutschemark

    ( )f s

    ( ) ( )2 2; ; ,LN y h LN y h = +

    ( ); ; , ,GGh

    y h GG y a pa

    = +

    ( )2 ; 2 ; , , ,GBh h

    y h GB y a b p qa a

    = + −

    ( )2 , ,GB TC S T X

  • Option pricing– Some background

    and alternative formulations

    ⚫ Sherrick, Garcia, and Tirupattur (1996) used to price soybean futures.

    ⚫ Theodosiou (2000) developed the

    ⚫ Savickas (2001) explored the use of

    ⚫ Dutta and Babbel (2005) explore the g- and h- family (4-parameter) of option pricing formulas, , based on Tukey’s nonlinear transformation of a standard normal.

    ⚫ Applied the g-and-h to pricing 1-month and 3-month London Inter Bank Offer Rates (LIBOR)

    ⚫ g- and- h distribution and GB2 perform much better (errors fairly highly correlated) than the Lognormal, Burr 3, and Weibull distributions

    ( )& , ,g h TC S T X− −

    ( ), ,SGED TC S T X

    ( ), ,Weibull TC S T X

    ( )3 , ,Burr TC S T X−

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    a. The Black-Scholes option pricing formula

    b. Some background and alternative formulations

    c. A comparison of pricing behavior

    6. VaR (value at risk)

    7. Conclusion

  • A comparison of pricing

    behaviorc. A comparison of pricing behavior (Dutta and Babbel, Journal of

    Business, 2005) ⚫ Calculates the difference between the market price and predicted price

    for the g-and-h, GB2, lognormal, Burr3, and Weibull distributions

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    6. VaR (value at risk)

    7. Conclusion

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    6. VaR (value at risk)

    a. Background and definitions

    7. Conclusion

  • VaR—Background and

    definitions

    i. Value at risk (VaR) is the maximum expected loss on a portfolio of assets over a certain time period for a given probability level.

    ⚫ R is the return on the asset

    ⚫ θ denotes the distributional parameters

    ⚫ α is the predetermined confidence level or coverage probability

    ⚫ is the corresponding maximum expected loss or conditional threshold

    ( )( )

    ;R

    f R dR

    =

    ( ) ( )1 :RR F

    −=

    ( )R

  • VaR—Background and

    definitions

    R z = +

    ( )( )

    ( )( )( ) ( )1 :; ,

    R

    Z Z

    Z

    Ff z dz Z

    −=

    −==

    ( ) ( )1 :ZR F

    −= +

    ii. Standardized returns

  • VaR—Background and

    definitions

    iii. Unconditional VaR formulation

    Estimate f(R;θ)

  • VaR—Background and

    definitions

    iv. Conditional VaR formulation (AR(1) ABS-

    GARCH(1,1))

    0 1 1t t t t t t tR R Z z −= + + = +

    0 1 1 1 2 1t t t tz − − −= + +

    ( )

    ( )1 :t t t ZR F

    −= +

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    6. VaR (value at risk)

    a. Background and definitions

    b. Models and applications

    7. Conclusion

  • VaR—

    Models and applications

    i. Unconditional VaR formulation

    ⚫ Exponential: (Hogg, R. V. and S. A. Klugman (1983))

    ⚫ Gamma: (Cummins, et al. 1990)

    ⚫ Log-gamma: (Ramlau-Hansen (1988)), (Hogg, R. V. and

    S. A. Klugman (1983))

    ⚫ Lognormal: (Ramlau-Hansen (1988))

    ⚫ Stable: (Paulson and Faris (1985)

    ⚫ Pareto: (Hogg, R. V. and S. A. Klugman (1983))

    ⚫ Log-t: (Hogg, R. V. and S. A. Klugman (1983))

    ⚫ Weibull: (Cummins et al. (1990))

  • VaR—

    Models and applications

    i. Unconditional VaR formulation (continued)

    ⚫ Burr: (Hogg, R. V. and S. A. Klugman (1983))

    ⚫ Generalized Pareto: (Hogg, R. V. and S. A.

    Klugman (1983))

    ⚫ GB2: (Cummins (1990, 1999, 2007)

    ⚫ Pearson family: Aiuppa (1988)

    ⚫ Extreme value distribution: Bali (2003), Bali and

    Theodossiou (2008)

    ⚫ IHS: Bali and Theodossiou (2008)

  • VaR—

    Models and applications

    ii. Conditional VaR formulations

    (Bali and Theodossiou, JRI, 2008)

    ⚫ Data:

    ▪ S&P500 composite index, 1/4/50 – 12/29/2000 (n=12,832)

    ▪ Daily percentage log-returns: (Sample mean = .0341,

    maximum=8.71, minimum=-22.90

    ⚫ standard deviation = .874

    ⚫ skewness =1.622

    ⚫ kurtosis=45.52

  • VaR—

    Models and applications

    ii. Conditional distributions (Bali and Theodossiou, JRI, 2008) (continued)

    ⚫ Models

    ⚫ Generalized extreme value

    ⚫ EGB2

    ⚫ SGT

    ⚫ IHS

    ⚫ Findings

    ⚫ Out of sample VaR estimates are rejected for most unconditionalspecifications

    ⚫ Thresholds exhibit time varying behavior

    ⚫ Out of sample VaR estimates for the conditional specifications corresponding to the SGT, IHS, and EGB2 perform better than the

    extreme value distributions

  • Selected references for option pricing and VaR

    ⚫ Aiuppa, T. A. 1988. “Evaluation of Pearson curves as an approximation of the maximum probable annual aggregate loss.” Journal of Risk and Insurance 55, 425-441

    ⚫ Bali, T. G., 2003. “An Extreme Value Approach to Estimating Volatility and Value at Risk,” Journal of Business, 76:83-108

    ⚫ Bali, T. G. and P. Theodossiou, 2007. “A Conditional-SGT-VaR Approach with Alternative GARCH Models,” Annals of Operations Research, 151: 241-267.

    ⚫ Bali, T. G. and P. Theodossiou, 2008. “Risk Measurement Performance of Alternaitve Distribution Functions,” Journal of Risk and Insurance, 75: 411-437.

    ⚫ Black, F (1976). The Pricing of Commodity Contracts. Journal of Financial Economics 3:169-179.

    ⚫ Cummins, J. D., G. Dionne, J. B. McDonald, and B. M. Pritchett 1990. “Applications of the GB2 family of distributions in modeling insurance loss processes.” Insurance: Mathematics and Economics 9, 257-272.

    ⚫ Cummins, J. D., C. Merrill, and J. B. McDonald, 2007. “Risky Loss Distributions and Modeling the Loss Reserve Pay-out Tail,” Review of Applied Economics 3.

    ⚫ Cummins, J. D., R. D. Phillips, and S. D. Smith 2001. “Pricing Excess of Loss Reinsurance Contracts against catastrophic loss.” In Kenneth Froot, ed., The Financing of Catastrophe Risk (Chicago: University of Chicago Press)

    ⚫ Dutta, K. K. and D. F. Babbel 2005. “Extracting Probabilistic Information from the Prices of Interest Rate Options: Tests ofDistributional Assumptions.” Journal of Business 78:841-870

    ⚫ Hogg, R. V. and S. A. Klugman, 1983. “On the Estimation of Long Tailed Skewed Distributions with Actuarial Applications.” Journal of Econometrics 23, 91-102.

    ⚫ McDonald, J. B. and R. M. Bookstaber (1991). “Option Pricing for Generalized Distributions.” Communications in Statistics: Theory and Methods, 20(12), 4053-4068.

    ⚫ Rebonato, R. (1999). Volatility and correlations in the pricing of equity. FX and interest-rate options. New York: John Wiley.

    ⚫ Paulson, A. S. and N. J. Faris (1985). “A Practical Approach to Measuring the Distribuiton of Total Annual Claims.” In J. D. Cummins, ed., Strategic Planning and Modeling in Property-Liability Insurance. Norwell, MA: Kluwer Academic Publishers.

    ⚫ Ramlau-Hansen, H. (1988). “A Solvency Study in Non-life Insurance. Part 1. Analysis of Fire, Windstorm, and Glass Claims.” Scandinavian Actuarial Journal, pp. 3-34.

    ⚫ Rebonato, R. 1999. Volatility and correlations in the pricing of equity, FX and interest-rate options. New York: John Wiley.

    ⚫ Reid, D. H. (1978). “Claim Reserves in General Insurance,” Journal of the Institute of Actuaries 105: 211-296

    ⚫ Savickas, R. (2001). A Simple option-pricing formula. Working paper, Department of Finance, George Washington University, Washington, DC.

    ⚫ Sherrick, B. J., P. Garcia, and V. Tirupattur (1996). Recovering probabilistic information for options markets: Tests of distributional assumptions. Journal of Futures Markets 16:545-560.

    ⚫ Theodossiou, Panayiotis, “Skewed Generalized Error Distribution of Financial Assets and Option Pricing,”

  • Statistical Distributions in

    Finance

    1. Introduction

    2. Some families of statistical distributions

    3. Regression applications

    4. Qualitative response models

    5. Option pricing: European call option

    6. VaR (value at risk)

    7. Conclusion

  • Conclusion

  • END OF PRESENTATION

  • Appendices

    ⚫ Cumulative distribution functions

    1. GB, GB1, GB2, GG

    2. EGB2

    3. SGT

    4. SGED

    5. IHS

    6. g-and-h distribution

    ⚫ Option pricing basics

    ⚫ VaR—Models and applications discussion

  • Appendices—

    Cumulative distribution functions

    1. GB, GB1, GB2, and GG

    where and

    denotes the incomplete beta function

    ( )

    ( )

    ( )

    2 1 ,1 ; 1;1 ; , , ,

    ,

    ,

    p

    z

    z F p q p zGB y a b p q

    pB p q

    B p q

    − +=

    =

    ( )/a

    z y b=

    ( )( )

    ( )

    11

    0

    1

    ,,

    zqp

    z

    s s ds

    B p qB p q

    −− −

    =

  • Appendices—

    Cumulative distribution functions

    1. GB, GB1, GB2, and GG (continued)

    where

    ( )

    ( )

    ( )

    2 1 ,1 ; 1;2 ; , , ,

    ,

    ,

    p

    z

    z F p q p zGB y a b p q

    pB p q

    B p q

    − +=

    =

    ( )

    ( )

    /

    1 /

    a

    a

    y bz

    y b=

    +

  • Appendices—

    Cumulative distribution functions

    1. GB, GB1, GB2, and GG (continued)

    where

    and

    denotes the incomplete gamma function

    Abramowitz and Stegun (1970, p. 932), McDonald (1984), and Rainville (1960,p. 60 and 125)

    ( )( ) ( )

    ( )( )

    /

    1 1

    /; , , 1; 1; /

    1

    a apyae y

    GG y a b p F p yp

    = + +

    ( )z p=

    ( )/a

    z y =

    ( )( )

    1

    0

    z

    p s

    z

    s e ds

    pp

    − −

    =

  • Appendices—

    Cumulative distribution functions

    2. EGB2

    where

    3. SGT

    where

    ( ) ( )2 ; , , , ,zEGB y m p q B p q =

    ( )

    ( )

    /

    /1

    y m

    y m

    ez

    e

    −=

    +

    ( )( )( )

    ( ) ( )11

    ; , , , , 1/ ,2 2

    z

    sign y mSGT y m p q sign y m B p q

    + −−= + −

    ( )( )1

    p

    pp p

    y mz

    y m q sign y m

    −=

    − + + −

  • Appendix—

    Cumulative distribution functions

    4. SGED

    where

    ( )( )

    ( ) ( )11

    ; , , , 1/2 2

    z

    sign y mSGED y m p sign y m p

    + − −= + −

    ( )( )1

    p

    pp

    y mz

    sign y m

    −=

    + −

  • Appendices—

    Cumulative distribution functions

    5. IHS

    where

    ( ) ( ) ( ); , , , Pr PrIHS y k Y y Z z = =

    ( ) ( )2; 0, 1 PrN z Z z = = = 2

    1 1

    1 1 3 ; ;

    2 2 2 22

    z zF

    −= +

    ( )( )( )2 / 2

    1 1

    2 2 2z

    sign z = +

    2

    1y a y a

    z k n kb b

    − − = + + −

    / wb = = ( ) ( )2 2 2.5 .52 2/ .5 2 1k k ke e e − − −+ − + + + −

    ( )( )2.5.5 kwa b b e e e

    −−= − = − −

    and with

  • Appendices—

    Cumulative distribution functions

    6. g- and h-distribution

    ⚫ Numeric procedures, based on the use of order statistics as outlined in Exploring Data Tables, Trends, and Shapes by Hoaglin,, Mosteller, and Tukey (1985), Wiley.

    ⚫ For h > 0, the transformation

    is one-to-one, (Martinez, J. and B. Iglewicz . 1984. “Some Properties of Tukey g and h family of distributions,” Communications in Statistics—Theory and Methods 13, 353-369). Even without an explicit functional form for the inverse, numerical “MLE” estimates” can be obtained.

    ( )2 / 2

    ,

    1gZ hZg h

    eY Z a b e

    g

    −= +

  • Appendices

    ⚫ Cumulative distribution functions

    ⚫ Option pricing basics

    1. European call option

    2. Put option

    3. Definitions of terms

    4. Assumptions

    5. Volatility

    6. The Greeks

    ⚫ VaR—Models and applications discussion

  • Appendices—

    Option pricing basics

    1. European call option

    2. Put option

    ( ) ( )( ) ( ) ( )

    ( ) ( )( )

    0

    T 1 2

    , , , ,0, , ,

    ;1 ;0 BS: S d

    rT rt

    f T T

    X

    rT rT

    T

    T t

    C S T X r e E C S X r e S X f S S T dS

    X XS e X e X d

    S S

    − −

    − −

    = = −

    = − −

    ( ) ( )2 1 : -rT

    TBS Put formula e X d S d− − −

  • Appendices—

    Option pricing basics

    3. Definitions of terms:⚫ T = time to expiration

    ⚫ ST = Current market price

    ⚫ r = interest rate (risk free rate)

    ⚫ X = strike price (or exercise price) ▪ call options: price at which the instrument can be purchased

    up to expiration

    profit per share gained upon exercising or selling the option

    >0 in the money

  • Appendices—

    Option pricing basics

    4. Assumptions:⚫ Can short sell the underlying instrument

    ⚫ No arbitrage opportunities

    ⚫ Continuous trading in the instrument

    ⚫ No taxes or transaction costs

    ⚫ Securities are perfectly divisible

    ⚫ Can borrow or lend at a constant risk free rate

    ⚫ The instrument does not pay a dividend

    5. Volatility (in the BS option pricing formula—based on the LN)

  • Appendices—

    Option pricing basics

    6. The Greeks:

    ⚫ (delta) measures the change in value of the instrument to a change in the current market price

    ⚫ (kappa or vega) measures the responsiveness of the value of the instrument in response to a change in volatility

    ⚫ (theta) responsiveness of the value of the instrument to T (time to expiration)

    ⚫ (rho) responsiveness to changes in the risk free rate

    ( )( ), , ,;1

    f T

    T T

    C S T X r X

    S S

    = =

    ( )( ), , ,( )

    f TC S T X r

    volatility

    =

    ( )( ), , ,f TC S T X rT

    = −

    ( )( ), , ,f TC S T X rr

    =

  • Appendices

    ⚫ Cumulative distribution functions

    ⚫ Option pricing basics

    ⚫ VaR—Models and applications

    discussion

  • Appendices—VaR: Models and

    applications discussion

    ⚫ Paulson and Faris (1985) used the stable family and Aiuppa (1988) used the Pearson family to model insurance losses

    ⚫ Ramlau-Hansen (1988) modeled fire, windstorm, and glass claims using the log-gamma and lognormal

    ⚫ Cummins, et al. (1990) modeled fire losses using the GB2

    ⚫ Cummins, Lewis, and Phillips (1999) used the LN, Burr 12, and GB2 to model hurricane and earthquake losses.

    ⚫ Hogg, R. V. and S. A. Klugman, 1983. “On the Estimation of Long Tailed Skewed Distributions with Actuarial Applications.” Journal of Econometrics 23, 91-102

    ⚫ Models loss distributions (a. Hurricaines (1949-1980), b. malpractice claims paid for insured hospitals in 1975)

    ⚫ Considers exponential, pareto (mixture of an exponential and inverse gamma), generalized pareto (mixture of gamma and inverse gamma), Burr distribution (mixture of a Weibull and inverse gamma), log-t (mixture of a lognormal and inverse gamma) and a log-gamma.

    ⚫ Consider alternative estimation procedures: maximum likelihood and minimum distance estimators

    ⚫ Many loss distributions are characterized by skewness and long tails such as associated with the flexible distributions coming from mixtures.

  • Appendices—VaR: Models and

    applications discussion

    ⚫ Cummins, J. D., G. Dionne, J. B. McDonald, and B. M. Pritchett, 1990. “Applications of the GB2 family of distributions in modeling insurance loss processes.” Insurance: Mathematics and Economics 9, 257-272.

    ⚫ Models fire losses

    ⚫ Considers the GB2 and special cases GG, BR3, BR12, LN, W, and GA to model the fire loss data. MLE estimates of distributional parameters and Maximum Probably Yearly Aggregate Loss (MPY) were obtained at the .01 level.

    ⚫ Important to use distributions which permit thick tails

    ⚫ Bali, T. G., 2003. “An Extreme Value Approach to Estimating Volatility and Value at Risk,” Journal of Business, 76:83-108

  • Appendices—VaR: Models and

    applications discussion

    ⚫ Cummins, J. D., C. Merrill, and J. B. McDonald, 2007. “Risky Loss Distributions and Modeling the Loss Reserve Pay-out Tail,” Review of Applied Economics 3.

    ⚫ Estimate aggregate loss distribution associated with claims incurred in a given year, but settled in different years

    ▪ Data: U.S. products liability insurance paid claims (Insurance Services Office (ISO))

    ▪ Mixture model:

    ▪ Consider different GB2 distributions for each cell (year)

    ▪ Multinomial distribution for fraction of claims settled at different lags

    ▪ Single aggregate GB2 distribution for each year GB2 provides a significantly better fit to severity data than the LN, gamma, Weibull, Burr12, or generalized gamma

    ▪ The Aggregate GB2 distribution has a thicker tail than does the mixture distribution

  • Appendices—VaR: Models and

    applications discussion

    ⚫ Bali, T. G. and P. Theodossiou, 2008. “Risk Measurement Performance of Alternative Distribution Functions,” Journal of Risk and Insurance, 75: 411-437.

    ⚫ Models: Unconditional formulations▪ Generalized Pareto

    ▪ Generalized extreme value

    ▪ Box-Cox extreme value

    ▪ SGED

    ▪ SGT

    ▪ EGB2

    ▪ IHS

    ⚫ Models: Conditional formulations (model time-varying VaR thresholds)

    0 1 1t t t t t t tR R z z −= + + = +

    0 1 1 1 2 1t t t tz − − −= + +tL

  • Appendices—VaR: Models and

    applications discussion

    ⚫ Bali, T. G. and P. Theodossiou, 2008. “Risk Measurement Performance of Alternative Distribution Functions,” Journal of Risk and Insurance, 75: 411-437. (continued)

    ⚫ Data

    ▪ S&P500 composite index (1/4/1950 to 12/29/2000)

    ▪ Daily percentage log-returns: (n=12,832

    ▪ maximum=8.71

    ▪ minimum=-22.90

    ▪ skewness =1.622

    ▪ kurtosis=45.52

    ⚫ Findings

    ▪ Out of sample VaR estimates are rejected for most unconditional specifications

    ▪ Thresholds exhibit time varying behavior

    ▪ Out of sample VaR estimates for the conditional specifications corresponding to the SGT, IHS, and EGB2 perform better than the

    extreme value distributions

  • END OF APPENDICES